summaryrefslogtreecommitdiff
path: root/ppc/sha1ppc.S
blob: 1711eef6e71be6d243016b5e138766b3777e08ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*
 * SHA-1 implementation for PowerPC.
 *
 * Copyright (C) 2005 Paul Mackerras <paulus@samba.org>
 */

/*
 * PowerPC calling convention:
 * %r0 - volatile temp
 * %r1 - stack pointer.
 * %r2 - reserved
 * %r3-%r12 - Incoming arguments & return values; volatile.
 * %r13-%r31 - Callee-save registers
 * %lr - Return address, volatile
 * %ctr - volatile
 *
 * Register usage in this routine:
 * %r0 - temp
 * %r3 - argument (pointer to 5 words of SHA state)
 * %r4 - argument (pointer to data to hash)
 * %r5 - Constant K in SHA round (initially number of blocks to hash)
 * %r6-%r10 - Working copies of SHA variables A..E (actually E..A order)
 * %r11-%r26 - Data being hashed W[].
 * %r27-%r31 - Previous copies of A..E, for final add back.
 * %ctr - loop count
 */


/*
 * We roll the registers for A, B, C, D, E around on each
 * iteration; E on iteration t is D on iteration t+1, and so on.
 * We use registers 6 - 10 for this.  (Registers 27 - 31 hold
 * the previous values.)
 */
#define RA(t)	(((t)+4)%5+6)
#define RB(t)	(((t)+3)%5+6)
#define RC(t)	(((t)+2)%5+6)
#define RD(t)	(((t)+1)%5+6)
#define RE(t)	(((t)+0)%5+6)

/* We use registers 11 - 26 for the W values */
#define W(t)	((t)%16+11)

/* Register 5 is used for the constant k */

/*
 * The basic SHA-1 round function is:
 * E += ROTL(A,5) + F(B,C,D) + W[i] + K;  B = ROTL(B,30)
 * Then the variables are renamed: (A,B,C,D,E) = (E,A,B,C,D).
 *
 * Every 20 rounds, the function F() and the constant K changes:
 * - 20 rounds of f0(b,c,d) = "bit wise b ? c : d" =  (^b & d) + (b & c)
 * - 20 rounds of f1(b,c,d) = b^c^d = (b^d)^c
 * - 20 rounds of f2(b,c,d) = majority(b,c,d) = (b&d) + ((b^d)&c)
 * - 20 more rounds of f1(b,c,d)
 *
 * These are all scheduled for near-optimal performance on a G4.
 * The G4 is a 3-issue out-of-order machine with 3 ALUs, but it can only
 * *consider* starting the oldest 3 instructions per cycle.  So to get
 * maximum performance out of it, you have to treat it as an in-order
 * machine.  Which means interleaving the computation round t with the
 * computation of W[t+4].
 *
 * The first 16 rounds use W values loaded directly from memory, while the
 * remaining 64 use values computed from those first 16.  We preload
 * 4 values before starting, so there are three kinds of rounds:
 * - The first 12 (all f0) also load the W values from memory.
 * - The next 64 compute W(i+4) in parallel. 8*f0, 20*f1, 20*f2, 16*f1.
 * - The last 4 (all f1) do not do anything with W.
 *
 * Therefore, we have 6 different round functions:
 * STEPD0_LOAD(t,s) - Perform round t and load W(s).  s < 16
 * STEPD0_UPDATE(t,s) - Perform round t and compute W(s).  s >= 16.
 * STEPD1_UPDATE(t,s)
 * STEPD2_UPDATE(t,s)
 * STEPD1(t) - Perform round t with no load or update.
 *
 * The G5 is more fully out-of-order, and can find the parallelism
 * by itself.  The big limit is that it has a 2-cycle ALU latency, so
 * even though it's 2-way, the code has to be scheduled as if it's
 * 4-way, which can be a limit.  To help it, we try to schedule the
 * read of RA(t) as late as possible so it doesn't stall waiting for
 * the previous round's RE(t-1), and we try to rotate RB(t) as early
 * as possible while reading RC(t) (= RB(t-1)) as late as possible.
 */

/* the initial loads. */
#define LOADW(s) \
	lwz	W(s),(s)*4(%r4)

/*
 * Perform a step with F0, and load W(s).  Uses W(s) as a temporary
 * before loading it.
 * This is actually 10 instructions, which is an awkward fit.
 * It can execute grouped as listed, or delayed one instruction.
 * (If delayed two instructions, there is a stall before the start of the
 * second line.)  Thus, two iterations take 7 cycles, 3.5 cycles per round.
 */
#define STEPD0_LOAD(t,s) \
add RE(t),RE(t),W(t); andc   %r0,RD(t),RB(t);  and    W(s),RC(t),RB(t); \
add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;      rotlwi RB(t),RB(t),30;   \
add RE(t),RE(t),W(s); add    %r0,%r0,%r5;      lwz    W(s),(s)*4(%r4);  \
add RE(t),RE(t),%r0

/*
 * This is likewise awkward, 13 instructions.  However, it can also
 * execute starting with 2 out of 3 possible moduli, so it does 2 rounds
 * in 9 cycles, 4.5 cycles/round.
 */
#define STEPD0_UPDATE(t,s,loadk...) \
add RE(t),RE(t),W(t); andc   %r0,RD(t),RB(t); xor    W(s),W((s)-16),W((s)-3); \
add RE(t),RE(t),%r0;  and    %r0,RC(t),RB(t); xor    W(s),W(s),W((s)-8);      \
add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;     xor    W(s),W(s),W((s)-14);     \
add RE(t),RE(t),%r5;  loadk; rotlwi RB(t),RB(t),30;  rotlwi W(s),W(s),1;     \
add RE(t),RE(t),%r0

