summaryrefslogtreecommitdiff
path: root/Documentation/git-fast-import.txt
blob: 6fc78bff3e5aa08a3dc133cd356966d5aba86724 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
git-fast-import(1)
==================

NAME
----
git-fast-import - Backend for fast Git data importers.


SYNOPSIS
--------
frontend | 'git-fast-import' [options]

DESCRIPTION
-----------
This program is usually not what the end user wants to run directly.
Most end users want to use one of the existing frontend programs,
which parses a specific type of foreign source and feeds the contents
stored there to git-fast-import (gfi).

gfi reads a mixed command/data stream from standard input and
writes one or more packfiles directly into the current repository.
When EOF is received on standard input, fast import writes out
updated branch and tag refs, fully updating the current repository
with the newly imported data.

The gfi backend itself can import into an empty repository (one that
has already been initialized by gitlink:git-init[1]) or incrementally
update an existing populated repository.  Whether or not incremental
imports are supported from a particular foreign source depends on
the frontend program in use.


OPTIONS
-------
--max-pack-size=<n>::
	Maximum size of each output packfile, expressed in MiB.
	The default is 4096 (4 GiB) as that is the maximum allowed
	packfile size (due to file format limitations). Some
	importers may wish to lower this, such as to ensure the
	resulting packfiles fit on CDs.

--depth=<n>::
	Maximum delta depth, for blob and tree deltification.
	Default is 10.

--active-branches=<n>::
	Maximum number of branches to maintain active at once.
	See ``Memory Utilization'' below for details.  Default is 5.

--export-marks=<file>::
	Dumps the internal marks table to <file> when complete.
	Marks are written one per line as `:markid SHA-1`.
	Frontends can use this file to validate imports after they
	have been completed.


Performance
-----------
The design of gfi allows it to import large projects in a minimum
amount of memory usage and processing time.  Assuming the frontend
is able to keep up with gfi and feed it a constant stream of data,
import times for projects holding 10+ years of history and containing
100,000+ individual commits are generally completed in just 1-2
hours on quite modest (~$2,000 USD) hardware.

Most bottlenecks appear to be in foreign source data access (the
source just cannot extract revisions fast enough) or disk IO (gfi
writes as fast as the disk will take the data).  Imports will run
faster if the source data is stored on a different drive than the
destination Git repository (due to less IO contention).


Development Cost
----------------
A typical frontend for gfi tends to weigh in at approximately 200
lines of Perl/Python/Ruby code.  Most developers have been able to
create working importers in just a couple of hours, even though it
is their first exposure to gfi, and sometimes even to Git.  This is
an ideal situation, given that most conversion tools are throw-away
(use once, and never look back).


Parallel Operation
------------------
Like `git-push` or `git-fetch`, imports handled by gfi are safe to
run alongside parallel `git repack -a -d` or `git gc` invocations,
or any other Git operation (including `git prune`, as loose objects
are never used by gfi).

However, gfi does not lock the branch or tag refs it is actively
importing.  After EOF, during its ref update phase, gfi blindly
overwrites each imported branch or tag ref.  Consequently it is not
safe to modify refs that are currently being used by a running gfi
instance, as work could be lost when gfi overwrites the refs.


Technical Discussion
--------------------
gfi tracks a set of branches in memory.  Any branch can be created
or modified at any point during the import process by sending a
`commit` command on the input stream.  This design allows a frontend
program to process an unlimited number of branches simultaneously,
generating commits in the order they are available from the source
data.  It also simplifies the frontend programs considerably.

gfi does not use or alter the current working directory, or any
file within it.  (It does however update the current Git repository,
as referenced by `GIT_DIR`.)  Therefore an import frontend may use
the working directory for its own purposes, such as extracting file
revisions from the foreign source.  This ignorance of the working
directory also allows gfi to run very quickly, as it does not
need to perform any costly file update operations when switching
between branches.

Input Format
------------
With the exception of raw file data (which Git does not interpret)
the gfi input format is text (ASCII) based.  This text based
format simplifies development and debugging of frontend programs,
especially when a higher level language such as Perl, Python or
Ruby is being used.

gfi is very strict about its input.  Where we say SP below we mean
*exactly* one space.  Likewise LF means one (and only one) linefeed.
Supplying additional whitespace characters will cause unexpected
results, such as branch names or file names with leading or trailing
spaces in their name, or early termination of gfi when it encounters
unexpected input.

