summaryrefslogtreecommitdiff
path: root/builtin/gc.c
AgeCommit message (Collapse)AuthorFilesLines
2021-02-23maintenance: fix incorrect `maintenance.repo` path with bare repositoryLibravatar Eric Sunshine1-17/+33
The periodic maintenance tasks configured by `git maintenance start` invoke `git for-each-repo` to run `git maintenance run` on each path specified by the multi-value global configuration variable `maintenance.repo`. Because `git for-each-repo` will likely be run outside of the repositories which require periodic maintenance, it is mandatory that the repository paths specified by `maintenance.repo` are absolute. Unfortunately, however, `git maintenance register` does nothing to ensure that the paths it assigns to `maintenance.repo` are indeed absolute, and may in fact -- especially in the case of a bare repository -- assign a relative path to `maintenance.repo` instead. Fix this problem by converting all paths to absolute before assigning them to `maintenance.repo`. While at it, also fix `git maintenance unregister` to convert paths to absolute, as well, in order to ensure that it can correctly remove from `maintenance.repo` a path assigned via `git maintenance register`. Reported-by: Clement Moyroud <clement.moyroud@gmail.com> Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-09maintenance: incremental strategy runs pack-refs weeklyLibravatar Derrick Stolee1-0/+2
When the 'maintenance.strategy' config option is set to 'incremental', a default maintenance schedule is enabled. Add the 'pack-refs' task to that strategy at the weekly cadence. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-09maintenance: add pack-refs taskLibravatar Derrick Stolee1-4/+17
It is valuable to collect loose refs into a more compressed form. This is typically the packed-refs file, although this could be the reftable in the future. Having packed refs can be extremely valuable in repos with many tags or remote branches that are not modified by the local user, but still are necessary for other queries. For instance, with many exploded refs, commands such as git describe --tags --exact-match HEAD can be very slow (multiple seconds). This command in particular is used by terminal prompts to show when a detatched HEAD is pointing to an existing tag, so having it be slow causes significant delays for users. Add a new 'pack-refs' maintenance task. It runs 'git pack-refs --all --prune' to move loose refs into a packed form. For now, that is the packed-refs file, but could adjust to other file formats in the future. This is the first of several sub-tasks of the 'gc' task that could be extracted to their own tasks. In this process, we should not change the behavior of the 'gc' task since that remains the default way to keep repositories maintained. Creating a new task for one of these sub-tasks only provides more customization options for those choosing to not use the 'gc' task. It is certainly possible to have both the 'gc' and 'pack-refs' tasks enabled and run regularly. While they may repeat effort, they do not conflict in a destructive way. The 'auto_condition' function pointer is left NULL for now. We could extend this in the future to have a condition check if pack-refs should be run during 'git maintenance run --auto'. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-03Merge branch 'jk/peel-iterated-oid'Libravatar Junio C Hamano1-1/+1
The peel_ref() API has been replaced with peel_iterated_oid(). * jk/peel-iterated-oid: refs: switch peel_ref() to peel_iterated_oid()
2021-02-03Merge branch 'ds/maintenance-prefetch-cleanup'Libravatar Junio C Hamano1-0/+6
Test clean-up plus UI improvement by hiding extra refs that the prefetch task uses from "log --decorate" output. * ds/maintenance-prefetch-cleanup: t7900: clean up some broken refs maintenance: set log.excludeDecoration durin prefetch
2021-01-25Merge branch 'tb/pack-revindex-api'Libravatar Junio C Hamano1-1/+1
Abstract accesses to in-core revindex that allows enumerating objects stored in a packfile in the order they appear in the pack, in preparation for introducing an on-disk precomputed revindex. * tb/pack-revindex-api: (21 commits) for_each_object_in_pack(): clarify pack vs index ordering pack-revindex.c: avoid direct revindex access in 'offset_to_pack_pos()' pack-revindex: hide the definition of 'revindex_entry' pack-revindex: remove unused 'find_revindex_position()' pack-revindex: remove unused 'find_pack_revindex()' builtin/gc.c: guess the size of the revindex for_each_object_in_pack(): convert to new revindex API unpack_entry(): convert to new revindex API packed_object_info(): convert to new revindex API retry_bad_packed_offset(): convert to new revindex API get_delta_base_oid(): convert to new revindex API rebuild_existing_bitmaps(): convert to new revindex API try_partial_reuse(): convert to new revindex API get_size_by_pos(): convert to new revindex API show_objects_for_type(): convert to new revindex API bitmap_position_packfile(): convert to new revindex API check_object(): convert to new revindex API write_reused_pack_verbatim(): convert to new revindex API write_reused_pack_one(): convert to new revindex API write_reuse_object(): convert to new revindex API ...
