#include "cache.h" #include "run-command.h" #include "exec_cmd.h" #include "sigchain.h" #include "argv-array.h" #include "thread-utils.h" #include "strbuf.h" void child_process_init(struct child_process *child) { memset(child, 0, sizeof(*child)); argv_array_init(&child->args); argv_array_init(&child->env_array); } void child_process_clear(struct child_process *child) { argv_array_clear(&child->args); argv_array_clear(&child->env_array); } struct child_to_clean { pid_t pid; struct child_process *process; struct child_to_clean *next; }; static struct child_to_clean *children_to_clean; static int installed_child_cleanup_handler; static void cleanup_children(int sig, int in_signal) { struct child_to_clean *children_to_wait_for = NULL; while (children_to_clean) { struct child_to_clean *p = children_to_clean; children_to_clean = p->next; if (p->process && !in_signal) { struct child_process *process = p->process; if (process->clean_on_exit_handler) { trace_printf( "trace: run_command: running exit handler for pid %" PRIuMAX, (uintmax_t)p->pid ); process->clean_on_exit_handler(process); } } kill(p->pid, sig); if (p->process && p->process->wait_after_clean) { p->next = children_to_wait_for; children_to_wait_for = p; } else { if (!in_signal) free(p); } } while (children_to_wait_for) { struct child_to_clean *p = children_to_wait_for; children_to_wait_for = p->next; while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR) ; /* spin waiting for process exit or error */ if (!in_signal) free(p); } } static void cleanup_children_on_signal(int sig) { cleanup_children(sig, 1); sigchain_pop(sig); raise(sig); } static void cleanup_children_on_exit(void) { cleanup_children(SIGTERM, 0); } static void mark_child_for_cleanup(pid_t pid, struct child_process *process) { struct child_to_clean *p = xmalloc(sizeof(*p)); p->pid = pid; p->process = process; p->next = children_to_clean; children_to_clean = p; if (!installed_child_cleanup_handler) { atexit(cleanup_children_on_exit); sigchain_push_common(cleanup_children_on_signal); installed_child_cleanup_handler = 1; } } static void clear_child_for_cleanup(pid_t pid) { struct child_to_clean **pp; for (pp = &children_to_clean; *pp; pp = &(*pp)->next) { struct child_to_clean *clean_me = *pp; if (clean_me->pid == pid) { *pp = clean_me->next; free(clean_me); return; } } } static inline void close_pair(int fd[2]) { close(fd[0]); close(fd[1]); } int is_executable(const char *name) { struct stat st; if (stat(name, &st) || /* stat, not lstat */ !S_ISREG(st.st_mode)) return 0; #if defined(GIT_WINDOWS_NATIVE) /* * On Windows there is no executable bit. The file extension * indicates whether it can be run as an executable, and Git * has special-handling to detect scripts and launch them * through the indicated script interpreter. We test for the * file extension first because virus scanners may make * it quite expensive to open many files. */ if (ends_with(name, ".exe")) return S_IXUSR; { /* * Now that we know it does not have an executable extension, * peek into the file instead. */ char buf[3] = { 0 }; int n; int fd = open(name, O_RDONLY); st.st_mode &= ~S_IXUSR; if (fd >= 0) { n = read(fd, buf, 2); if (n == 2) /* look for a she-bang */ if (!strcmp(buf, "#!")) st.st_mode |= S_IXUSR; close(fd); } } #endif return st.st_mode & S_IXUSR; } /* * Search $PATH for a command. This emulates the path search that * execvp would perform, without actually executing the command so it * can be used before fork() to prepare to run a command using * execve() or after execvp() to diagnose why it failed. * * The caller should ensure that file contains no directory * separators. * * Returns the path to the command, as found in $PATH or NULL if the * command could not be found. The caller inherits ownership of the memory * used to store the resultant path. * * This should not be used on Windows, where the $PATH search rules * are more complicated (e.g., a search for "foo" should find * "foo.exe"). */ static char *locate_in_PATH(const char *file) { const char *p = getenv("PATH"); struct strbuf buf = STRBUF_INIT; if (!p || !*p) return NULL; while (1) { const char *end = strchrnul(p, ':'); strbuf_reset(&buf); /* POSIX specifies an empty entry as the current directory. */ if (end != p) { strbuf_add(&buf, p, end - p); strbuf_addch(&buf, '/'); } strbuf_addstr(&buf, file); if (is_executable(buf.buf)) return strbuf_detach(&buf, NULL); if (!