Commands
~~~~~~~~
gfi accepts several commands to update the current repository
and control the current import process.  More detailed discussion
(with examples) of each command follows later.

`commit`::
	Creates a new branch or updates an existing branch by
	creating a new commit and updating the branch to point at
	the newly created commit.

`tag`::
	Creates an annotated tag object from an existing commit or
	branch.  Lightweight tags are not supported by this command,
	as they are not recommended for recording meaningful points
	in time.

`reset`::
	Reset an existing branch (or a new branch) to a specific
	revision.  This command must be used to change a branch to
	a specific revision without making a commit on it.

`blob`::
	Convert raw file data into a blob, for future use in a
	`commit` command.  This command is optional and is not
	needed to perform an import.

`checkpoint`::
	Forces gfi to close the current packfile, generate its
	unique SHA-1 checksum and index, and start a new packfile.
	This command is optional and is not needed to perform
	an import.

`commit`
~~~~~~~~
Create or update a branch with a new commit, recording one logical
change to the project.

....
	'commit' SP <ref> LF
	mark?
	('author' SP <name> SP LT <email> GT SP <time> SP <tz> LF)?
	'committer' SP <name> SP LT <email> GT SP <time> SP <tz> LF
	data
	('from' SP <committish> LF)?
	('merge' SP <committish> LF)?
	(filemodify | filedelete)*
	LF
....

where `<ref>` is the name of the branch to make the commit on.
Typically branch names are prefixed with `refs/heads/` in
Git, so importing the CVS branch symbol `RELENG-1_0` would use
`refs/heads/RELENG-1_0` for the value of `<ref>`.  The value of
`<ref>` must be a valid refname in Git.  As `LF` is not valid in
a Git refname, no quoting or escaping syntax is supported here.

A `mark` command may optionally appear, requesting gfi to save a
reference to the newly created commit for future use by the frontend
(see below for format).  It is very common for frontends to mark
every commit they create, thereby allowing future branch creation
from any imported commit.

The `data` command following `committer` must supply the commit
message (see below for `data` command syntax).  To import an empty
commit message use a 0 length data.  Commit messages are free-form
and are not interpreted by Git.  Currently they must be encoded in
UTF-8, as gfi does not permit other encodings to be specified.

Zero or more `filemodify` and `filedelete` commands may be
included to update the contents of the branch prior to the commit.
These commands can be supplied in any order, gfi is not sensitive
to pathname or operation ordering.

`author`
^^^^^^^^
An `author` command may optionally appear, if the author information
might differ from the committer information.  If `author` is omitted
then gfi will automatically use the committer's information for
the author portion of the commit.  See below for a description of
the fields in `author`, as they are identical to `committer`.

`committer`
^^^^^^^^^^^
The `committer` command indicates who made this commit, and when
they made it.

Here `<name>` is the person's display name (for example
``Com M Itter'') and `<email>` is the person's email address
(``cm@example.com'').  `LT` and `GT` are the literal less-than (\x3c)
and greater-than (\x3e) symbols.  These are required to delimit
the email address from the other fields in the line.  Note that
`<name>` is free-form and may contain any sequence of bytes, except
`LT` and `LF`.  It is typically UTF-8 encoded.

The time of the change is specified by `<time>` as the number of
seconds since the UNIX epoc (midnight, Jan 1, 1970, UTC) and is
written as an ASCII decimal integer.  The committer's
timezone is specified by `<tz>` as a positive or negative offset
from UTC.  For example EST (which is typically 5 hours behind GMT)
would be expressed in `<tz>` by ``-0500'' while GMT is ``+0000''.

`from`
^^^^^^
Only valid for the first commit made on this branch by this
gfi process.  The `from` command is used to specify the commit
to initialize this branch from.  This revision will be the first
ancestor of the new commit.

Omitting the `from` command in the first commit of a new branch will
cause gfi to create that commit with no ancestor. This tends to be
desired only for the initial commit of a project.  Omitting the
`from` command on existing branches is required, as the current
commit on that branch is automatically assumed to be the first
ancestor of the new commit.

As `LF` is not valid in a Git refname or SHA-1 expression, no
quoting or escaping syntax is supported within `<committish>`.

Here `<committish>` is any of the following:

* The name of an existing branch already in gfi's internal branch
  table.  If gfi doesn't know the name, its treated as a SHA-1
  expression.