2021-01-25Merge branch 'ma/more-opaque-lock-file'Libravatar Junio C Hamano1-4/+4
Code clean-up. * ma/more-opaque-lock-file: read-cache: try not to peek into `struct {lock_,temp}file` refs/files-backend: don't peek into `struct lock_file` midx: don't peek into `struct lock_file` commit-graph: don't peek into `struct lock_file` builtin/gc: don't peek into `struct lock_file`
2021-01-21refs: switch peel_ref() to peel_iterated_oid()Libravatar Jeff King1-1/+1
The peel_ref() interface is confusing and error-prone: - it's typically used by ref iteration callbacks that have both a refname and oid. But since they pass only the refname, we may load the ref value from the filesystem again. This is inefficient, but also means we are open to a race if somebody simultaneously updates the ref. E.g., this: int some_ref_cb(const char *refname, const struct object_id *oid, ...) { if (!peel_ref(refname, &peeled)) printf("%s peels to %s", oid_to_hex(oid), oid_to_hex(&peeled); } could print nonsense. It is correct to say "refname peels to..." (you may see the "before" value or the "after" value, either of which is consistent), but mentioning both oids may be mixing before/after values. Worse, whether this is possible depends on whether the optimization to read from the current iterator value kicks in. So it is actually not possible with: for_each_ref(some_ref_cb); but it _is_ possible with: head_ref(some_ref_cb); which does not use the iterator mechanism (though in practice, HEAD should never peel to anything, so this may not be triggerable). - it must take a fully-qualified refname for the read_ref_full() code path to work. Yet we routinely pass it partial refnames from callbacks to for_each_tag_ref(), etc. This happens to work when iterating because there we do not call read_ref_full() at all, and only use the passed refname to check if it is the same as the iterator. But the requirements for the function parameters are quite unclear. Instead of taking a refname, let's instead take an oid. That fixes both problems. It's a little funny for a "ref" function not to involve refs at all. The key thing is that it's optimizing under the hood based on having access to the ref iterator. So let's change the name to make it clear why you'd want this function versus just peel_object(). There are two other directions I considered but rejected: - we could pass the peel information into the each_ref_fn callback. However, we don't know if the caller actually wants it or not. For packed-refs, providing it is essentially free. But for loose refs, we actually have to peel the object, which would be wasteful in most cases. We could likewise pass in a flag to the callback indicating whether the peeled information is known, but that complicates those callbacks, as they then have to decide whether to manually peel themselves. Plus it requires changing the interface of every callback, whether they care about peeling or not, and there are many of them. - we could make a function to return the peeled value of the current iterated ref (computing it if necessary), and BUG() otherwise. I.e.: int peel_current_iterated_ref(struct object_id *out); Each of the current callers is an each_ref_fn callback, so they'd mostly be happy. But: - we use those callbacks with functions like head_ref(), which do not use the iteration code. So we'd need to handle the fallback case there, anyway. - it's possible that a caller would want to call into generic code that sometimes is used during iteration and sometimes not. This encapsulates the logic to do the fast thing when possible, and fallback when necessary. The implementation is mostly obvious, but I want to call out a few things in the patch: - the test-tool coverage for peel_ref() is now meaningless, as it all collapses to a single peel_object() call (arguably they were pretty uninteresting before; the tricky part of that function is the fast-path we see during iteration, but these calls didn't trigger that). I've just dropped it entirely, though note that some other tests relied on the tags we created; I've moved that creation to the tests where it matters. - we no longer need to take a ref_store parameter, since we'd never look up a ref now. We do still rely on a global "current iterator" variable which _could_ be kept per-ref-store. But in practice this is only useful if there are multiple recursive iterations, at which point the more appropriate solution is probably a stack of iterators. No caller used the actual ref-store parameter anyway (they all call the wrapper that passes the_repository). - the original only kicked in the optimization when the "refname" pointer matched (i.e., not string comparison). We do likewise with the "oid" parameter here, but fall back to doing an actual oideq() call. This in theory lets us kick in the optimization more often, though in practice no current caller cares. It should never be wrong, though (peeling is a property of an object, so two refs pointing to the same object would peel identically). - the original took care not to touch the peeled out-parameter unless we found something to put in it. But no caller cares about this, and anyway, it is enforced by peel_object() itself (and even in the optimized iterator case, that's where we eventually end up). We can shorten the code and avoid an extra copy by just passing the out-parameter through the stack. Signed-off-by: Jeff King <peff@peff.net> Reviewed-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-20maintenance: set log.excludeDecoration durin prefetchLibravatar Derrick Stolee1-0/+6