*end) break; p = end + 1; } strbuf_release(&buf); return NULL; } static int exists_in_PATH(const char *file) { char *r = locate_in_PATH(file); free(r); return r != NULL; } int sane_execvp(const char *file, char * const argv[]) { if (!execvp(file, argv)) return 0; /* cannot happen ;-) */ /* * When a command can't be found because one of the directories * listed in $PATH is unsearchable, execvp reports EACCES, but * careful usability testing (read: analysis of occasional bug * reports) reveals that "No such file or directory" is more * intuitive. * * We avoid commands with "/", because execvp will not do $PATH * lookups in that case. * * The reassignment of EACCES to errno looks like a no-op below, * but we need to protect against exists_in_PATH overwriting errno. */ if (errno == EACCES && !strchr(file, '/')) errno = exists_in_PATH(file) ? EACCES : ENOENT; else if (errno == ENOTDIR && !strchr(file, '/')) errno = ENOENT; return -1; } static const char **prepare_shell_cmd(struct argv_array *out, const char **argv) { if (!argv[0]) die("BUG: shell command is empty"); if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) { #ifndef GIT_WINDOWS_NATIVE argv_array_push(out, SHELL_PATH); #else argv_array_push(out, "sh"); #endif argv_array_push(out, "-c"); /* * If we have no extra arguments, we do not even need to * bother with the "$@" magic. */ if (!argv[1]) argv_array_push(out, argv[0]); else argv_array_pushf(out, "%s \"$@\"", argv[0]); } argv_array_pushv(out, argv); return out->argv; } #ifndef GIT_WINDOWS_NATIVE static int child_notifier = -1; enum child_errcode { CHILD_ERR_CHDIR, CHILD_ERR_DUP2, CHILD_ERR_CLOSE, CHILD_ERR_SIGPROCMASK, CHILD_ERR_ENOENT, CHILD_ERR_SILENT, CHILD_ERR_ERRNO }; struct child_err { enum child_errcode err; int syserr; /* errno */ }; static void child_die(enum child_errcode err) { struct child_err buf; buf.err = err; buf.syserr = errno; /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */ xwrite(child_notifier, &buf, sizeof(buf)); _exit(1); } static void child_dup2(int fd, int to) { if (dup2(fd, to) < 0) child_die(CHILD_ERR_DUP2); } static void child_close(int fd) { if (close(fd)) child_die(CHILD_ERR_CLOSE); } static void child_close_pair(int fd[2]) { child_close(fd[0]); child_close(fd[1]); } /* * parent will make it look like the child spewed a fatal error and died * this is needed to prevent changes to t0061. */ static void fake_fatal(const char *err, va_list params) { vreportf("fatal: ", err, params); } static void child_error_fn(const char *err, va_list params) { const char msg[] = "error() should not be called in child\n"; xwrite(2, msg, sizeof(msg) - 1); } static void child_warn_fn(const char *err, va_list params) { const char msg[] = "warn() should not be called in child\n"; xwrite(2, msg, sizeof(msg) - 1); } static void NORETURN child_die_fn(const char *err, va_list params) { const char msg[] = "die() should not be called in child\n"; xwrite(2, msg, sizeof(msg) - 1); _exit(2); } /* this runs in the parent process */ static void child_err_spew(struct child_process *cmd, struct child_err *cerr) { static void (*old_errfn)(const char *err, va_list params); old_errfn = get_error_routine(); set_error_routine(fake_fatal); errno = cerr->syserr; switch (cerr->err) { case CHILD_ERR_CHDIR: error_errno("exec '%s': cd to '%s' failed", cmd->argv[0], cmd->dir); break; case CHILD_ERR_DUP2: error_errno("dup2() in child failed"); break; case CHILD_ERR_CLOSE: error_errno("close() in child failed"); break; case CHILD_ERR_SIGPROCMASK: error_errno("sigprocmask failed restoring signals"); break; case CHILD_ERR_ENOENT: error_errno("cannot run %s", cmd->argv[0]); break; case CHILD_ERR_SILENT: break; case CHILD_ERR_ERRNO: error_errno("cannot exec '%s'", cmd->argv[0]); break; } set_error_routine(old_errfn); } static int prepare_cmd(struct argv_array *out, const struct child_process *cmd) { if (!cmd->argv[0]) die("BUG: command is empty"); /* * Add SHELL_PATH so in the event exec fails with ENOEXEC we can * attempt to interpret the command with 'sh'. */ argv_array_push(out, SHELL_PATH); if (cmd->git_cmd) { argv_array_push(out, "git"); argv_array_pushv(out, cmd->argv); } else if (cmd->use_shell) { prepare_shell_cmd(out, cmd->argv); } else { argv_array_pushv(out, cmd->argv); } /* * If there are no '/' characters in the command then perform