#include "builtin.h" #include "cache.h" #include "attr.h" #include "object.h" #include "blob.h" #include "commit.h" #include "tag.h" #include "tree.h" #include "delta.h" #include "pack.h" #include "pack-revindex.h" #include "csum-file.h" #include "tree-walk.h" #include "diff.h" #include "revision.h" #include "list-objects.h" #include "pack-objects.h" #include "progress.h" #include "refs.h" #include "streaming.h" #include "thread-utils.h" #include "pack-bitmap.h" #include "reachable.h" #include "sha1-array.h" #include "argv-array.h" static const char *pack_usage[] = { N_("git pack-objects --stdout [...] [< | < ]"), N_("git pack-objects [...] [< | < ]"), NULL }; /* * Objects we are going to pack are collected in the `to_pack` structure. * It contains an array (dynamically expanded) of the object data, and a map * that can resolve SHA1s to their position in the array. */ static struct packing_data to_pack; static struct pack_idx_entry **written_list; static uint32_t nr_result, nr_written; static int non_empty; static int reuse_delta = 1, reuse_object = 1; static int keep_unreachable, unpack_unreachable, include_tag; static unsigned long unpack_unreachable_expiration; static int local; static int incremental; static int ignore_packed_keep; static int allow_ofs_delta; static struct pack_idx_option pack_idx_opts; static const char *base_name; static int progress = 1; static int window = 10; static unsigned long pack_size_limit; static int depth = 50; static int delta_search_threads; static int pack_to_stdout; static int num_preferred_base; static struct progress *progress_state; static int pack_compression_level = Z_DEFAULT_COMPRESSION; static int pack_compression_seen; static struct packed_git *reuse_packfile; static uint32_t reuse_packfile_objects; static off_t reuse_packfile_offset; static int use_bitmap_index = 1; static int write_bitmap_index; static uint16_t write_bitmap_options; static unsigned long delta_cache_size = 0; static unsigned long max_delta_cache_size = 256 * 1024 * 1024; static unsigned long cache_max_small_delta_size = 1000; static unsigned long window_memory_limit = 0; /* * stats */ static uint32_t written, written_delta; static uint32_t reused, reused_delta; /* * Indexed commits */ static struct commit **indexed_commits; static unsigned int indexed_commits_nr; static unsigned int indexed_commits_alloc; static void index_commit_for_bitmap(struct commit *commit) { if (indexed_commits_nr >= indexed_commits_alloc) { indexed_commits_alloc = (indexed_commits_alloc + 32) * 2; REALLOC_ARRAY(indexed_commits, indexed_commits_alloc); } indexed_commits[indexed_commits_nr++] = commit; } static void *get_delta(struct object_entry *entry) { unsigned long size, base_size, delta_size; void *buf, *base_buf, *delta_buf; enum object_type type; buf = read_sha1_file(entry->idx.sha1, &type, &size); if (!buf) die("unable to read %s", sha1_to_hex(entry->idx.sha1)); base_buf = read_sha1_file(entry->delta->idx.sha1, &type, &base_size); if (!base_buf) die("unable to read %s", sha1_to_hex(entry->delta->idx.sha1)); delta_buf = diff_delta(base_buf, base_size, buf, size, &delta_size, 0); if (!delta_buf || delta_size != entry->delta_size) die("delta size changed"); free(buf); free(base_buf); return delta_buf; } static unsigned long do_compress(void **pptr, unsigned long size) { git_zstream stream; void *in, *out; unsigned long maxsize; git_deflate_init(&stream, pack_compression_level); maxsize = git_deflate_bound(&stream, size); in = *pptr; out = xmalloc(maxsize); *pptr = out; stream.next_in = in; stream.avail_in = size; stream.next_out = out; stream.avail_out = maxsize; while (git_deflate(&stream, Z_FINISH) == Z_OK) ; /* nothing */ git_deflate_end(&stream); free(in); return stream.total_out; } static unsigned long write_large_blob_data(struct git_istream *st, struct sha1file *f, const unsigned char *sha1) { git_zstream stream; unsigned char ibuf[1024 * 16]; unsigned char obuf[1024 * 16]; unsigned long olen = 0; git_deflate_init(&stream, pack_compression_level); for (;;) { ssize_t readlen; int zret = Z_OK; readlen = read_istream(st, ibuf, sizeof(ibuf)); if (readlen == -1) die(_("unable to read %s"), sha1_to_hex(sha1)); stream.next_in = ibuf; stream.avail_in = readlen; while ((stream.avail_in || readlen == 0) && (zret == Z_OK || zret == Z_BUF_ERROR)) { stream.next_out = obuf; stream.avail_out = sizeof(obuf); zret = git_deflate(&stream, readlen ? 0 : Z_FINISH); sha1write(f, obuf, stream.next_out - obuf); olen += stream.next_out - obuf; } if (stream.avail_in) die(_("deflate error (%d)"), zret); if (readlen == 0) { if (zret != Z_STREAM_END) die(_("deflate error (%d)"), zret); break; } } git_deflate_end(&stream); return olen; } /* * we are going to reuse the existing object data as is. make * sure it is not corrupt. */ static int check_pack_inflate(struct packed_git *p, struct pack_window **w_curs, off_t offset, off_t len, unsigned long expect) { git_zstream stream; unsigned char fakebuf[4096], *in; int st; memset(&stream, 0, sizeof(stream)); git_inflate_init(&stream); do { in = use_pack(p, w_curs, offset, &stream.avail_in); stream.next_in = in; stream.next_out = fakebuf; stream.avail_out = sizeof(fakebuf); st = git_inflate(&stream, Z_FINISH); offset += stream.next_in - in; } while (st == Z_OK || st == Z_BUF_ERROR); git_inflate_end(&stream); return (st == Z_STREAM_END && stream.total_out == expect && stream.total_in == len) ? 0 : -1; } static void copy_pack_data(struct sha1file *f, struct packed_git *p, struct pack_window **w_curs, off_t offset, off_t len) { unsigned char *in; unsigned long avail; while (len) { in = use_pack(p, w_curs, offset, &avail); if (avail > len) avail = (unsigned long)len; sha1write(f, in, avail); offset += avail; len -= avail; } } /* Return 0 if we will bust the pack-size limit */ static unsigned long write_no_reuse_object(struct sha1file *f, struct object_entry *entry, unsigned long limit, int usable_delta) { unsigned long size, datalen; unsigned char header[10], dheader[10]; unsigned hdrlen; enum object_type type; void *buf; struct git_istream *st = NULL; if (!usable_delta) { if (entry->type == OBJ_BLOB && entry->size > big_file_threshold && (st = open_istream(entry->idx.sha1, &type, &size, NULL)) != NULL) buf = NULL; else { buf = read_sha1_file(entry->idx.sha1, &type, &size); if (!buf) die(_("unable to read %s"), sha1_to_hex(entry->idx.sha1)); } /* * make sure no cached delta data remains from a * previous attempt before a pack split occurred. */ free(entry->delta_data); entry->delta_data = NULL; entry->z_delta_size = 0; } else if (entry->delta_data) { size = entry->delta_size; buf = entry->delta_data; entry->delta_data = NULL; type = (allow_ofs_delta && entry->delta->idx.offset) ? OBJ_OFS_DELTA : OBJ_REF_DELTA; } else { buf = get_delta(entry); size = entry->delta_size; type = (allow_ofs_delta && entry->delta->idx.offset) ? OBJ_OFS_DELTA : OBJ_REF_DELTA; } if (st) /* large blob case, just assume we don't compress well */ datalen = size; else if (entry->z_delta_size) datalen = entry->z_delta_size; else datalen = do_compress(&buf, size); /* * The object header is a byte of 'type' followed by zero or * more bytes of length. */ hdrlen = encode_in_pack_object_header(type, size, header); if (type == OBJ_OFS_DELTA) { /* * Deltas with relative base contain an additional * encoding of the relative offset for the delta * base from this object's position in the pack. */ off_t ofs = entry->idx.offset - entry->delta->idx.offset; unsigned pos = sizeof(dheader) - 1; dheader[pos] = ofs & 127; while (ofs >>= 7) dheader[--pos] = 128 | (--ofs & 127); if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) { if (st) close_istream(st); free(buf); return 0; } sha1write(f, header, hdrlen); sha1write(f, dheader + pos, sizeof(dheader) - pos); hdrlen += sizeof(dheader) - pos; } else if (type == OBJ_REF_DELTA) { /* * Deltas with a base reference contain * an additional 20 bytes for the base sha1. */ if (limit && hdrlen + 20 + datalen + 20 >= limit) { if (st) close_istream(st); free(buf); return 0; } sha1write(f, header, hdrlen); sha1write(f, entry->delta->idx.sha1, 20); hdrlen += 20; } else { if (limit && hdrlen + datalen + 20 >= limit) { if (st) close_istream(st); free(buf); return 0; } sha1write(f, header, hdrlen); } if (st) { datalen = write_large_blob_data(st, f, entry->idx.sha1); close_istream(st); } else { sha1write(f, buf, datalen); free(buf); } return hdrlen + datalen; } /* Return 0 if we will bust the pack-size limit */ static unsigned long write_reuse_object(struct sha1file *f, struct object_entry *entry, unsigned long limit, int usable_delta) { struct packed_git *p = entry->in_pack; struct pack_window *w_curs = NULL; struct revindex_entry *revidx; off_t offset; enum object_type type = entry->type; unsigned long datalen; unsigned char header[10], dheader[10]; unsigned hdrlen; if (entry->delta) type = (allow_ofs_delta && entry->delta->idx.offset) ? OBJ_OFS_DELTA : OBJ_REF_DELTA; hdrlen = encode_in_pack_object_header(type, entry->size, header); offset = entry->in_pack_offset; revidx = find_pack_revindex(p, offset); datalen = revidx[1].offset - offset; if (!pack_to_stdout && p->index_version > 1 && check_pack_crc(p, &w_curs, offset, datalen, revidx->nr)) { error("bad packed object CRC for %s", sha1_to_hex(entry->idx.sha1)); unuse_pack(&w_curs); return write_no_reuse_object(f, entry, limit, usable_delta); } offset += entry->in_pack_header_size; datalen -= entry->in_pack_header_size; if (!pack_to_stdout && p->index_version == 1 && check_pack_inflate(p, &w_curs, offset, datalen, entry->size)) { error("corrupt packed object for %s", sha1_to_hex(entry->idx.sha1)); unuse_pack(&w_curs); return write_no_reuse_object(f, entry, limit, usable_delta); } if (type == OBJ_OFS_DELTA) { off_t ofs = entry->idx.offset - entry->delta->idx.offset; unsigned pos = sizeof(dheader) - 1; dheader[pos] = ofs & 127; while (ofs >>= 7) dheader[--pos] = 128 | (--ofs & 127); if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) { unuse_pack(&w_curs); return 0; } sha1write(f, header, hdrlen); sha1write(f, dheader + pos, sizeof(dheader) - pos); hdrlen += sizeof(dheader) - pos; reused_delta++; } else if (type == OBJ_REF_DELTA) { if (limit && hdrlen + 20 + datalen + 20 >= limit) { unuse_pack(&w_curs); return 0; } sha1write(f, header, hdrlen); sha1write(f, entry->delta->idx.sha1, 20); hdrlen += 20; reused_delta++; } else { if (limit && hdrlen + datalen + 20 >= limit) { unuse_pack(&w_curs); return 0; } sha1write(f, header, hdrlen); } copy_pack_data(f, p, &w_curs, offset, datalen); unuse_pack(&w_curs); reused++; return hdrlen + datalen; } /* Return 0 if we will bust the pack-size limit */ static unsigned long write_object(struct sha1file *f, struct object_entry *entry, off_t write_offset) { unsigned long limit, len; int usable_delta, to_reuse; if (!pack_to_stdout) crc32_begin(f); /* apply size limit if limited packsize and not first object */ if (!pack_size_limit || !nr_written) limit = 0; else if (pack_size_limit <= write_offset) /* * the earlier object did not fit the limit; avoid * mistaking this with unlimited (i.e. limit = 0). */ limit = 1; else limit = pack_size_limit - write_offset; if (!entry->delta) usable_delta = 0; /* no delta */ else if (!pack_size_limit) usable_delta = 1; /* unlimited packfile */ else if (entry->delta->idx.offset == (off_t)-1) usable_delta = 0; /* base was written to another pack */ else if (entry->delta->idx.offset) usable_delta = 1; /* base already exists in this pack */ else usable_delta = 0; /* base could end up in another pack */ if (!reuse_object) to_reuse = 0; /* explicit */ else if (!entry->in_pack) to_reuse = 0; /* can't reuse what we don't have */ else if (entry->type == OBJ_REF_DELTA || entry->type == OBJ_OFS_DELTA) /* check_object() decided it for us ... */ to_reuse = usable_delta; /* ... but pack split may override that */ else if (entry->type != entry->in_pack_type) to_reuse = 0; /* pack has delta which is unusable */ else if (entry->delta) to_reuse = 0; /* we want to pack afresh */ else to_reuse = 1; /* we have it in-pack undeltified, * and we do not need to deltify it. */ if (!to_reuse) len = write_no_reuse_object(f, entry, limit, usable_delta); else len = write_reuse_object(f, entry, limit, usable_delta); if (!len) return 0; if (usable_delta) written_delta++; written++; if (!pack_to_stdout) entry->idx.crc32 = crc32_end(f); return len; } enum write_one_status { WRITE_ONE_SKIP = -1, /* already written */ WRITE_ONE_BREAK = 0, /* writing this will bust the limit; not written */ WRITE_ONE_WRITTEN = 1, /* normal */ WRITE_ONE_RECURSIVE = 2 /* already scheduled to be written */ }; static enum write_one_status write_one(struct sha1file *f, struct object_entry *e, off_t *offset) { unsigned long size; int recursing; /* * we set offset to 1 (which is an impossible value) to mark * the fact that this object is involved in "write its base * first before writing a deltified object" recursion. */ recursing = (e->idx.offset == 1); if (recursing) { warning("recursive delta detected for object %s", sha1_to_hex(e->idx.sha1)); return WRITE_ONE_RECURSIVE; } else if (e->idx.offset || e->preferred_base) { /* offset is non zero if object is written already. */ return WRITE_ONE_SKIP; } /* if we are deltified, write out base object first. */ if (e->delta) { e->idx.offset = 1; /* now recurse */ switch (write_one(f, e->delta, offset)) { case WRITE_ONE_RECURSIVE: /* we cannot depend on this one */ e->delta = NULL; break; default: break; case WRITE_ONE_BREAK: e->idx.offset = recursing; return WRITE_ONE_BREAK; } } e->idx.offset = *offset; size = write_object(f, e, *offset); if (!size) { e->idx.offset = recursing; return WRITE_ONE_BREAK; } written_list[nr_written++] = &e->idx; /* make sure off_t is sufficiently large not to wrap */ if (signed_add_overflows(*offset, size)) die("pack too large for current definition of off_t"); *offset += size; return WRITE_ONE_WRITTEN; } static int mark_tagged(const char *path, const struct object_id *oid, int flag, void *cb_data) { unsigned char peeled[20]; struct object_entry *entry = packlist_find(&to_pack, oid->hash, NULL); if (entry) entry->tagged = 1; if (!peel_ref(path, peeled)) { entry = packlist_find(&to_pack, peeled, NULL); if (entry) entry->tagged = 1; } return 0; } static inline void add_to_write_order(struct object_entry **wo, unsigned int *endp, struct object_entry *e) { if (e->filled) return; wo[(*endp)++] = e; e->filled = 1; } static void add_descendants_to_write_order(struct object_entry **wo, unsigned int *endp, struct object_entry *e) { int add_to_order = 1; while (e) { if (add_to_order) { struct object_entry *s; /* add this node... */ add_to_write_order(wo, endp, e); /* all its siblings... */ for (s = e->delta_sibling; s; s = s->delta_sibling) { add_to_write_order(wo, endp, s); } } /* drop down a level to add left subtree nodes if possible */ if (e->delta_child) { add_to_order = 1; e = e->delta_child; } else { add_to_order = 0; /* our sibling might have some children, it is next */ if (e->delta_sibling) { e = e->delta_sibling; continue; } /* go back to our parent node */ e = e->delta; while (e && !e->delta_sibling) { /* we're on the right side of a subtree, keep * going up until we can go right again */ e = e->delta; } if (!e) { /* done- we hit our original root node */ return; } /* pass it off to sibling at this level */ e = e->delta_sibling; } }; } static void add_family_to_write_order(struct object_entry **wo, unsigned int *endp, struct object_entry *e) { struct object_entry *root; for (root = e; root->delta; root = root->delta) ; /* nothing */ add_descendants_to_write_order(wo, endp, root); } static struct object_entry **compute_write_order(void) { unsigned int i, wo_end, last_untagged; struct object_entry **wo = xmalloc(to_pack.nr_objects * sizeof(*wo)); struct object_entry *objects = to_pack.objects; for (i = 0; i < to_pack.nr_objects; i++) { objects[i].tagged = 0; objects[i].filled = 0; objects[i].delta_child = NULL; objects[i].delta_sibling = NULL; } /* * Fully connect delta_child/delta_sibling network. * Make sure delta_sibling is sorted in the original * recency order. */ for (i = to_pack.nr_objects; i > 0;) { struct object_entry *e = &objects[--i]; if (!e->delta) continue; /* Mark me as the first child */ e->delta_sibling = e->delta->delta_child; e->delta->delta_child = e; } /* * Mark objects that are at the tip of tags. */ for_each_tag_ref(mark_tagged, NULL); /* * Give the objects in the original recency order until * we see a tagged tip. */ for (i = wo_end = 0; i < to_pack.nr_objects; i++) { if (objects[i].tagged) break; add_to_write_order(wo, &wo_end, &objects[i]); } last_untagged = i; /* * Then fill all the tagged tips. */ for (; i < to_pack.nr_objects; i++) { if (objects[i].tagged) add_to_write_order(wo, &wo_end, &objects[i]); } /* * And then all remaining commits and tags. */ for (i = last_untagged; i < to_pack.nr_objects; i++) { if (objects[i].type != OBJ_COMMIT && objects[i].type != OBJ_TAG) continue; add_to_write_order(wo, &wo_end, &objects[i]); } /* * And then all the trees. */ for (i = last_untagged; i < to_pack.nr_objects; i++) { if (objects[i].type != OBJ_TREE) continue; add_to_write_order(wo, &wo_end, &objects[i]); } /* * Finally all the rest in really tight order */ for (i = last_untagged; i < to_pack.nr_objects; i++) { if (!objects[i].filled) add_family_to_write_order(wo, &wo_end, &objects[i]); } if (wo_end != to_pack.nr_objects) die("ordered %u objects, expected %"PRIu32, wo_end, to_pack.nr_objects); return wo; } static off_t write_reused_pack(struct sha1file *f) { unsigned char buffer[8192]; off_t to_write, total; int fd; if (!is_pack_valid(reuse_packfile)) die("packfile is invalid: %s", reuse_packfile->pack_name); fd = git_open_noatime(reuse_packfile->pack_name); if (fd < 0) die_errno("unable to open packfile for reuse: %s", reuse_packfile->pack_name); if (lseek(fd, sizeof(struct pack_header), SEEK_SET) == -1) die_errno("unable to seek in reused packfile"); if (reuse_packfile_offset < 0) reuse_packfile_offset = reuse_packfile->pack_size - 20; total = to_write = reuse_packfile_offset - sizeof(struct pack_header); while (to_write) { int read_pack = xread(fd, buffer, sizeof(buffer)); if (read_pack <= 0) die_errno("unable to read from reused packfile"); if (read_pack > to_write) read_pack = to_write; sha1write(f, buffer, read_pack); to_write -= read_pack; /* * We don't know the actual number of objects written, * only how many bytes written, how many bytes total, and * how many objects total. So we can fake it by pretending all * objects we are writing are the same size. This gives us a * smooth progress meter, and at the end it matches the true * answer. */ written = reuse_packfile_objects * (((double)(total - to_write)) / total); display_progress(progress_state, written); } close(fd); written = reuse_packfile_objects; display_progress(progress_state, written); return reuse_packfile_offset - sizeof(struct pack_header); } static void write_pack_file(void) { uint32_t i = 0, j; struct sha1file *f; off_t offset; uint32_t nr_remaining = nr_result; time_t last_mtime = 0; struct object_entry **write_order; if (progress > pack_to_stdout) progress_state = start_progress(_("Writing objects"), nr_result); written_list = xmalloc(to_pack.nr_objects * sizeof(*written_list)); write_order = compute_write_order(); do { unsigned char sha1[20]; char *pack_tmp_name = NULL; if (pack_to_stdout) f = sha1fd_throughput(1, "", progress_state); else f = create_tmp_packfile(&pack_tmp_name); offset = write_pack_header(f, nr_remaining); if (reuse_packfile) { off_t packfile_size; assert(pack_to_stdout); packfile_size = write_reused_pack(f); offset += packfile_size; } nr_written = 0; for (; i < to_pack.nr_objects; i++) { struct object_entry *e = write_order[i]; if (write_one(f, e, &offset) == WRITE_ONE_BREAK) break; display_progress(progress_state, written); } /* * Did we write the wrong # entries in the header? * If so, rewrite it like in fast-import */ if (pack_to_stdout) { sha1close(f, sha1, CSUM_CLOSE); } else if (nr_written == nr_remaining) { sha1close(f, sha1, CSUM_FSYNC); } else { int fd = sha1close(f, sha1, 0); fixup_pack_header_footer(fd, sha1, pack_tmp_name, nr_written, sha1, offset); close(fd); write_bitmap_index = 0; } if (!pack_to_stdout) { struct stat st; struct strbuf tmpname = STRBUF_INIT; /* * Packs are runtime accessed in their mtime * order since newer packs are more likely to contain * younger objects. So if we are creating multiple * packs then we should modify the mtime of later ones * to preserve this property. */ if (stat(pack_tmp_name, &st) < 0) { warning("failed to stat %s: %s", pack_tmp_name, strerror(errno)); } else if (!last_mtime) { last_mtime = st.st_mtime; } else { struct utimbuf utb; utb.actime = st.st_atime; utb.modtime = --last_mtime; if (utime(pack_tmp_name, &utb) < 0) warning("failed utime() on %s: %s", pack_tmp_name, strerror(errno)); } strbuf_addf(&tmpname, "%s-", base_name); if (write_bitmap_index) { bitmap_writer_set_checksum(sha1); bitmap_writer_build_type_index(written_list, nr_written); } finish_tmp_packfile(&tmpname, pack_tmp_name, written_list, nr_written, &pack_idx_opts, sha1); if (write_bitmap_index) { strbuf_addf(&tmpname, "%s.bitmap", sha1_to_hex(sha1)); stop_progress(&progress_state); bitmap_writer_show_progress(progress); bitmap_writer_reuse_bitmaps(&to_pack); bitmap_writer_select_commits(indexed_commits, indexed_commits_nr, -1); bitmap_writer_build(&to_pack); bitmap_writer_finish(written_list, nr_written, tmpname.buf, write_bitmap_options); write_bitmap_index = 0; } strbuf_release(&tmpname); free(pack_tmp_name); puts(sha1_to_hex(sha1)); } /* mark written objects as written to previous pack */ for (j = 0; j < nr_written; j++) { written_list[j]->offset = (off_t)-1; } nr_remaining -= nr_written; } while (nr_remaining && i < to_pack.nr_objects); free(written_list); free(write_order); stop_progress(&progress_state); if (written != nr_result) die("wrote %"PRIu32" objects while expecting %"PRIu32, written, nr_result); } static void setup_delta_attr_check(struct git_attr_check *check) { static struct git_attr *attr_delta; if (!attr_delta) attr_delta = git_attr("delta"); check[0].attr = attr_delta; } static int no_try_delta(const char *path) { struct git_attr_check check[1]; setup_delta_attr_check(check); if (git_check_attr(path, ARRAY_SIZE(check), check)) return 0; if (ATTR_FALSE(check->value)) return 1; return 0; } /* * When adding an object, check whether we have already added it * to our packing list. If so, we can skip. However, if we are * being asked to excludei t, but the previous mention was to include * it, make sure to adjust its flags and tweak our numbers accordingly. * * As an optimization, we pass out the index position where we would have * found the item, since that saves us from having to look it up again a * few lines later when we want to add the new entry. */ static int have_duplicate_entry(const unsigned char *sha1, int exclude, uint32_t *index_pos) { struct object_entry *entry; entry = packlist_find(&to_pack, sha1, index_pos); if (!entry) return 0; if (exclude) { if (!entry->preferred_base) nr_result--; entry->preferred_base = 1; } return 1; } /* * Check whether we want the object in the pack (e.g., we do not want * objects found in non-local stores if the "--local" option was used). * * As a side effect of this check, we will find the packed version of this * object, if any. We therefore pass out the pack information to avoid having * to look it up again later. */ static int want_object_in_pack(const unsigned char *sha1, int exclude, struct packed_git **found_pack, off_t *found_offset) { struct packed_git *p; if (!exclude && local && has_loose_object_nonlocal(sha1)) return 0; *found_pack = NULL; *found_offset = 0; for (p = packed_git; p; p = p->next) { off_t offset = find_pack_entry_one(sha1, p); if (offset) { if (!