/* Nicely optimal.  Conveniently, also the most common. */
#define STEPD1_UPDATE(t,s,loadk...) \
add RE(t),RE(t),W(t); xor    %r0,RD(t),RB(t); xor    W(s),W((s)-16),W((s)-3); \
add RE(t),RE(t),%r5;  loadk; xor %r0,%r0,RC(t);  xor W(s),W(s),W((s)-8);      \
add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;     xor    W(s),W(s),W((s)-14);     \
add RE(t),RE(t),%r0;  rotlwi RB(t),RB(t),30;  rotlwi W(s),W(s),1

/*
 * The naked version, no UPDATE, for the last 4 rounds.  3 cycles per.
 * We could use W(s) as a temp register, but we don't need it.
 */
#define STEPD1(t) \
                        add   RE(t),RE(t),W(t); xor    %r0,RD(t),RB(t); \
rotlwi RB(t),RB(t),30;  add   RE(t),RE(t),%r5;  xor    %r0,%r0,RC(t);   \
add    RE(t),RE(t),%r0; rotlwi %r0,RA(t),5;     /* spare slot */        \
add    RE(t),RE(t),%r0

/*
 * 14 instructions, 5 cycles per.  The majority function is a bit
 * awkward to compute.  This can execute with a 1-instruction delay,
 * but it causes a 2-instruction delay, which triggers a stall.
 */
#define STEPD2_UPDATE(t,s,loadk...) \
add RE(t),RE(t),W(t); and    %r0,RD(t),RB(t); xor    W(s),W((s)-16),W((s)-3); \
add RE(t),RE(t),%r0;  xor    %r0,RD(t),RB(t); xor    W(s),W(s),W((s)-8);      \
add RE(t),RE(t),%r5;  loadk; and %r0,%r0,RC(t);  xor W(s),W(s),W((s)-14);     \
add RE(t),RE(t),%r0;  rotlwi %r0,RA(t),5;     rotlwi W(s),W(s),1;             \
add RE(t),RE(t),%r0;  rotlwi RB(t),RB(t),30

#define STEP0_LOAD4(t,s)		\
	STEPD0_LOAD(t,s);		\
	STEPD0_LOAD((t+1),(s)+1);	\
	STEPD0_LOAD((t)+2,(s)+2);	\
	STEPD0_LOAD((t)+3,(s)+3)

#define STEPUP4(fn, t, s, loadk...)		\
	STEP##fn##_UPDATE(t,s,);		\
	STEP##fn##_UPDATE((t)+1,(s)+1,);	\
	STEP##fn##_UPDATE((t)+2,(s)+2,);	\
	STEP##fn##_UPDATE((t)+3,(s)+3,loadk)

#define STEPUP20(fn, t, s, loadk...)	\
	STEPUP4(fn, t, s,);		\
	STEPUP4(fn, (t)+4, (s)+4,);	\
	STEPUP4(fn, (t)+8, (s)+8,);	\
	STEPUP4(fn, (t)+12, (s)+12,);	\
	STEPUP4(fn, (t)+16, (s)+16, loadk)

	.globl	ppc_sha1_core
ppc_sha1_core:
	stwu	%r1,-80(%r1)
	stmw	%r13,4(%r1)

	/* Load up A - E */
	lmw	%r27,0(%r3)

	mtctr	%r5

1:
	LOADW(0)
	lis	%r5,0x5a82
	mr	RE(0),%r31
	LOADW(1)
	mr	RD(0),%r30
	mr	RC(0),%r29
	LOADW(2)
	ori	%r5,%r5,0x7999	/* K0-19 */
	mr	RB(0),%r28
	LOADW(3)
	mr	RA(0),%r27

	STEP0_LOAD4(0, 4)
	STEP0_LOAD4(4, 8)
	STEP0_LOAD4(8, 12)
	STEPUP4(D0, 12, 16,)
	STEPUP4(D0, 16, 20, lis %r5,0x6ed9)

	ori	%r5,%r5,0xeba1	/* K20-39 */
	STEPUP20(D1, 20, 24, lis %r5,0x8f1b)

	ori	%r5,%r5,0xbcdc	/* K40-59 */
	STEPUP20(D2, 40, 44, lis %r5,0xca62)

	ori	%r5,%r5,0xc1d6	/* K60-79 */
	STEPUP4(D1, 60, 64,)
	STEPUP4(D1, 64, 68,)
	STEPUP4(D1, 68, 72,)
	STEPUP4(D1, 72, 76,)
	addi	%r4,%r4,64
	STEPD1(76)
	STEPD1(77)
	STEPD1(78)
	STEPD1(79)

	/* Add results to original values */
	add	%r31,%r31,RE(0)
	add	%r30,%r30,RD(0)
	add	%r29,%r29,RC(0)
	add	%r28,%r28,RB(0)
	add	%r27,%r27,RA(0)

	bdnz	1b

	/* Save final hash, restore registers, and return */
	stmw	%r27,0(%r3)
	lmw	%r13,4(%r1)
	addi	%r1,%r1,80
	blr