a path * lookup and use the resolved path as the command to exec. If there * are '/' characters, we have exec attempt to invoke the command * directly. */ if (!strchr(out->argv[1], '/')) { char *program = locate_in_PATH(out->argv[1]); if (program) { free((char *)out->argv[1]); out->argv[1] = program; } else { argv_array_clear(out); errno = ENOENT; return -1; } } return 0; } static char **prep_childenv(const char *const *deltaenv) { extern char **environ; char **childenv; struct string_list env = STRING_LIST_INIT_DUP; struct strbuf key = STRBUF_INIT; const char *const *p; int i; /* Construct a sorted string list consisting of the current environ */ for (p = (const char *const *) environ; p && *p; p++) { const char *equals = strchr(*p, '='); if (equals) { strbuf_reset(&key); strbuf_add(&key, *p, equals - *p); string_list_append(&env, key.buf)->util = (void *) *p; } else { string_list_append(&env, *p)->util = (void *) *p; } } string_list_sort(&env); /* Merge in 'deltaenv' with the current environ */ for (p = deltaenv; p && *p; p++) { const char *equals = strchr(*p, '='); if (equals) { /* ('key=value'), insert or replace entry */ strbuf_reset(&key); strbuf_add(&key, *p, equals - *p); string_list_insert(&env, key.buf)->util = (void *) *p; } else { /* otherwise ('key') remove existing entry */ string_list_remove(&env, *p, 0); } } /* Create an array of 'char *' to be used as the childenv */ ALLOC_ARRAY(childenv, env.nr + 1); for (i = 0; i < env.nr; i++) childenv[i] = env.items[i].util; childenv[env.nr] = NULL; string_list_clear(&env, 0); strbuf_release(&key); return childenv; } struct atfork_state { #ifndef NO_PTHREADS int cs; #endif sigset_t old; }; #ifndef NO_PTHREADS static void bug_die(int err, const char *msg) { if (err) { errno = err; die_errno("BUG: %s", msg); } } #endif static void atfork_prepare(struct atfork_state *as) { sigset_t all; if (sigfillset(&all)) die_errno("sigfillset"); #ifdef NO_PTHREADS if (sigprocmask(SIG_SETMASK, &all, &as->old)) die_errno("sigprocmask"); #else bug_die(pthread_sigmask(SIG_SETMASK, &all, &as->old), "blocking all signals"); bug_die(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs), "disabling cancellation"); #endif } static void atfork_parent(struct atfork_state *as) { #ifdef NO_PTHREADS if (sigprocmask(SIG_SETMASK, &as->old, NULL)) die_errno("sigprocmask"); #else bug_die(pthread_setcancelstate(as->cs, NULL), "re-enabling cancellation"); bug_die(pthread_sigmask(SIG_SETMASK, &as->old, NULL), "restoring signal mask"); #endif } #endif /* GIT_WINDOWS_NATIVE */ static inline void set_cloexec(int fd) { int flags = fcntl(fd, F_GETFD); if (flags >= 0) fcntl(fd, F_SETFD, flags | FD_CLOEXEC); } static int wait_or_whine(pid_t pid, const char *argv0, int in_signal) { int status, code = -1; pid_t waiting; int failed_errno = 0; while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR) ; /* nothing */ if (in_signal) return 0; if (waiting < 0) { failed_errno = errno; error_errno("waitpid for %s failed", argv0); } else if (waiting != pid) { error("waitpid is confused (%s)", argv0); } else if (WIFSIGNALED(status)) { code = WTERMSIG(status); if (code != SIGINT && code != SIGQUIT && code != SIGPIPE) error("%s died of signal %d", argv0, code); /* * This return value is chosen so that code & 0xff * mimics the exit code that a POSIX shell would report for * a program that died from this signal. */ code += 128; } else if (WIFEXITED(status)) { code = WEXITSTATUS(status); } else { error("waitpid is confused (%s)", argv0); } clear_child_for_cleanup(pid); errno = failed_errno; return code; } int start_command(struct child_process *cmd) { int need_in, need_out, need_err; int fdin[2], fdout[2], fderr[2]; int failed_errno; char *str; if (!cmd->argv) cmd->argv = cmd->args.argv; if (!cmd->env) cmd->env = cmd->env_array.argv; /* * In case of errors we must keep the promise to close FDs * that have been passed in via ->in and ->out. */ need_in = !cmd->no_stdin && cmd->in < 0; if (need_in) { if (pipe(fdin) < 0) { failed_errno = errno; if (cmd->out > 0) close(cmd->out); str = "standard input"; goto fail_pipe; } cmd->in = fdin[1]; } need_out = !cmd->no_stdout && !cmd->stdout_to_stderr && cmd->out < 0; if (need_out) { if (pipe(fdout) < 0) { failed_errno = errno; if (need_in) close_pair(fdin); else if (cmd->in) close(cmd->in); str = "standard output"; goto fail_pipe; } cmd->out = fdout[0]; } need_err = !cmd->no_stderr && cmd->err < 0; if (need_err) { if (pipe(fderr) < 0) { failed_errno = errno; if (need_in) close_pair(fdin); else if (cmd->in) close(cmd->in); if (need_out) close_pair(fdout); else if (cmd->out) close(cmd->out); str = "standard error"; fail_pipe: error("cannot create %s pipe for %s: %s", str, cmd->argv[0], strerror(failed_errno)); child_process_clear(cmd); errno = failed_errno; return -1; } cmd->err = fderr[0]; } trace_argv_printf(cmd->argv, "trace: run_command:"); fflush(NULL); #ifndef GIT_WINDOWS_NATIVE { int notify_pipe[2]; int null_fd = -1; char **childenv; struct argv_array argv = ARGV_ARRAY_INIT; struct child_err cerr; struct atfork_state as; if (prepare_cmd(&argv, cmd) < 0) { failed_errno = errno; cmd->pid = -1; goto end_of_spawn; } if (pipe(notify_pipe)) notify_pipe[0] = notify_pipe[1] = -1; if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) { null_fd = open("/dev/null", O_RDWR | O_CLOEXEC); if (null_fd < 0) die_errno(_("open /dev/null failed")); set_cloexec(null_fd); } childenv = prep_childenv(cmd->env); atfork_prepare(&as); /* * NOTE: In order to prevent deadlocking when using threads special * care should be taken with the function calls made in between the * fork() and exec() calls. No calls should be made to functions which * require acquiring a lock (e.g. malloc) as the lock could have been * held by another thread at the time of forking, causing the lock to * never be released in the child process. This means only * Async-Signal-Safe functions are permitted in the child. */ cmd->pid = fork(); failed_errno = errno; if (!cmd->pid) { int sig; /* * Ensure the default die/error/warn routines do not get * called, they can take stdio locks and malloc. */ set_die_routine(child_die_fn); set_error_routine(child_error_fn); set_warn_routine(child_warn_fn); close(notify_pipe[0]); set_cloexec(notify_pipe[1]); child_notifier = notify_pipe[1]; if (cmd->no_stdin) child_dup2(null_fd, 0); else if (need_in) { child_dup2(fdin[0], 0); child_close_pair(fdin); } else if (cmd->in) { child_dup2(cmd->in, 0); child_close(cmd->in); } if (cmd->no_stderr) child_dup2(null_fd, 2); else if (need_err) { child_dup2(fderr[1], 2); child_close_pair(fderr); } else if (cmd->err > 1) { child_dup2(cmd->err, 2); child_close(cmd->err); } if (cmd->no_stdout) child_dup2(null_fd, 1); else if (cmd->stdout_to_stderr) child_dup2(2, 1); else if (need_out) { child_dup2(fdout[1], 1); child_close_pair(fdout); } else if (cmd->out > 1) { child_dup2(cmd->out, 1); child_close(cmd->out); } if (cmd->dir && chdir(cmd->dir)) child_die(CHILD_ERR_CHDIR); /* * restore default signal handlers here, in case * we catch a signal right before execve below */ for (sig = 1; sig < NSIG; sig++) { /* ignored signals get reset to SIG_DFL on execve */ if (signal(sig, SIG_DFL) == SIG_IGN) signal(sig, SIG_IGN); } if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0) child_die(CHILD_ERR_SIGPROCMASK); /* * Attempt to exec using the command and arguments starting at * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will * be used in the event exec failed with ENOEXEC at which point * we will try to interpret the command using 'sh'. */ execve(argv.argv[1], (char *const *) argv.argv + 1, (char *const *) childenv); if (errno == ENOEXEC) execve(argv.argv[0], (char *const *) argv.argv, (char *const *) childenv); if (errno == ENOENT) { if (cmd->silent_exec_failure) child_die(CHILD_ERR_SILENT); child_die(CHILD_ERR_ENOENT); } else { child_die(CHILD_ERR_ERRNO); } } atfork_parent(&as); if (cmd->pid < 0) error_errno("cannot fork() for %s", cmd->argv[0]); else if (cmd->clean_on_exit) mark_child_for_cleanup(cmd->pid, cmd); /* * Wait for child's exec. If the exec succeeds (or if fork() * failed), EOF is seen immediately by the parent. Otherwise, the * child process sends a child_err struct. * Note that use of this infrastructure is completely advisory, * therefore, we keep error checks minimal. */ close(notify_pipe[1]); if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) { /* * At this point we know that fork() succeeded, but exec() * failed. Errors have been reported to our stderr. */ wait_or_whine(cmd->pid, cmd->argv[0], 0); child_err_spew(cmd, &cerr); failed_errno = errno; cmd->pid = -1; } close(notify_pipe[0]); if (null_fd >= 0) close(null_fd); argv_array_clear(&argv); free(childenv); } end_of_spawn: #else { int fhin = 0, fhout = 1, fherr = 2; const char **sargv = cmd->argv; struct argv_array nargv = ARGV_ARRAY_INIT; if (cmd->no_stdin) fhin = open("/dev/null", O_RDWR); else if (need_in) fhin = dup(fdin[0]); else if (cmd->in) fhin = dup(cmd->in); if (cmd->no_stderr) fherr = open("/dev/null", O_RDWR); else if (need_err) fherr = dup(fderr[1]); else if (cmd->err > 2) fherr = dup(cmd->err); if (cmd->no_stdout) fhout = open("/dev/null", O_RDWR); else if (cmd->stdout_to_stderr) fhout = dup(fherr); else if (need_out) fhout = dup(fdout[1]); else if (cmd->out > 1) fhout = dup(cmd->out); if (cmd->git_cmd) cmd->argv = prepare_git_cmd(&nargv, cmd->argv); else if (cmd->use_shell) cmd->argv = prepare_shell_cmd(&nargv, cmd->argv); cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env, cmd->dir, fhin, fhout, fherr); failed_errno = errno; if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT)) error_errno("cannot spawn %s", cmd->argv[0]); if (cmd->clean_on_exit && cmd->pid >= 0) mark_child_for_cleanup(cmd->pid, cmd); argv_array_clear(&nargv); cmd->argv = sargv; if (fhin != 0) close(fhin); if (fhout != 1) close(fhout); if (fherr != 2) close(fherr); } #endif if (cmd->pid < 0) { if (need_in) close_pair(fdin); else if (cmd->in) close(cmd->in); if (need_out) close_pair(fdout); else if (cmd->out) close(cmd->out); if (need_err) close_pair(fderr); else if (cmd->err) close(cmd->err); child_process_clear(cmd); errno = failed_errno; return -1; } if (need_in) close(fdin[0]); else if (cmd->in) close(cmd->in); if (need_out) close(fdout[1]); else if (cmd->out) close(cmd->out); if (need_err) close(fderr[1]); else if (cmd->err) close(cmd->err); return 0; } int finish_command(struct child_process *cmd) { int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0); child_process_clear(cmd); return ret; } int finish_command_in_signal(struct child_process *cmd) { return wait_or_whine(cmd->pid, cmd->argv[0], 1); } int run_command(struct child_process *cmd) { int code; if (cmd->out < 0 || cmd->err < 0) die("BUG: run_command with a pipe can cause deadlock"); code = start_command(cmd); if (code) return code; return finish_command(cmd); } int run_command_v_opt(const char **argv, int opt) { return run_command_v_opt_cd_env(argv, opt, NULL, NULL); } int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env) { struct child_process cmd = CHILD_PROCESS_INIT; cmd.argv = argv; cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0; cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0; cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0; cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0; cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0; cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0; cmd.dir = dir; cmd.env = env; return run_command(&cmd); } #ifndef NO_PTHREADS static pthread_t main_thread; static int main_thread_set; static pthread_key_t async_key; static pthread_key_t async_die_counter; static void *run_thread(void *data) { struct async *async = data; intptr_t ret; if (async->isolate_sigpipe) { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, SIGPIPE); if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) { ret = error("unable to block SIGPIPE in async thread"); return (void *)ret; } } pthread_setspecific(async_key, async); ret = async->proc(async->proc_in, async->proc_out, async->data); return (void *)ret; } static NORETURN void die_async(const char *err, va_list params) { vreportf("fatal: ", err, params); if (in_async()) { struct async *async = pthread_getspecific(async_key); if (async->proc_in >= 0) close(async->proc_in); if (async->proc_out >= 0) close(async->proc_out); pthread_exit((void *)128); } exit(128); } static int async_die_is_recursing(void) { void *ret = pthread_getspecific(async_die_counter); pthread_setspecific(async_die_counter, (void *)1); return ret != NULL; } int in_async(void) { if (!main_thread_set) return 0; /* no asyncs started yet */ return !pthread_equal(main_thread, pthread_self()); } static void NORETURN async_exit(int code) { pthread_exit((void *)(intptr_t)code); } #else static struct { void (**handlers)(void); size_t nr; size_t alloc; } git_atexit_hdlrs; static int git_atexit_installed; static void git_atexit_dispatch(void) { size_t i; for (i=git_atexit_hdlrs.nr ; i ; i--) git_atexit_hdlrs.handlers[i-1](); } static void