*found_pack) { if (!is_pack_valid(p)) continue; *found_offset = offset; *found_pack = p; } if (exclude) return 1; if (incremental) return 0; if (local && !p->pack_local) return 0; if (ignore_packed_keep && p->pack_local && p->pack_keep) return 0; } } return 1; } static void create_object_entry(const unsigned char *sha1, enum object_type type, uint32_t hash, int exclude, int no_try_delta, uint32_t index_pos, struct packed_git *found_pack, off_t found_offset) { struct object_entry *entry; entry = packlist_alloc(&to_pack, sha1, index_pos); entry->hash = hash; if (type) entry->type = type; if (exclude) entry->preferred_base = 1; else nr_result++; if (found_pack) { entry->in_pack = found_pack; entry->in_pack_offset = found_offset; } entry->no_try_delta = no_try_delta; } static const char no_closure_warning[] = N_( "disabling bitmap writing, as some objects are not being packed" ); static int add_object_entry(const unsigned char *sha1, enum object_type type, const char *name, int exclude) { struct packed_git *found_pack; off_t found_offset; uint32_t index_pos; if (have_duplicate_entry(sha1, exclude, &index_pos)) return 0; if (!want_object_in_pack(sha1, exclude, &found_pack, &found_offset)) { /* The pack is missing an object, so it will not have closure */ if (write_bitmap_index) { warning(_(no_closure_warning)); write_bitmap_index = 0; } return 0; } create_object_entry(sha1, type, pack_name_hash(name), exclude, name && no_try_delta(name), index_pos, found_pack, found_offset); display_progress(progress_state, nr_result); return 1; } static int add_object_entry_from_bitmap(const unsigned char *sha1, enum object_type type, int flags, uint32_t name_hash, struct packed_git *pack, off_t offset) { uint32_t index_pos; if (have_duplicate_entry(sha1, 0, &index_pos)) return 0; create_object_entry(sha1, type, name_hash, 0, 0, index_pos, pack, offset); display_progress(progress_state, nr_result); return 1; } struct pbase_tree_cache { unsigned char sha1[20]; int ref; int temporary; void *tree_data; unsigned long tree_size; }; static struct pbase_tree_cache *(pbase_tree_cache[256]); static int pbase_tree_cache_ix(const unsigned char *sha1) { return sha1[0] % ARRAY_SIZE(pbase_tree_cache); } static int pbase_tree_cache_ix_incr(int ix) { return (ix+1) % ARRAY_SIZE(pbase_tree_cache); } static struct pbase_tree { struct pbase_tree *next; /* This is a phony "cache" entry; we are not * going to evict it or find it through _get() * mechanism -- this is for the toplevel node that * would almost always change with any commit. */ struct pbase_tree_cache pcache; } *pbase_tree; static struct pbase_tree_cache *pbase_tree_get(const unsigned char *sha1) { struct pbase_tree_cache *ent, *nent; void *data; unsigned long size; enum object_type type; int neigh; int my_ix = pbase_tree_cache_ix(sha1); int available_ix = -1; /* pbase-tree-cache acts as a limited hashtable. * your object will be found at your index or within a few * slots after that slot if it is cached. */ for (neigh = 0; neigh < 8; neigh++) { ent = pbase_tree_cache[my_ix]; if (ent && !hashcmp(ent->sha1, sha1)) { ent->ref++; return ent; } else if (((available_ix < 0) && (!ent || !ent->ref)) || ((0 <= available_ix) && (!ent && pbase_tree_cache[available_ix]))) available_ix = my_ix; if (!ent) break; my_ix = pbase_tree_cache_ix_incr(my_ix); } /* Did not find one. Either we got a bogus request or * we need to read and perhaps cache. */ data = read_sha1_file(sha1, &type, &size); if (!data) return NULL; if (type != OBJ_TREE) { free(data); return NULL; } /* We need to either cache or return a throwaway copy */ if (available_ix < 0) ent = NULL; else { ent = pbase_tree_cache[available_ix]; my_ix = available_ix; } if (!ent) { nent = xmalloc(sizeof(*nent)); nent->temporary = (available_ix < 0); } else { /* evict and reuse */ free(ent->tree_data); nent = ent; } hashcpy(nent->sha1, sha1); nent->tree_data = data; nent->tree_size = size; nent->ref = 1; if (!nent->temporary) pbase_tree_cache[my_ix] = nent; return nent; } static void pbase_tree_put(struct pbase_tree_cache *cache) { if (!cache->temporary) { cache->ref--; return; } free(cache->tree_data); free(cache); } static int name_cmp_len(const char *name) { int i; for (i = 0; name[i] && name[i] != '\n' && name[i] != '/'; i++) ; return i; } static void add_pbase_object(struct tree_desc *tree, const char *name, int cmplen, const char *fullname) { struct name_entry entry; int cmp; while (tree_entry(tree,&entry)) { if (S_ISGITLINK(entry.mode)) continue; cmp = tree_entry_len(&entry) != cmplen ? 1 : memcmp(name, entry.path, cmplen); if (cmp > 0) continue; if (cmp < 0) return; if (name[cmplen] != '/') { add_object_entry(entry.sha1, object_type(entry.mode), fullname, 1); return; } if (S_ISDIR(entry.mode)) { struct tree_desc sub; struct pbase_tree_cache *tree; const char *down = name+cmplen+1; int downlen = name_cmp_len(down); tree = pbase_tree_get(entry.sha1); if (!tree) return; init_tree_desc(&sub, tree->tree_data, tree->tree_size); add_pbase_object(&sub, down, downlen, fullname); pbase_tree_put(tree); } } } static unsigned *done_pbase_paths; static int done_pbase_paths_num; static int done_pbase_paths_alloc; static int done_pbase_path_pos(unsigned hash) { int lo = 0; int hi = done_pbase_paths_num; while (lo < hi) { int mi = (hi + lo) / 2; if (done_pbase_paths[mi] == hash) return mi; if (done_pbase_paths[mi] < hash) hi = mi; else lo = mi + 1; } return -lo-1; } static int check_pbase_path(unsigned hash) { int pos = (!done_pbase_paths) ? -1 : done_pbase_path_pos(hash); if (0 <= pos) return 1; pos = -pos - 1; ALLOC_GROW(done_pbase_paths, done_pbase_paths_num + 1, done_pbase_paths_alloc); done_pbase_paths_num++; if (pos < done_pbase_paths_num) memmove(done_pbase_paths + pos + 1, done_pbase_paths + pos, (done_pbase_paths_num - pos - 1) * sizeof(unsigned)); done_pbase_paths[pos] = hash; return 0; } static void add_preferred_base_object(const char *name) { struct pbase_tree *it; int cmplen; unsigned hash = pack_name_hash(name); if (!num_preferred_base || check_pbase_path(hash)) return; cmplen = name_cmp_len(name); for (it = pbase_tree; it; it = it->next) { if (cmplen == 0) { add_object_entry(it->pcache.sha1, OBJ_TREE, NULL, 1); } else { struct tree_desc tree; init_tree_desc(&tree, it->pcache.tree_data, it->pcache.tree_size); add_pbase_object(&tree, name, cmplen, name); } } } static void add_preferred_base(unsigned char *sha1) { struct pbase_tree *it; void *data; unsigned long size; unsigned char tree_sha1[20]; if (window <= num_preferred_base++) return; data = read_object_with_reference(sha1, tree_type, &size, tree_sha1); if (!data) return; for (it = pbase_tree; it; it = it->next) { if (!hashcmp(it->pcache.sha1, tree_sha1)) { free(data); return; } } it = xcalloc(1, sizeof(*it)); it->next = pbase_tree; pbase_tree = it; hashcpy(it->pcache.sha1, tree_sha1); it->pcache.tree_data = data; it->pcache.tree_size = size; } static void cleanup_preferred_base(void) { struct pbase_tree *it; unsigned i; it = pbase_tree; pbase_tree = NULL; while (it) { struct pbase_tree *this = it; it = this->next; free(this->pcache.tree_data); free(this); } for (i = 0; i < ARRAY_SIZE(pbase_tree_cache); i++) { if (!pbase_tree_cache[i]) continue; free(pbase_tree_cache[i]->tree_data); free(pbase_tree_cache[i]); pbase_tree_cache[i] = NULL; } free(done_pbase_paths); done_pbase_paths = NULL; done_pbase_paths_num = done_pbase_paths_alloc = 0; } static void check_object(struct object_entry *entry) { if (entry->in_pack) { struct packed_git *p = entry->in_pack; struct pack_window *w_curs = NULL; const unsigned char *base_ref = NULL; struct object_entry *base_entry; unsigned long used, used_0; unsigned long avail; off_t ofs; unsigned char *buf, c; buf = use_pack(p, &w_curs, entry->in_pack_offset, &avail); /* * We want in_pack_type even if we do not reuse delta * since non-delta representations could still be reused. */ used = unpack_object_header_buffer(buf, avail, &entry->in_pack_type, &entry->size); if (used == 0) goto give_up; /* * Determine if this is a delta and if so whether we can * reuse it or not. Otherwise let's find out as cheaply as * possible what the actual type and size for this object is. */ switch (entry->in_pack_type) { default: /* Not a delta hence we've already got all we need. */ entry->type = entry->in_pack_type; entry->in_pack_header_size = used; if (entry->type < OBJ_COMMIT || entry->type > OBJ_BLOB) goto give_up; unuse_pack(&w_curs); return; case OBJ_REF_DELTA: if (reuse_delta && !entry->preferred_base) base_ref = use_pack(p, &w_curs, entry->in_pack_offset + used, NULL); entry->in_pack_header_size = used + 20; break; case OBJ_OFS_DELTA: buf = use_pack(p, &w_curs, entry->in_pack_offset + used, NULL); used_0 = 0; c = buf[used_0++]; ofs = c & 127; while (c & 128) { ofs += 1; if (!ofs || MSB(ofs, 7)) { error("delta base offset overflow in pack for %s", sha1_to_hex(entry->idx.sha1)); goto give_up; } c = buf[used_0++]; ofs = (ofs << 7) + (c & 127); } ofs = entry->in_pack_offset - ofs; if (ofs <= 0 || ofs >= entry->in_pack_offset) { error("delta base offset out of bound for %s", sha1_to_hex(entry->idx.sha1)); goto give_up; } if (reuse_delta && !entry->preferred_base) { struct revindex_entry *revidx; revidx = find_pack_revindex(p, ofs); if (!revidx) goto give_up; base_ref = nth_packed_object_sha1(p, revidx->nr); } entry->in_pack_header_size = used + used_0; break; } if (base_ref && (base_entry = packlist_find(&to_pack, base_ref, NULL))) { /* * If base_ref was set above that means we wish to * reuse delta data, and we even found that base * in the list of objects we want to pack. Goodie! * * Depth value does not matter - find_deltas() will * never consider reused delta as the base object to * deltify other objects against, in order to avoid * circular deltas. */ entry->type = entry->in_pack_type; entry->delta = base_entry; entry->delta_size = entry->size; entry->delta_sibling = base_entry->delta_child; base_entry->delta_child = entry; unuse_pack(&w_curs); return; } if (entry->type) { /* * This must be a delta and we already know what the * final object type is. Let's extract the actual * object size from the delta header. */ entry->size = get_size_from_delta(p, &w_curs, entry->in_pack_offset + entry->in_pack_header_size); if (entry->size == 0) goto give_up; unuse_pack(&w_curs); return; } /* * No choice but to fall back to the recursive delta walk * with sha1_object_info() to find about the object type * at this point... */ give_up: unuse_pack(&w_curs); } entry->type = sha1_object_info(entry->idx.sha1, &entry->size); /* * The error condition is checked in prepare_pack(). This is * to permit a missing preferred base object to be ignored * as a preferred base. Doing so can result in a larger * pack file, but the transfer will still take place. */ } static int pack_offset_sort(const void *_a, const void *_b) { const struct object_entry *a = *(struct object_entry **)_a; const struct object_entry *b = *(struct object_entry **)_b; /* avoid filesystem trashing with loose objects */ if (!a->in_pack && !b->in_pack) return hashcmp(a->idx.sha1, b->idx.sha1); if (a->in_pack < b->in_pack) return -1; if (a->in_pack > b->in_pack) return 1; return a->in_pack_offset < b->in_pack_offset ? -1 : (a->in_pack_offset > b->in_pack_offset); } static void get_object_details(void) { uint32_t i; struct object_entry **sorted_by_offset; sorted_by_offset = xcalloc(to_pack.nr_objects, sizeof(struct object_entry *)); for (i = 0; i < to_pack.nr_objects; i++) sorted_by_offset[i] = to_pack.objects + i; qsort(sorted_by_offset, to_pack.nr_objects, sizeof(*sorted_by_offset), pack_offset_sort); for (i = 0; i < to_pack.nr_objects; i++) { struct object_entry *entry = sorted_by_offset[i]; check_object(entry); if (big_file_threshold < entry->size) entry->no_try_delta = 1; } free(sorted_by_offset); } /* * We search for deltas in a list sorted by type, by filename hash, and then * by size, so that we see progressively smaller and smaller files. * That's because we prefer deltas to be from the bigger file * to the smaller -- deletes are potentially cheaper, but perhaps * more importantly, the bigger file is likely the more recent * one. The deepest deltas are therefore the oldest objects which are * less susceptible to be accessed often. */ static int type_size_sort(const void *_a, const void *_b) { const struct object_entry *a = *(struct object_entry **)_a; const struct object_entry *b = *(struct object_entry **)_b; if (a->type > b->type) return -1; if (a->type < b->type) return 1; if (a->hash > b->hash) return -1; if (a->hash < b->hash) return 1; if (a->preferred_base > b->preferred_base) return -1; if (a->preferred_base < b->preferred_base) return 1; if (a->size > b->size) return -1; if (a->size < b->size) return 1; return a < b ? -1 : (a > b); /* newest first */ } struct unpacked { struct object_entry *entry; void *data; struct delta_index *index; unsigned depth; }; static int delta_cacheable(unsigned long src_size, unsigned long trg_size, unsigned long delta_size) { if (max_delta_cache_size && delta_cache_size + delta_size > max_delta_cache_size) return 0; if (delta_size < cache_max_small_delta_size) return 1; /* cache delta, if objects are large enough compared to delta size */ if ((src_size >> 20) + (trg_size >> 21) > (delta_size >> 10)) return 1; return 0; } #ifndef NO_PTHREADS static pthread_mutex_t read_mutex; #define read_lock() pthread_mutex_lock(&read_mutex) #define read_unlock() pthread_mutex_unlock(&read_mutex) static pthread_mutex_t cache_mutex; #define cache_lock() pthread_mutex_lock(&cache_mutex) #define cache_unlock() pthread_mutex_unlock(&cache_mutex) static pthread_mutex_t progress_mutex; #define progress_lock() pthread_mutex_lock(&progress_mutex) #define progress_unlock() pthread_mutex_unlock(&progress_mutex) #else #define read_lock() (void)0 #define read_unlock() (void)0 #define cache_lock() (void)0 #define cache_unlock() (void)0 #define progress_lock() (void)0 #define progress_unlock() (void)0 #endif static int try_delta(struct unpacked *trg, struct unpacked *src, unsigned max_depth, unsigned long *mem_usage) { struct object_entry *trg_entry = trg->entry; struct object_entry *src_entry = src->entry; unsigned long trg_size, src_size, delta_size, sizediff, max_size, sz; unsigned ref_depth; enum object_type type; void *delta_buf; /* Don't bother doing diffs between different types */ if (trg_entry->type != src_entry->type) return -1; /* * We do not bother to try a delta that we discarded on an * earlier try, but only when reusing delta data. Note that * src_entry that is marked as the preferred_base should always * be considered, as even if we produce a suboptimal delta against * it, we will still save the transfer cost, as we already know * the other side has it and we won't send src_entry at all. */ if (reuse_delta && trg_entry->in_pack && trg_entry->in_pack == src_entry->in_pack && !src_entry->preferred_base && trg_entry->in_pack_type != OBJ_REF_DELTA && trg_entry->in_pack_type != OBJ_OFS_DELTA) return 0; /* Let's not bust the allowed depth. */ if (src->depth >= max_depth) return 0; /* Now some size filtering heuristics. */ trg_size = trg_entry->size; if (!trg_entry->delta) { max_size = trg_size/2 - 20; ref_depth = 1; } else { max_size = trg_entry->delta_size; ref_depth = trg->depth; } max_size = (uint64_t)max_size * (max_depth - src->depth) / (max_depth - ref_depth + 1); if (max_size == 0) return 0; src_size = src_entry->size; sizediff = src_size < trg_size ? trg_size - src_size : 0; if (sizediff >= max_size) return 0; if (trg_size < src_size / 32) return 0; /* Load data if not already done */ if (!trg->data) { read_lock(); trg->data = read_sha1_file(trg_entry->idx.sha1, &type, &sz); read_unlock(); if (!trg->data) die("object %s cannot be read", sha1_to_hex(trg_entry->idx.sha1)); if (sz != trg_size) die("object %s inconsistent object length (%lu vs %lu)", sha1_to_hex(trg_entry->idx.sha1), sz, trg_size); *mem_usage += sz; } if (!src->data) { read_lock(); src->data = read_sha1_file(src_entry->idx.sha1, &type, &sz); read_unlock(); if (!src->data) { if (src_entry->preferred_base) { static int warned = 0; if (!warned++) warning("object %s cannot be read", sha1_to_hex(src_entry->idx.sha1)); /* * Those objects are not included in the * resulting pack. Be resilient and ignore * them if they can't be read, in case the * pack could be created nevertheless. */ return 0; } die("object %s cannot be read", sha1_to_hex(src_entry->idx.sha1)); } if (sz != src_size) die("object %s inconsistent object length (%lu vs %lu)", sha1_to_hex(src_entry->idx.sha1), sz, src_size); *mem_usage += sz; } if (!src->index) { src->index = create_delta_index(src->data, src_size); if (!src->index) { static int warned = 0; if (!warned++) warning("suboptimal pack - out of