* A mark reference, `:<idnum>`, where `<idnum>` is the mark number.
+
The reason gfi uses `:` to denote a mark reference is this character
is not legal in a Git branch name.  The leading `:` makes it easy
to distingush between the mark 42 (`:42`) and the branch 42 (`42`
or `refs/heads/42`), or an abbreviated SHA-1 which happened to
consist only of base-10 digits.
+
Marks must be declared (via `mark`) before they can be used.

* A complete 40 byte or abbreviated commit SHA-1 in hex.

* Any valid Git SHA-1 expression that resolves to a commit.  See
  ``SPECIFYING REVISIONS'' in gitlink:git-rev-parse[1] for details.

The special case of restarting an incremental import from the
current branch value should be written as:
----
	from refs/heads/branch^0
----
The `^0` suffix is necessary as gfi does not permit a branch to
start from itself, and the branch is created in memory before the
`from` command is even read from the input.  Adding `^0` will force
gfi to resolve the commit through Git's revision parsing library,
rather than its internal branch table, thereby loading in the
existing value of the branch.

`merge`
^^^^^^^
Includes one additional ancestor commit, and makes the current
commit a merge commit.  An unlimited number of `merge` commands per
commit are permitted by gfi, thereby establishing an n-way merge.
However Git's other tools never create commits with more than 15
additional ancestors (forming a 16-way merge).  For this reason
it is suggested that frontends do not use more than 15 `merge`
commands per commit.

Here `<committish>` is any of the commit specification expressions
also accepted by `from` (see above).

`filemodify`
^^^^^^^^^^^^
Included in a `commit` command to add a new file or change the
content of an existing file.  This command has two different means
of specifying the content of the file.

External data format::
	The data content for the file was already supplied by a prior
	`blob` command.  The frontend just needs to connect it.
+
....
	'M' SP <mode> SP <dataref> SP <path> LF
....
+
Here `<dataref>` can be either a mark reference (`:<idnum>`)
set by a prior `blob` command, or a full 40-byte SHA-1 of an
existing Git blob object.

Inline data format::
	The data content for the file has not been supplied yet.
	The frontend wants to supply it as part of this modify
	command.
+
....
	'M' SP <mode> SP 'inline' SP <path> LF
	data
....
+
See below for a detailed description of the `data` command.

In both formats `<mode>` is the type of file entry, specified
in octal.  Git only supports the following modes:

* `100644` or `644`: A normal (not-executable) file.  The majority
  of files in most projects use this mode.  If in doubt, this is
  what you want.
* `100755` or `755`: A normal, but executable, file.
* `140000`: A symlink, the content of the file will be the link target.

In both formats `<path>` is the complete path of the file to be added
(if not already existing) or modified (if already existing).

A `<path>` string must use UNIX-style directory seperators (forward
slash `/`), may contain any byte other than `LF`, and must not
start with double quote (`"`).

If an `LF` or double quote must be encoded into `<path>` shell-style
quoting should be used, e.g. `"path/with\n and \" in it"`.

The value of `<path>` must be in canoncial form. That is it must not:

* contain an empty directory component (e.g. `foo//bar` is invalid),
* end with a directory seperator (e.g. `foo/` is invalid),
* start with a directory seperator (e.g. `/foo` is invalid),
* contain the special component `.` or `..` (e.g. `foo/./bar` and
  `foo/../bar` are invalid).

It is recommended that `<path>` always be encoded using UTF-8.

`filedelete`
^^^^^^^^^^^^
Included in a `commit` command to remove a file from the branch.
If the file removal makes its directory empty, the directory will
be automatically removed too.  This cascades up the tree until the
first non-empty directory or the root is reached.

....
	'D' SP <path> LF
....

here `<path>` is the complete path of the file to be removed.
See `filemodify` above for a detailed description of `<path>`.

`mark`
~~~~~~
Arranges for gfi to save a reference to the current object, allowing
the frontend to recall this object at a future point in time, without
knowing its SHA-1.  Here the current object is the object creation
command the `mark` command appears within.  This can be `commit`,
`tag`, and `blob`, but `commit` is the most common usage.

....
	'mark' SP ':' <idnum> LF
....

where `<idnum>` is the number assigned by the frontend to this mark.
The value of `<idnum>` is expressed as an ASCII decimal integer.
The value 0 is reserved and cannot be used as
a mark.  Only values greater than or equal to 1 may be used as marks.

New marks are created automatically.  Existing marks can be moved
to another object simply by reusing the same `<idnum>` in another
`mark` command.

`tag`
~~~~~
Creates an annotated tag referring to a specific commit.  To create
lightweight (non-annotated) tags see the `reset` command below.