git_atexit_clear(void) { free(git_atexit_hdlrs.handlers); memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs)); git_atexit_installed = 0; } #undef atexit int git_atexit(void (*handler)(void)) { ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc); git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler; if (!git_atexit_installed) { if (atexit(&git_atexit_dispatch)) return -1; git_atexit_installed = 1; } return 0; } #define atexit git_atexit static int process_is_async; int in_async(void) { return process_is_async; } static void NORETURN async_exit(int code) { exit(code); } #endif void check_pipe(int err) { if (err == EPIPE) { if (in_async()) async_exit(141); signal(SIGPIPE, SIG_DFL); raise(SIGPIPE); /* Should never happen, but just in case... */ exit(141); } } int start_async(struct async *async) { int need_in, need_out; int fdin[2], fdout[2]; int proc_in, proc_out; need_in = async->in < 0; if (need_in) { if (pipe(fdin) < 0) { if (async->out > 0) close(async->out); return error_errno("cannot create pipe"); } async->in = fdin[1]; } need_out = async->out < 0; if (need_out) { if (pipe(fdout) < 0) { if (need_in) close_pair(fdin); else if (async->in) close(async->in); return error_errno("cannot create pipe"); } async->out = fdout[0]; } if (need_in) proc_in = fdin[0]; else if (async->in) proc_in = async->in; else proc_in = -1; if (need_out) proc_out = fdout[1]; else if (async->out) proc_out = async->out; else proc_out = -1; #ifdef NO_PTHREADS /* Flush stdio before fork() to avoid cloning buffers */ fflush(NULL); async->pid = fork(); if (async->pid < 0) { error_errno("fork (async) failed"); goto error; } if (!async->pid) { if (need_in) close(fdin[1]); if (need_out) close(fdout[0]); git_atexit_clear(); process_is_async = 1; exit(!!async->proc(proc_in, proc_out, async->data)); } mark_child_for_cleanup(async->pid, NULL); if (need_in) close(fdin[0]); else if (async->in) close(async->in); if (need_out) close(fdout[1]); else if (async->out) close(async->out); #else if (!main_thread_set) { /* * We assume that the first time that start_async is called * it is from the main thread. */ main_thread_set = 1; main_thread = pthread_self(); pthread_key_create(&async_key, NULL); pthread_key_create(&async_die_counter, NULL); set_die_routine(die_async); set_die_is_recursing_routine(async_die_is_recursing); } if (proc_in >= 0) set_cloexec(proc_in); if (proc_out >= 0) set_cloexec(proc_out); async->proc_in = proc_in; async->proc_out = proc_out; { int err = pthread_create(&async->tid, NULL, run_thread, async); if (err) { error_errno("cannot create thread"); goto error; } } #endif return 0; error: if (need_in) close_pair(fdin); else if (async->in) close(async->in); if (need_out) close_pair(fdout); else if (async->out) close(async->out); return -1; } int finish_async(struct async *async) { #ifdef NO_PTHREADS return wait_or_whine(async->pid, "child process", 0); #else void *ret = (void *)(intptr_t)(-1); if (pthread_join(async->tid, &ret)) error("pthread_join failed"); return (int)(intptr_t)ret; #endif } const char *find_hook(const char *name) { static struct strbuf path = STRBUF_INIT; strbuf_reset(&path); strbuf_git_path(&path, "hooks/%s", name); if (access(path.buf, X_OK) < 0) { #ifdef STRIP_EXTENSION strbuf_addstr(&path, STRIP_EXTENSION); if (access(path.buf, X_OK) >= 0) return path.buf; #endif return NULL; } return path.buf; } int run_hook_ve(const char *const *env, const char *name, va_list args) { struct child_process hook = CHILD_PROCESS_INIT; const char *p; p = find_hook(name); if (!p) return 0; argv_array_push(&hook.args, p); while ((p = va_arg(args, const char *))) argv_array_push(&hook.args, p); hook.env = env; hook.no_stdin = 1; hook.stdout_to_stderr = 1; return run_command(&hook); } int run_hook_le(const char *const *env, const char *name, ...) { va_list args; int ret; va_start(args, name); ret = run_hook_ve(env, name, args); va_end(args); return ret; } struct io_pump { /* initialized by caller */ int fd; int type; /* POLLOUT or POLLIN */ union { struct { const char *buf; size_t len; } out; struct { struct strbuf *buf; size_t hint; } in; } u; /* returned by pump_io */ int error; /* 0 for success, otherwise errno */ /* internal use */ struct pollfd *pfd; }; static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd) { int pollsize = 0; int i; for (i = 0; i < nr; i++) { struct io_pump *io = &slots[i]; if (io->fd < 