The 'prefetch' task fetches refs from all remotes and places them in the refs/prefetch/<remote>/ refspace. As this task is intended to run in the background, this allows users to keep their local data very close to the remote servers' data while not updating the users' understanding of the remote refs in refs/remotes/<remote>/. However, this can clutter 'git log' decorations with copies of the refs with the full name 'refs/prefetch/<remote>/<branch>'. The log.excludeDecoration config option was added in a6be5e67 (log: add log.excludeDecoration config option, 2020-05-16) for exactly this purpose. Ensure we set this only for users that would benefit from it by assigning it at the beginning of the prefetch task. Other alternatives would be during 'git maintenance register' or 'git maintenance start', but those might assign the config even when the prefetch task is disabled by existing config. Further, users could run 'git maintenance run --task=prefetch' using their own scripting or scheduling. This provides the best coverage to automatically update the config when valuable. It is improbable, but possible, that users might want to run the prefetch task _and_ see these refs in their log decorations. This seems incredibly unlikely to me, but users can always opt-in on a command-by-command basis using --decorate-refs=refs/prefetch/. Test that this works in a few cases. In particular, ensure that our assignment of log.excludeDecoration=refs/prefetch/ is additive to other existing exclusions. Further, ensure we do not add multiple copies in multiple runs. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-15Merge branch 'ds/maintenance-part-4'Libravatar Junio C Hamano1-27/+395
Follow-up on the "maintenance part-3" which introduced scheduled maintenance tasks to support platforms whose native scheduling methods are not 'cron'. * ds/maintenance-part-4: maintenance: use Windows scheduled tasks maintenance: use launchctl on macOS maintenance: include 'cron' details in docs maintenance: extract platform-specific scheduling
2021-01-13builtin/gc.c: guess the size of the revindexLibravatar Taylor Blau1-1/+1
'estimate_repack_memory()' takes into account the amount of memory required to load the reverse index in memory by multiplying the assumed number of objects by the size of the 'revindex_entry' struct. Prepare for hiding the definition of 'struct revindex_entry' by removing a 'sizeof()' of that type from outside of pack-revindex.c. Instead, guess that one off_t and one uint32_t are required per object. Strictly speaking, this is a worse guess than asking for 'sizeof(struct revindex_entry)' directly, since the true size of this struct is 16 bytes with padding on the end of the struct in order to align the offset field. But, this is an approximation anyway, and it does remove a use of the 'struct revindex_entry' from outside of pack-revindex internals. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-06builtin/gc: don't peek into `struct lock_file`Libravatar Martin Ågren1-3/+3
A `struct lock_file` is pretty much just a wrapper around a tempfile. But it's easy enough to avoid relying on this. Use the wrappers that the lock file API provides rather than peeking at the temp file or even into *its* internals. Signed-off-by: Martin Ågren <martin.agren@gmail.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-05maintenance: use Windows scheduled tasksLibravatar Derrick Stolee1-1/+167
Git's background maintenance uses cron by default, but this is not available on Windows. Instead, integrate with Task Scheduler. Tasks can be scheduled using the 'schtasks' command. There are several command-line options that can allow for some advanced scheduling, but unfortunately these seem to all require authenticating using a password. Instead, use the "/xml" option to pass an XML file that contains the configuration for the necessary schedule. These XML files are based on some that I exported after constructing a schedule in the Task Scheduler GUI. These options only run background maintenance when the user is logged in, and more fields are populated with the current username and SID at run-time by 'schtasks'. Since the GIT_TEST_MAINT_SCHEDULER environment variable allows us to specify 'schtasks' as the scheduler, we can test the Windows-specific logic on other platforms. Thus, add a check that the XML file written by Git is valid when xmllint exists on the system. Since we use a temporary file for the XML files sent to 'schtasks', we prefix the random characters with the frequency so it is easier to examine the proper file during tests. Instead of an exact match on the 'args' file, we 'grep' for the arguments other than the filename. There is a deficiency in the current design. Windows has two kinds of applications: GUI applications that start by "winmain()" and console applications that start by "main()". Console applications are attached to a new Console window if they are not already associated with a GUI application. This means that every hour the scheudled