memory"); return 0; } *mem_usage += sizeof_delta_index(src->index); } delta_buf = create_delta(src->index, trg->data, trg_size, &delta_size, max_size); if (!delta_buf) return 0; if (trg_entry->delta) { /* Prefer only shallower same-sized deltas. */ if (delta_size == trg_entry->delta_size && src->depth + 1 >= trg->depth) { free(delta_buf); return 0; } } /* * Handle memory allocation outside of the cache * accounting lock. Compiler will optimize the strangeness * away when NO_PTHREADS is defined. */ free(trg_entry->delta_data); cache_lock(); if (trg_entry->delta_data) { delta_cache_size -= trg_entry->delta_size; trg_entry->delta_data = NULL; } if (delta_cacheable(src_size, trg_size, delta_size)) { delta_cache_size += delta_size; cache_unlock(); trg_entry->delta_data = xrealloc(delta_buf, delta_size); } else { cache_unlock(); free(delta_buf); } trg_entry->delta = src_entry; trg_entry->delta_size = delta_size; trg->depth = src->depth + 1; return 1; } static unsigned int check_delta_limit(struct object_entry *me, unsigned int n) { struct object_entry *child = me->delta_child; unsigned int m = n; while (child) { unsigned int c = check_delta_limit(child, n + 1); if (m < c) m = c; child = child->delta_sibling; } return m; } static unsigned long free_unpacked(struct unpacked *n) { unsigned long freed_mem = sizeof_delta_index(n->index); free_delta_index(n->index); n->index = NULL; if (n->data) { freed_mem += n->entry->size; free(n->data); n->data = NULL; } n->entry = NULL; n->depth = 0; return freed_mem; } static void find_deltas(struct object_entry **list, unsigned *list_size, int window, int depth, unsigned *processed) { uint32_t i, idx = 0, count = 0; struct unpacked *array; unsigned long mem_usage = 0; array = xcalloc(window, sizeof(struct unpacked)); for (;;) { struct object_entry *entry; struct unpacked *n = array + idx; int j, max_depth, best_base = -1; progress_lock(); if (!*list_size) { progress_unlock(); break; } entry = *list++; (*list_size)--; if (!entry->preferred_base) { (*processed)++; display_progress(progress_state, *processed); } progress_unlock(); mem_usage -= free_unpacked(n); n->entry = entry; while (window_memory_limit && mem_usage > window_memory_limit && count > 1) { uint32_t tail = (idx + window - count) % window; mem_usage -= free_unpacked(array + tail); count--; } /* We do not compute delta to *create* objects we are not * going to pack. */ if (entry->preferred_base) goto next; /* * If the current object is at pack edge, take the depth the * objects that depend on the current object into account * otherwise they would become too deep. */ max_depth = depth; if (entry->delta_child) { max_depth -= check_delta_limit(entry, 0); if (max_depth <= 0) goto next; } j = window; while (--j > 0) { int ret; uint32_t other_idx = idx + j; struct unpacked *m; if (other_idx >= window) other_idx -= window; m = array + other_idx; if (!m->entry) break; ret = try_delta(n, m, max_depth, &mem_usage); if (ret < 0) break; else if (ret > 0) best_base = other_idx; } /* * If we decided to cache the delta data, then it is best * to compress it right away. First because we have to do * it anyway, and doing it here while we're threaded will * save a lot of time in the non threaded write phase, * as well as allow for caching more deltas within * the same cache size limit. * ... * But only if not writing to stdout, since in that case * the network is most likely throttling writes anyway, * and therefore it is best to go to the write phase ASAP * instead, as we can afford spending more time compressing * between writes at that moment. */ if (entry->delta_data && !pack_to_stdout) { entry->z_delta_size = do_compress(&entry->delta_data, entry->delta_size); cache_lock(); delta_cache_size -= entry->delta_size; delta_cache_size += entry->z_delta_size; cache_unlock(); } /* if we made n a delta, and if n is already at max * depth, leaving it in the window is pointless. we * should evict it first. */ if (entry->delta && max_depth <= n->depth) continue; /* * Move the best delta base up in the window, after the * currently deltified object, to keep it longer. It will * be the first base object to be attempted next. */ if (entry->delta) { struct unpacked swap = array[best_base]; int dist = (window + idx - best_base) % window; int dst = best_base; while (dist--) { int src = (dst + 1) % window; array[dst] = array[src]; dst = src; } array[dst] = swap; } next: idx++; if (count + 1 < window) count++; if (idx >= window) idx = 0; } for (i = 0; i < window; ++i) { free_delta_index(array[i].index); free(array[i].data); } free(array); } #ifndef NO_PTHREADS static void try_to_free_from_threads(size_t size) { read_lock(); release_pack_memory(size); read_unlock(); } static try_to_free_t old_try_to_free_routine; /* * The main thread waits on the condition that (at least) one of the workers * has stopped working (which is indicated in the .working member of * struct thread_params). * When a work thread has completed its work, it sets .working to 0 and * signals the main thread and waits on the condition that .data_ready * becomes 1. */ struct thread_params { pthread_t thread; struct object_entry **list; unsigned list_size; unsigned remaining; int window; int depth; int working; int data_ready; pthread_mutex_t mutex; pthread_cond_t cond; unsigned *processed; }; static pthread_cond_t progress_cond; /* * Mutex and conditional variable can't be statically-initialized on Windows. */ static void init_threaded_search(void) { init_recursive_mutex(&read_mutex); pthread_mutex_init(&cache_mutex, NULL); pthread_mutex_init(&progress_mutex, NULL); pthread_cond_init(&progress_cond, NULL); old_try_to_free_routine = set_try_to_free_routine(try_to_free_from_threads); } static void cleanup_threaded_search(void) { set_try_to_free_routine(old_try_to_free_routine); pthread_cond_destroy(&progress_cond); pthread_mutex_destroy(&read_mutex); pthread_mutex_destroy(&cache_mutex); pthread_mutex_destroy(&progress_mutex); } static void *threaded_find_deltas(void *arg) { struct thread_params *me = arg; while (me->remaining) { find_deltas(me->list, &me->remaining, me->window, me->depth, me->processed); progress_lock(); me->working = 0; pthread_cond_signal(&progress_cond); progress_unlock(); /* * We must not set ->data_ready before we wait on the * condition because the main thread may have set it to 1 * before we get here. In order to be sure that new * work is available if we see 1 in ->data_ready, it * was initialized to 0 before this thread was spawned * and we reset it to 0 right away. */ pthread_mutex_lock(&me->mutex); while (!me->data_ready) pthread_cond_wait(&me->cond, &me->mutex); me->data_ready = 0; pthread_mutex_unlock(&me->mutex); } /* leave ->working 1 so that this doesn't get more work assigned */ return NULL; } static void ll_find_deltas(struct object_entry **list, unsigned list_size, int window, int depth, unsigned *processed) { struct thread_params *p; int i, ret, active_threads = 0; init_threaded_search(); if (delta_search_threads <= 1) { find_deltas(list, &list_size, window, depth, processed); cleanup_threaded_search(); return; } if (progress > pack_to_stdout) fprintf(stderr, "Delta compression using up to %d threads.