....
	'tag' SP <name> LF
	'from' SP <committish> LF
	'tagger' SP <name> SP LT <email> GT SP <time> SP <tz> LF
	data
	LF
....

where `<name>` is the name of the tag to create.

Tag names are automatically prefixed with `refs/tags/` when stored
in Git, so importing the CVS branch symbol `RELENG-1_0-FINAL` would
use just `RELENG-1_0-FINAL` for `<name>`, and gfi will write the
corresponding ref as `refs/tags/RELENG-1_0-FINAL`.

The value of `<name>` must be a valid refname in Git and therefore
may contain forward slashes.  As `LF` is not valid in a Git refname,
no quoting or escaping syntax is supported here.

The `from` command is the same as in the `commit` command; see
above for details.

The `tagger` command uses the same format as `committer` within
`commit`; again see above for details.

The `data` command following `tagger` must supply the annotated tag
message (see below for `data` command syntax).  To import an empty
tag message use a 0 length data.  Tag messages are free-form and are
not interpreted by Git.  Currently they must be encoded in UTF-8,
as gfi does not permit other encodings to be specified.

Signing annotated tags during import from within gfi is not
supported.  Trying to include your own PGP/GPG signature is not
recommended, as the frontend does not (easily) have access to the
complete set of bytes which normally goes into such a signature.
If signing is required, create lightweight tags from within gfi with
`reset`, then create the annotated versions of those tags offline
with the standard gitlink:git-tag[1] process.

`reset`
~~~~~~~
Creates (or recreates) the named branch, optionally starting from
a specific revision.  The reset command allows a frontend to issue
a new `from` command for an existing branch, or to create a new
branch from an existing commit without creating a new commit.

....
	'reset' SP <ref> LF
	('from' SP <committish> LF)?
	LF
....

For a detailed description of `<ref>` and `<committish>` see above
under `commit` and `from`.

The `reset` command can also be used to create lightweight
(non-annotated) tags.  For example:

====
	reset refs/tags/938
	from :938
====

would create the lightweight tag `refs/tags/938` referring to
whatever commit mark `:938` references.

`blob`
~~~~~~
Requests writing one file revision to the packfile.  The revision
is not connected to any commit; this connection must be formed in
a subsequent `commit` command by referencing the blob through an
assigned mark.

....
	'blob' LF
	mark?
	data
....

The mark command is optional here as some frontends have chosen
to generate the Git SHA-1 for the blob on their own, and feed that
directly to `commit`.  This is typically more work than its worth
however, as marks are inexpensive to store and easy to use.

`data`
~~~~~~
Supplies raw data (for use as blob/file content, commit messages, or
annotated tag messages) to gfi.  Data can be supplied using an exact
byte count or delimited with a terminating line.  Real frontends
intended for production-quality conversions should always use the
exact byte count format, as it is more robust and performs better.
The delimited format is intended primarily for testing gfi.

Exact byte count format::
	The frontend must specify the number of bytes of data.
+
....
	'data' SP <count> LF
	<raw> LF
....
+
where `<count>` is the exact number of bytes appearing within
`<raw>`.  The value of `<count>` is expressed as an ASCII decimal
integer.  The `LF` on either side of `<raw>` is not
included in `<count>` and will not be included in the imported data.

Delimited format::
	A delimiter string is used to mark the end of the data.
	gfi will compute the length by searching for the delimiter.
	This format is primarly useful for testing and is not
	recommended for real data.
+
....
	'data' SP '<<' <delim> LF
	<raw> LF
	<delim> LF
....
+
where `<delim>` is the chosen delimiter string.  The string `<delim>`
must not appear on a line by itself within `<raw>`, as otherwise
gfi will think the data ends earlier than it really does.  The `LF`
immediately trailing `<raw>` is part of `<raw>`.  This is one of
the limitations of the delimited format, it is impossible to supply
a data chunk which does not have an LF as its last byte.

`checkpoint`
~~~~~~~~~~~~
Forces gfi to close the current packfile and start a new one.
As this requires a significant amount of CPU time and disk IO
(to compute the overall pack SHA-1 checksum and generate the
corresponding index file) it can easily take several minutes for
a single `checkpoint` command to complete.

....
	'checkpoint' LF
	LF
....