task launches a command window for the scheduled tasks. Not only is this visually obtrusive, but it also takes focus from whatever else the user is doing! A simple fix would be to insert a GUI application that acts as a shim between the scheduled task and Git. This is currently possible in Git for Windows by setting the <Command> tag equal to C:\Program Files\Git\git-bash.exe with options "--hide --no-needs-console --command=cmd\git.exe" followed by the arguments currently used. Since git-bash.exe is not included in Windows builds of core Git, I chose to leave out this feature. My plan is to submit a small patch to Git for Windows that converts the use of git.exe with this use of git-bash.exe in the short term. In the long term, we can consider creating this GUI shim application within core Git, perhaps in contrib/. Co-authored-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-05maintenance: use launchctl on macOSLibravatar Derrick Stolee1-1/+187
The existing mechanism for scheduling background maintenance is done through cron. The 'crontab -e' command allows updating the schedule while cron itself runs those commands. While this is technically supported by macOS, it has some significant deficiencies: 1. Every run of 'crontab -e' must request elevated privileges through the user interface. When running 'git maintenance start' from the Terminal app, it presents a dialog box saying "Terminal.app would like to administer your computer. Administration can include modifying passwords, networking, and system settings." This is more alarming than what we are hoping to achieve. If this alert had some information about how "git" is trying to run "crontab" then we would have some reason to believe that this dialog might be fine. However, it also doesn't help that some scenarios just leave Git waiting for a response without presenting anything to the user. I experienced this when executing the command from a Bash terminal view inside Visual Studio Code. 2. While cron initializes a user environment enough for "git config --global --show-origin" to show the correct config file information, it does not set up the environment enough for Git Credential Manager Core to load credentials during a 'prefetch' task. My prefetches against private repositories required re-authenticating through UI pop-ups in a way that should not be required. The solution is to switch from cron to the Apple-recommended [1] 'launchd' tool. [1] https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/ScheduledJobs.html The basics of this tool is that we need to create XML-formatted "plist" files inside "~/Library/LaunchAgents/" and then use the 'launchctl' tool to make launchd aware of them. The plist files include all of the scheduling information, along with the command-line arguments split across an array of <string> tags. For example, here is my plist file for the weekly scheduled tasks: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"><dict> <key>Label</key><string>org.git-scm.git.weekly</string> <key>ProgramArguments</key> <array> <string>/usr/local/libexec/git-core/git</string> <string>--exec-path=/usr/local/libexec/git-core</string> <string>for-each-repo</string> <string>--config=maintenance.repo</string> <string>maintenance</string> <string>run</string> <string>--schedule=weekly</string> </array> <key>StartCalendarInterval</key> <array> <dict> <key>Day</key><integer>0</integer> <key>Hour</key><integer>0</integer> <key>Minute</key><integer>0</integer> </dict> </array> </dict> </plist> The schedules for the daily and hourly tasks are more complicated since we need to use an array for the StartCalendarInterval with an entry for each of the six days other than the 0th day (to avoid colliding with the weekly task), and each of the 23 hours other than the 0th hour (to avoid colliding with the daily task). The "Label" value is currently filled with "org.git-scm.git.X" where X is the frequency. We need a different plist file for each frequency. The launchctl command needs to be aligned with a user id in order to initialize the command environment. This must be done using the 'launchctl bootstrap' subcommand. This subcommand is new as of macOS 10.11, which was released in September 2015. Before that release the 'launchctl load' subcommand was recommended. The best source of information on this transition I have seen is available at [2]. The current design does not preclude a future version that detects the available fatures of 'launchctl' to use the older commands. However, it is best to rely on the newest version since Apple might completely remove the deprecated version on short notice. [2] https://babodee.wordpress.com/2016/04/09/launchctl-2-0-syntax/ To remove a schedule, we must run 'launchctl bootout' with a valid plist file. We also need to 'bootout' a task before the 'bootstrap' subcommand will succeed, if such a task already exists. The need for a user id requires us to run 'id -u' which works on POSIX systems but not Windows. Further, the need for fully-qualitifed path names including $HOME behaves differently in the Git internals and the external test suite. The $HOME variable starts with "C:\..." instead of the "/c/..." that is provided by Git in these subcommands. The test therefore has a prerequisite that we are not on