\n", delta_search_threads); p = xcalloc(delta_search_threads, sizeof(*p)); /* Partition the work amongst work threads. */ for (i = 0; i < delta_search_threads; i++) { unsigned sub_size = list_size / (delta_search_threads - i); /* don't use too small segments or no deltas will be found */ if (sub_size < 2*window && i+1 < delta_search_threads) sub_size = 0; p[i].window = window; p[i].depth = depth; p[i].processed = processed; p[i].working = 1; p[i].data_ready = 0; /* try to split chunks on "path" boundaries */ while (sub_size && sub_size < list_size && list[sub_size]->hash && list[sub_size]->hash == list[sub_size-1]->hash) sub_size++; p[i].list = list; p[i].list_size = sub_size; p[i].remaining = sub_size; list += sub_size; list_size -= sub_size; } /* Start work threads. */ for (i = 0; i < delta_search_threads; i++) { if (!p[i].list_size) continue; pthread_mutex_init(&p[i].mutex, NULL); pthread_cond_init(&p[i].cond, NULL); ret = pthread_create(&p[i].thread, NULL, threaded_find_deltas, &p[i]); if (ret) die("unable to create thread: %s", strerror(ret)); active_threads++; } /* * Now let's wait for work completion. Each time a thread is done * with its work, we steal half of the remaining work from the * thread with the largest number of unprocessed objects and give * it to that newly idle thread. This ensure good load balancing * until the remaining object list segments are simply too short * to be worth splitting anymore. */ while (active_threads) { struct thread_params *target = NULL; struct thread_params *victim = NULL; unsigned sub_size = 0; progress_lock(); for (;;) { for (i = 0; !target && i < delta_search_threads; i++) if (!p[i].working) target = &p[i]; if (target) break; pthread_cond_wait(&progress_cond, &progress_mutex); } for (i = 0; i < delta_search_threads; i++) if (p[i].remaining > 2*window && (!victim || victim->remaining < p[i].remaining)) victim = &p[i]; if (victim) { sub_size = victim->remaining / 2; list = victim->list + victim->list_size - sub_size; while (sub_size && list[0]->hash && list[0]->hash == list[-1]->hash) { list++; sub_size--; } if (!sub_size) { /* * It is possible for some "paths" to have * so many objects that no hash boundary * might be found. Let's just steal the * exact half in that case. */ sub_size = victim->remaining / 2; list -= sub_size; } target->list = list; victim->list_size -= sub_size; victim->remaining -= sub_size; } target->list_size = sub_size; target->remaining = sub_size; target->working = 1; progress_unlock(); pthread_mutex_lock(&target->mutex); target->data_ready = 1; pthread_cond_signal(&target->cond); pthread_mutex_unlock(&target->mutex); if (!sub_size) { pthread_join(target->thread, NULL); pthread_cond_destroy(&target->cond); pthread_mutex_destroy(&target->mutex); active_threads--; } } cleanup_threaded_search(); free(p); } #else #define ll_find_deltas(l, s, w, d, p) find_deltas(l, &s, w, d, p) #endif static int add_ref_tag(const char *path, const struct object_id *oid, int flag, void *cb_data) { struct object_id peeled; if (starts_with(path, "refs/tags/") && /* is a tag? */ !peel_ref(path, peeled.hash) && /* peelable? */ packlist_find(&to_pack, peeled.hash, NULL)) /* object packed? */ add_object_entry(oid->hash, OBJ_TAG, NULL, 0); return 0; } static void prepare_pack(int window, int depth) { struct object_entry **delta_list; uint32_t i, nr_deltas; unsigned n; get_object_details(); /* * If we're locally repacking then we need to be doubly careful * from now on in order to make sure no stealth corruption gets * propagated to the new pack. Clients receiving streamed packs * should validate everything they get anyway so no need to incur * the additional cost here in that case. */ if (!pack_to_stdout) do_check_packed_object_crc = 1; if (!to_pack.nr_objects || !window || !depth) return; delta_list = xmalloc(to_pack.nr_objects * sizeof(*delta_list)); nr_deltas = n = 0; for (i = 0; i < to_pack.nr_objects; i++) { struct object_entry *entry = to_pack.objects + i; if (entry->delta) /* This happens if we decided to reuse existing * delta from a pack. "reuse_delta &&" is implied. */ continue; if (entry->size < 50) continue; if (entry->no_try_delta) continue; if (!entry->preferred_base) { nr_deltas++; if (entry->type < 0) die("unable to get type of object %s", sha1_to_hex(entry->idx.sha1)); } else { if (entry->type < 0) { /* * This object is not found, but we * don't have to include it anyway. */ continue; } } delta_list[n++] = entry; } if (nr_deltas && n > 1) { unsigned nr_done = 0; if (progress) progress_state = start_progress(_("Compressing objects"), nr_deltas); qsort(delta_list, n, sizeof(*delta_list), type_size_sort); ll_find_deltas(delta_list, n, window+1, depth, &nr_done); stop_progress(&progress_state); if (nr_done != nr_deltas) die("inconsistency with delta count"); } free(delta_list); } static int git_pack_config(const char *k, const char *v, void *cb) { if (!strcmp(k, "pack.window")) { window = git_config_int(k, v); return 0; } if (!strcmp(k, "pack.windowmemory")) { window_memory_limit = git_config_ulong(k, v); return 0; } if (!strcmp(k, "pack.depth")) { depth = git_config_int(k, v); return 0; } if (!strcmp(k, "pack.compression")) { int level = git_config_int(k, v); if (level == -1) level = Z_DEFAULT_COMPRESSION; else if (level < 0 || level > Z_BEST_COMPRESSION) die("bad pack compression level %d", level); pack_compression_level = level; pack_compression_seen = 1; return 0; } if (!strcmp(k, "pack.deltacachesize")) { max_delta_cache_size = git_config_int(k, v); return 0; } if (!strcmp(k, "pack.deltacachelimit")) { cache_max_small_delta_size = git_config_int(k, v); return 0; } if (!strcmp(k, "pack.writebitmaphashcache")) { if (git_config_bool(k, v)) write_bitmap_options |= BITMAP_OPT_HASH_CACHE; else write_bitmap_options &= ~BITMAP_OPT_HASH_CACHE; } if (!strcmp(k, "pack.usebitmaps")) { use_bitmap_index = git_config_bool(k, v); return 0; } if (!strcmp(k, "pack.threads")) { delta_search_threads = git_config_int(k, v); if (delta_search_threads < 0) die("invalid number of threads specified (%d)", delta_search_threads); #ifdef NO_PTHREADS if (delta_search_threads != 1) warning("no threads support, ignoring %s", k); #endif return 0; } if (!strcmp(k, "pack.indexversion")) { pack_idx_opts.version = git_config_int(k, v); if (pack_idx_opts.version > 2) die("bad pack.indexversion=%"PRIu32, pack_idx_opts.version); return 0; } return git_default_config(k, v, cb); } static void read_object_list_from_stdin(void) { char line[40 + 1 + PATH_MAX + 2]; unsigned char sha1[20]; for (;;) { if (!fgets(line, sizeof(line), stdin)) { if (feof(stdin)) break; if (!ferror(stdin)) die("fgets returned NULL, not EOF, not error!"); if (errno != EINTR) die_errno("fgets"); clearerr(stdin); continue; } if (line[0] == '-') { if (get_sha1_hex(line+1, sha1)) die("expected edge sha1, got garbage:\n %s", line); add_preferred_base(sha1); continue; } if (get_sha1_hex(line, sha1)) die("expected sha1, got garbage:\n %s", line); add_preferred_base_object(line+41); add_object_entry(sha1, 0, line+41, 0); } } #define OBJECT_ADDED (1u<<20) static void show_commit(struct commit *commit, void *data) { add_object_entry(get_object_hash(commit->object), OBJ_COMMIT, NULL, 0); commit->object.flags |= OBJECT_ADDED; if (write_bitmap_index) index_commit_for_bitmap(commit); } static void show_object(struct object *obj, const struct name_path *path, const char *last, void *data) { char *name = path_name(path, last); add_preferred_base_object(name); add_object_entry(get_object_hash(*obj), obj->type, name, 0); obj->flags |= OBJECT_ADDED; /* * We will have generated the hash from the name, * but not saved a pointer to it - we can free it */ free((char *)name); } static void show_edge(struct commit *commit) { add_preferred_base(get_object_hash(commit->object)); } struct in_pack_object { off_t offset; struct object *object; }; struct in_pack { int alloc; int nr; struct in_pack_object *array; }; static void mark_in_pack_object(struct object *object, struct packed_git *p, struct in_pack *in_pack) { in_pack->array[in_pack->nr].offset = find_pack_entry_one(get_object_hash(*object), p); in_pack->array[in_pack->nr].object = object; in_pack->nr++; } /* * Compare the objects in the offset order, in order to emulate the * "git rev-list --objects" output that produced the pack originally. */ static int ofscmp(const void *a_, const void *b_) { struct in_pack_object *a = (struct in_pack_object *)a_; struct in_pack_object *b = (struct in_pack_object *)b_; if (a->offset < b->offset) return -1; else if (a->offset > b->offset) return 1; else return hashcmp(a->object->sha1, b->object->sha1); } static void add_objects_in_unpacked_packs(struct rev_info *revs) { struct packed_git *p; struct in_pack in_pack; uint32_t i; memset(&in_pack, 0, sizeof(in_pack)); for (p = packed_git; p; p = p->next) { const unsigned char *sha1; struct object *o; if (!p->pack_local || p->pack_keep) continue; if (open_pack_index(p)) die("cannot open pack index"); ALLOC_GROW(in_pack.array, in_pack.nr + p->num_objects, in_pack.alloc); for (i = 0; i < p->num_objects; i++) { sha1 = nth_packed_object_sha1(p, i); o = lookup_unknown_object(sha1); if (!