0) continue; pfd[pollsize].fd = io->fd; pfd[pollsize].events = io->type; io->pfd = &pfd[pollsize++]; } if (!pollsize) return 0; if (poll(pfd, pollsize, -1) < 0) { if (errno == EINTR) return 1; die_errno("poll failed"); } for (i = 0; i < nr; i++) { struct io_pump *io = &slots[i]; if (io->fd < 0) continue; if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL))) continue; if (io->type == POLLOUT) { ssize_t len = xwrite(io->fd, io->u.out.buf, io->u.out.len); if (len < 0) { io->error = errno; close(io->fd); io->fd = -1; } else { io->u.out.buf += len; io->u.out.len -= len; if (!io->u.out.len) { close(io->fd); io->fd = -1; } } } if (io->type == POLLIN) { ssize_t len = strbuf_read_once(io->u.in.buf, io->fd, io->u.in.hint); if (len < 0) io->error = errno; if (len <= 0) { close(io->fd); io->fd = -1; } } } return 1; } static int pump_io(struct io_pump *slots, int nr) { struct pollfd *pfd; int i; for (i = 0; i < nr; i++) slots[i].error = 0; ALLOC_ARRAY(pfd, nr); while (pump_io_round(slots, nr, pfd)) ; /* nothing */ free(pfd); /* There may be multiple errno values, so just pick the first. */ for (i = 0; i < nr; i++) { if (slots[i].error) { errno = slots[i].error; return -1; } } return 0; } int pipe_command(struct child_process *cmd, const char *in, size_t in_len, struct strbuf *out, size_t out_hint, struct strbuf *err, size_t err_hint) { struct io_pump io[3]; int nr = 0; if (in) cmd->in = -1; if (out) cmd->out = -1; if (err) cmd->err = -1; if (start_command(cmd) < 0) return -1; if (in) { io[nr].fd = cmd->in; io[nr].type = POLLOUT; io[nr].u.out.buf = in; io[nr].u.out.len = in_len; nr++; } if (out) { io[nr].fd = cmd->out; io[nr].type = POLLIN; io[nr].u.in.buf = out; io[nr].u.in.hint = out_hint; nr++; } if (err) { io[nr].fd = cmd->err; io[nr].type = POLLIN; io[nr].u.in.buf = err; io[nr].u.in.hint = err_hint; nr++; } if (pump_io(io, nr) < 0) { finish_command(cmd); /* throw away exit code */ return -1; } return finish_command(cmd); } enum child_state { GIT_CP_FREE, GIT_CP_WORKING, GIT_CP_WAIT_CLEANUP, }; struct parallel_processes { void *data; int max_processes; int nr_processes; get_next_task_fn get_next_task; start_failure_fn start_failure; task_finished_fn task_finished; struct { enum child_state state; struct child_process process; struct strbuf err; void *data; } *children; /* * The struct pollfd is logically part of *children, * but the system call expects it as its own array. */ struct pollfd *pfd; unsigned shutdown : 1; int output_owner; struct strbuf buffered_output; /* of finished children */ }; static int default_start_failure(struct strbuf *out, void *pp_cb, void *pp_task_cb) { return 0; } static int default_task_finished(int result, struct strbuf *out, void *pp_cb, void *pp_task_cb) { return 0; } static void kill_children(struct parallel_processes *pp, int signo) { int i, n = pp->max_processes; for (i = 0; i < n; i++) if (pp->children[i].state == GIT_CP_WORKING) kill(pp->children[i].process.pid, signo); } static struct parallel_processes *pp_for_signal; static void handle_children_on_signal(int signo) { kill_children(pp_for_signal, signo); sigchain_pop(signo); raise(signo); } static void pp_init(struct parallel_processes *pp, int n, get_next_task_fn get_next_task, start_failure_fn start_failure, task_finished_fn task_finished, void *data) { int i; if (n < 1) n = online_cpus(); pp->max_processes = n; trace_printf("run_processes_parallel: preparing to run up to %d tasks", n); pp->data = data; if (!get_next_task) die("BUG: you need to specify a get_next_task function"); pp->get_next_task = get_next_task; pp->start_failure = start_failure ? start_failure : default_start_failure; pp->task_finished = task_finished ? task_finished : default_task_finished; pp->nr_processes = 0; pp->output_owner = 0; pp->shutdown = 0; pp->children = xcalloc(n, sizeof(*pp->children)); pp->pfd = xcalloc(n, sizeof(*pp->pfd)); strbuf_init(&pp->buffered_output, 0); for (i = 0; i < n; i++) { strbuf_init(&pp->children[i].err, 0); child_process_init(&pp->children[i].process); pp->pfd[i].events = POLLIN | POLLHUP; pp->pfd[i].fd = -1; } pp_for_signal = pp; sigchain_push_common(handle_children_on_signal); } static void pp_cleanup(struct parallel_processes *pp) { int i; trace_printf("run_processes_parallel: done"); for (i = 0; i < pp->max_processes; i++) { strbuf_release(&pp->children[i].err); child_process_clear(&pp->children[i].process); } free(pp->children); free(pp->pfd); /* * When