Packfile Optimization
---------------------
When packing a blob gfi always attempts to deltify against the last
blob written.  Unless specifically arranged for by the frontend,
this will probably not be a prior version of the same file, so the
generated delta will not be the smallest possible.  The resulting
packfile will be compressed, but will not be optimal.

Frontends which have efficient access to all revisions of a
single file (for example reading an RCS/CVS ,v file) can choose
to supply all revisions of that file as a sequence of consecutive
`blob` commands.  This allows gfi to deltify the different file
revisions against each other, saving space in the final packfile.
Marks can be used to later identify individual file revisions during
a sequence of `commit` commands.

The packfile(s) created by gfi do not encourage good disk access
patterns.  This is caused by gfi writing the data in the order
it is received on standard input, while Git typically organizes
data within packfiles to make the most recent (current tip) data
appear before historical data.  Git also clusters commits together,
speeding up revision traversal through better cache locality.

For this reason it is strongly recommended that users repack the
repository with `git repack -a -d` after gfi completes, allowing
Git to reorganize the packfiles for faster data access.  If blob
deltas are suboptimal (see above) then also adding the `-f` option
to force recomputation of all deltas can significantly reduce the
final packfile size (30-50% smaller can be quite typical).

Memory Utilization
------------------
There are a number of factors which affect how much memory gfi
requires to perform an import.  Like critical sections of core
Git, gfi uses its own memory allocators to ammortize any overheads
associated with malloc.  In practice gfi tends to ammoritize any
malloc overheads to 0, due to its use of large block allocations.

per object
~~~~~~~~~~
gfi maintains an in-memory structure for every object written in
this execution.  On a 32 bit system the structure is 32 bytes,
on a 64 bit system the structure is 40 bytes (due to the larger
pointer sizes).  Objects in the table are not deallocated until
gfi terminates.  Importing 2 million objects on a 32 bit system
will require approximately 64 MiB of memory.

The object table is actually a hashtable keyed on the object name
(the unique SHA-1).  This storage configuration allows gfi to reuse
an existing or already written object and avoid writing duplicates
to the output packfile.  Duplicate blobs are surprisingly common
in an import, typically due to branch merges in the source.

per mark
~~~~~~~~
Marks are stored in a sparse array, using 1 pointer (4 bytes or 8
bytes, depending on pointer size) per mark.  Although the array
is sparse, frontends are still strongly encouraged to use marks
between 1 and n, where n is the total number of marks required for
this import.

per branch
~~~~~~~~~~
Branches are classified as active and inactive.  The memory usage
of the two classes is significantly different.

Inactive branches are stored in a structure which uses 96 or 120
bytes (32 bit or 64 bit systems, respectively), plus the length of
the branch name (typically under 200 bytes), per branch.  gfi will
easily handle as many as 10,000 inactive branches in under 2 MiB
of memory.

Active branches have the same overhead as inactive branches, but
also contain copies of every tree that has been recently modified on
that branch.  If subtree `include` has not been modified since the
branch became active, its contents will not be loaded into memory,
but if subtree `src` has been modified by a commit since the branch
became active, then its contents will be loaded in memory.

As active branches store metadata about the files contained on that
branch, their in-memory storage size can grow to a considerable size
(see below).

gfi automatically moves active branches to inactive status based on
a simple least-recently-used algorithm.  The LRU chain is updated on
each `commit` command.  The maximum number of active branches can be
increased or decreased on the command line with `--active-branches=`.

per active tree
~~~~~~~~~~~~~~~
Trees (aka directories) use just 12 bytes of memory on top of the
memory required for their entries (see ``per active file'' below).
The cost of a tree is virtually 0, as its overhead ammortizes out
over the individual file entries.

per active file entry
~~~~~~~~~~~~~~~~~~~~~
Files (and pointers to subtrees) within active trees require 52 or 64
bytes (32/64 bit platforms) per entry.  To conserve space, file and
tree names are pooled in a common string table, allowing the filename
``Makefile'' to use just 16 bytes (after including the string header
overhead) no matter how many times it occurs within the project.

The active branch LRU, when coupled with the filename string pool
and lazy loading of subtrees, allows gfi to efficiently import
projects with 2,000+ branches and 45,114+ files in a very limited
memory footprint (less than 2.7 MiB per active branch).


Author
------
Written by Shawn O. Pearce <spearce@spearce.org>.

Documentation
--------------
Documentation by Shawn O. Pearce <spearce@spearce.org>.

GIT
---
Part of the gitlink:git[7] suite