(o->flags & OBJECT_ADDED)) mark_in_pack_object(o, p, &in_pack); o->flags |= OBJECT_ADDED; } } if (in_pack.nr) { qsort(in_pack.array, in_pack.nr, sizeof(in_pack.array[0]), ofscmp); for (i = 0; i < in_pack.nr; i++) { struct object *o = in_pack.array[i].object; add_object_entry(get_object_hash(*o), o->type, "", 0); } } free(in_pack.array); } static int has_sha1_pack_kept_or_nonlocal(const unsigned char *sha1) { static struct packed_git *last_found = (void *)1; struct packed_git *p; p = (last_found != (void *)1) ? last_found : packed_git; while (p) { if ((!p->pack_local || p->pack_keep) && find_pack_entry_one(sha1, p)) { last_found = p; return 1; } if (p == last_found) p = packed_git; else p = p->next; if (p == last_found) p = p->next; } return 0; } /* * Store a list of sha1s that are should not be discarded * because they are either written too recently, or are * reachable from another object that was. * * This is filled by get_object_list. */ static struct sha1_array recent_objects; static int loosened_object_can_be_discarded(const unsigned char *sha1, unsigned long mtime) { if (!unpack_unreachable_expiration) return 0; if (mtime > unpack_unreachable_expiration) return 0; if (sha1_array_lookup(&recent_objects, sha1) >= 0) return 0; return 1; } static void loosen_unused_packed_objects(struct rev_info *revs) { struct packed_git *p; uint32_t i; const unsigned char *sha1; for (p = packed_git; p; p = p->next) { if (!p->pack_local || p->pack_keep) continue; if (open_pack_index(p)) die("cannot open pack index"); for (i = 0; i < p->num_objects; i++) { sha1 = nth_packed_object_sha1(p, i); if (!packlist_find(&to_pack, sha1, NULL) && !has_sha1_pack_kept_or_nonlocal(sha1) && !loosened_object_can_be_discarded(sha1, p->mtime)) if (force_object_loose(sha1, p->mtime)) die("unable to force loose object"); } } } /* * This tracks any options which a reader of the pack might * not understand, and which would therefore prevent blind reuse * of what we have on disk. */ static int pack_options_allow_reuse(void) { return allow_ofs_delta; } static int get_object_list_from_bitmap(struct rev_info *revs) { if (prepare_bitmap_walk(revs) < 0) return -1; if (pack_options_allow_reuse() && !reuse_partial_packfile_from_bitmap( &reuse_packfile, &reuse_packfile_objects, &reuse_packfile_offset)) { assert(reuse_packfile_objects); nr_result += reuse_packfile_objects; display_progress(progress_state, nr_result); } traverse_bitmap_commit_list(&add_object_entry_from_bitmap); return 0; } static void record_recent_object(struct object *obj, const struct name_path *path, const char *last, void *data) { sha1_array_append(&recent_objects, get_object_hash(*obj)); } static void record_recent_commit(struct commit *commit, void *data) { sha1_array_append(&recent_objects, get_object_hash(commit->object)); } static void get_object_list(int ac, const char **av) { struct rev_info revs; char line[1000]; int flags = 0; init_revisions(&revs, NULL); save_commit_buffer = 0; setup_revisions(ac, av, &revs, NULL); /* make sure shallows are read */ is_repository_shallow(); while (fgets(line, sizeof(line), stdin) != NULL) { int len = strlen(line); if (len && line[len - 1] == '\n') line[--len] = 0; if (!len) break; if (*line == '-') { if (!strcmp(line, "--not")) { flags ^= UNINTERESTING; write_bitmap_index = 0; continue; } if (starts_with(line, "--shallow ")) { unsigned char sha1[20]; if (get_sha1_hex(line + 10, sha1)) die("not an SHA-1 '%s'", line + 10); register_shallow(sha1); use_bitmap_index = 0; continue; } die("not a rev '%s'", line); } if (handle_revision_arg(line, &revs, flags, REVARG_CANNOT_BE_FILENAME)) die("bad revision '%s'", line); } if (use_bitmap_index && !get_object_list_from_bitmap(&revs)) return; if (prepare_revision_walk(&revs)) die("revision walk setup failed"); mark_edges_uninteresting(&revs, show_edge); traverse_commit_list(&revs, show_commit, show_object, NULL); if (unpack_unreachable_expiration) { revs.ignore_missing_links = 1; if (add_unseen_recent_objects_to_traversal(&revs, unpack_unreachable_expiration)) die("unable to add recent objects"); if (prepare_revision_walk(&revs)) die("revision walk setup failed"); traverse_commit_list(&revs, record_recent_commit, record_recent_object, NULL); } if (keep_unreachable) add_objects_in_unpacked_packs(&revs); if (unpack_unreachable) loosen_unused_packed_objects(&revs); sha1_array_clear(&recent_objects); } static int option_parse_index_version(const struct option *opt, const char *arg, int unset) { char *c; const char *val = arg; pack_idx_opts.version = strtoul(val, &c, 10); if (pack_idx_opts.version > 2) die(_("unsupported index version %s"), val); if (*c == ',' && c[1]) pack_idx_opts.off32_limit = strtoul(c+1, &c, 0); if (*c || pack_idx_opts.off32_limit & 0x80000000) die(_("bad index version '%s'"), val); return 0; } static int option_parse_unpack_unreachable(const struct option *opt, const char *arg, int unset) { if (unset) { unpack_unreachable = 0; unpack_unreachable_expiration = 0; } else { unpack_unreachable = 1; if (arg) unpack_unreachable_expiration = approxidate(arg); } return 0; } int cmd_pack_objects(int argc, const char **argv, const char *prefix) { int use_internal_rev_list = 0; int thin = 0; int shallow = 0; int all_progress_implied = 0; struct argv_array rp = ARGV_ARRAY_INIT; int rev_list_unpacked = 0, rev_list_all = 0, rev_list_reflog = 0; int rev_list_index = 0; struct option pack_objects_options[] = { OPT_SET_INT('q', "quiet", &progress, N_("do not show progress meter"), 0), OPT_SET_INT(0, "progress", &progress, N_("show progress meter"), 1), OPT_SET_INT(0, "all-progress", &progress, N_("show progress meter during object writing phase"), 2), OPT_BOOL(0, "all-progress-implied", &all_progress_implied, N_("similar to --all-progress when progress meter is shown")), { OPTION_CALLBACK, 0, "index-version", NULL, N_("version[,offset]"), N_("write the pack index file in the specified idx format version"), 0, option_parse_index_version }, OPT_MAGNITUDE(0, "max-pack-size", &pack_size_limit, N_("maximum size of each output pack file")), OPT_BOOL(0, "local", &local, N_("ignore borrowed objects from alternate object store")), OPT_BOOL(0, "incremental", &incremental, N_("ignore packed objects")), OPT_INTEGER(0, "window", &window, N_("limit pack window by objects")), OPT_MAGNITUDE(0, "window-memory", &window_memory_limit, N_("limit pack window by memory in addition to object limit")), OPT_INTEGER(0, "depth", &depth, N_("maximum length of delta chain allowed in the resulting pack")), OPT_BOOL(0, "reuse-delta", &reuse_delta, N_("reuse existing deltas")), OPT_BOOL(0, "reuse-object", &reuse_object, N_("reuse existing objects")), OPT_BOOL(0, "delta-base-offset", &allow_ofs_delta, N_("use OFS_DELTA objects")), OPT_INTEGER(0, "threads", &delta_search_threads, N_("use threads when searching for best delta matches")), OPT_BOOL(0, "non-empty", &non_empty, N_("do not create an empty pack output")), OPT_BOOL(0, "revs", &use_internal_rev_list, N_("read revision arguments from standard input")), { OPTION_SET_INT, 0, "unpacked", &rev_list_unpacked, NULL, N_("limit the objects to those that are not yet packed"), PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, { OPTION_SET_INT, 0, "all", &rev_list_all, NULL, N_("include objects reachable from any reference"), PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, { OPTION_SET_INT, 0, "reflog", &rev_list_reflog, NULL, N_("include objects referred by reflog entries"), PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, { OPTION_SET_INT, 0, "indexed-objects", &rev_list_index, NULL, N_("include objects referred to by the index"), PARSE_OPT_NOARG | PARSE_OPT_NONEG, NULL, 1 }, OPT_BOOL(0, "stdout", &pack_to_stdout, N_("output pack to stdout")), OPT_BOOL(0, "include-tag", &include_tag, N_("include tag objects that refer to objects to be packed")), OPT_BOOL(0, "keep-unreachable", &keep_unreachable, N_("keep unreachable objects")), { OPTION_CALLBACK, 0, "unpack-unreachable", NULL, N_("time"), N_("unpack unreachable objects newer than