get_next_task added messages to the buffer in its last * iteration, the buffered output is non empty. */ strbuf_write(&pp->buffered_output, stderr); strbuf_release(&pp->buffered_output); sigchain_pop_common(); } /* returns * 0 if a new task was started. * 1 if no new jobs was started (get_next_task ran out of work, non critical * problem with starting a new command) * <0 no new job was started, user wishes to shutdown early. Use negative code * to signal the children. */ static int pp_start_one(struct parallel_processes *pp) { int i, code; for (i = 0; i < pp->max_processes; i++) if (pp->children[i].state == GIT_CP_FREE) break; if (i == pp->max_processes) die("BUG: bookkeeping is hard"); code = pp->get_next_task(&pp->children[i].process, &pp->children[i].err, pp->data, &pp->children[i].data); if (!code) { strbuf_addbuf(&pp->buffered_output, &pp->children[i].err); strbuf_reset(&pp->children[i].err); return 1; } pp->children[i].process.err = -1; pp->children[i].process.stdout_to_stderr = 1; pp->children[i].process.no_stdin = 1; if (start_command(&pp->children[i].process)) { code = pp->start_failure(&pp->children[i].err, pp->data, pp->children[i].data); strbuf_addbuf(&pp->buffered_output, &pp->children[i].err); strbuf_reset(&pp->children[i].err); if (code) pp->shutdown = 1; return code; } pp->nr_processes++; pp->children[i].state = GIT_CP_WORKING; pp->pfd[i].fd = pp->children[i].process.err; return 0; } static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout) { int i; while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) { if (errno == EINTR) continue; pp_cleanup(pp); die_errno("poll"); } /* Buffer output from all pipes. */ for (i = 0; i < pp->max_processes; i++) { if (pp->children[i].state == GIT_CP_WORKING && pp->pfd[i].revents & (POLLIN | POLLHUP)) { int n = strbuf_read_once(&pp->children[i].err, pp->children[i].process.err, 0); if (n == 0) { close(pp->children[i].process.err); pp->children[i].state = GIT_CP_WAIT_CLEANUP; } else if (n < 0) if (errno != EAGAIN) die_errno("read"); } } } static void pp_output(struct parallel_processes *pp) { int i = pp->output_owner; if (pp->children[i].state == GIT_CP_WORKING && pp->children[i].err.len) { strbuf_write(&pp->children[i].err, stderr); strbuf_reset(&pp->children[i].err); } } static int pp_collect_finished(struct parallel_processes *pp) { int i, code; int n = pp->max_processes; int result = 0; while (pp->nr_processes > 0) { for (i = 0; i < pp->max_processes; i++) if (pp->children[i].state == GIT_CP_WAIT_CLEANUP) break; if (i == pp->max_processes) break; code = finish_command(&pp->children[i].process); code = pp->task_finished(code, &pp->children[i].err, pp->data, pp->children[i].data); if (code) result = code; if (code < 0) break; pp->nr_processes--; pp->children[i].state = GIT_CP_FREE; pp->pfd[i].fd = -1; child_process_init(&pp->children[i].process); if (i != pp->output_owner) { strbuf_addbuf(&pp->buffered_output, &pp->children[i].err); strbuf_reset(&pp->children[i].err); } else { strbuf_write(&pp->children[i].err, stderr); strbuf_reset(&pp->children[i].err); /* Output all other finished child processes */ strbuf_write(&pp->buffered_output, stderr); strbuf_reset(&pp->buffered_output); /* * Pick next process to output live. * NEEDSWORK: * For now we pick it randomly by doing a round * robin. Later we may want to pick the one with * the most output or the longest or shortest * running process time. */ for (i = 0; i < n; i++) if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING) break; pp->output_owner = (pp->output_owner + i) % n; } } return result; } int run_processes_parallel(int n, get_next_task_fn get_next_task, start_failure_fn start_failure, task_finished_fn task_finished, void *pp_cb) { int i, code; int output_timeout = 100; int spawn_cap = 4; struct parallel_processes pp; pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb); while (1) { for (i = 0; i < spawn_cap && !pp.shutdown && pp.nr_processes < pp.max_processes; i++) { code = pp_start_one(&pp); if (!code) continue; if (code < 0) { pp.shutdown = 1; kill_children(&pp, -code); } break; } if (!pp.nr_processes) break; pp_buffer_stderr(&pp, output_timeout); pp_output(&pp); code = pp_collect_finished(&pp); if (code) { pp.shutdown = 1; if (code < 0) kill_children(&pp, -code); } } pp_cleanup(&pp); return 0; }