Windows. The cross- platform logic still allows us to test the macOS logic on a Linux machine. We can verify the commands that were run by 'git maintenance start' and 'git maintenance stop' by injecting a script that writes the command-line arguments into GIT_TEST_MAINT_SCHEDULER. An earlier version of this patch accidentally had an opening "<dict>" tag when it should have had a closing "</dict>" tag. This was caught during manual testing with actual 'launchctl' commands, but we do not want to update developers' tasks when running tests. It appears that macOS includes the "xmllint" tool which can verify the XML format. This is useful for any system that might contain the tool, so use it whenever it is available. We strive to make these tests work on all platforms, but Windows caused some headaches. In particular, the value of getuid() called by the C code is not guaranteed to be the same as `$(id -u)` invoked by a test. This is because `git.exe` is a native Windows program, whereas the utility programs run by the test script mostly utilize the MSYS2 runtime, which emulates a POSIX-like environment. Since the purpose of the test is to check that the input to the hook is well-formed, the actual user ID is immaterial, thus we can work around the problem by making the the test UID-agnostic. Another subtle issue is the $HOME environment variable being a Windows-style path instead of a Unix-style path. We can be more flexible here instead of expecting exact path matches. Helped-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Co-authored-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-12-21gc: fix handling of crontab magic markersLibravatar Martin Ågren1-4/+3
On `git maintenance start`, we add a few entries to the user's cron table. We wrap our entries using two magic markers, "# BEGIN GIT MAINTENANCE SCHEDULE" and "# END GIT MAINTENANCE SCHEDULE". At a later `git maintenance stop`, we will go through the table and remove these lines. Or rather, we will remove the "BEGIN" marker, the "END" marker and everything between them. Alas, we have a bug in how we detect the "END" marker: we don't. As we loop through all the lines of the crontab, if we are in the "old region", i.e., the region we're aiming to remove, we make an early `continue` and don't get as far as checking for the "END" marker. Thus, once we've seen our "BEGIN", we remove everything until the end of the file. Rewrite the logic for identifying these markers. There are four cases that are mutually exclusive: The current line starts a region or it ends it, or it's firmly within the region, or it's outside of it (and should be printed). Signed-off-by: Martin Ågren <martin.agren@gmail.com> Acked-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-12-08Merge branch 'rs/maintenance-run-outside-repo'Libravatar Junio C Hamano1-7/+0
"git maintenance run/start/stop" needed to be run in a repository to hold the lockfile they use, but didn't make sure they are actually in a repository, which has been corrected. * rs/maintenance-run-outside-repo: t7900: fix typo: "test_execpt_success" maintenance: fix SEGFAULT when no repository
2020-12-08Merge branch 'ds/maintenance-part-3'Libravatar Junio C Hamano1-2/+3
"git maintenance" command had trouble working in a directory whose pathname contained an ERE metacharacter like '+'. * ds/maintenance-part-3: maintenance: use 'git config --fixed-value'
2020-11-30Merge branch 'ab/gc-keep-base-option'Libravatar Junio C Hamano1-4/+4
Fix an option name in "gc" documentation. * ab/gc-keep-base-option: gc: rename keep_base_pack variable for --keep-largest-pack gc docs: change --keep-base-pack to --keep-largest-pack
2020-11-30maintenance: fix SEGFAULT when no repositoryLibravatar Rafael Silva1-7/+0
The "git maintenance run" and "git maintenance start/stop" commands holds a file-based lock at the .git/maintenance.lock and .git/schedule.lock respectively. These locks are used to ensure only one maintenance process is executed at the time as both operations involves writing data into the git repository. The path to the lock file is built using "the_repository->objects->odb->path" that results in SEGFAULT when we have no repository available as "the_repository->objects->odb" is set to NULL. Let's teach maintenance command to use RUN_SETUP option that will provide the validation and fail when running outside of a repository. Hence fixing the SEGFAULT for all three operations and making the behaviour consistent across all subcommands. Setting the RUN_SETUP also provides the same protection for all subcommands given that the "register" and "unregister" also requires to be executed inside a repository. Furthermore let's remove the local validation implemented by the "register" and "unregister" as this will not be required anymore with the new option. Signed-off-by: Rafael Silva <rafaeloliveira.cs@gmail.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-25maintenance: use 'git config --fixed-value'Libravatar Derrick Stolee1-2/+3
When a repository's leading directories contain regex metacharacters, the config calls for 'git maintenance register' and 'git maintenance unregister' are not careful enough. Use the new --fixed-value option to direct the config machinery to use exact string matches. This is a more robust option than escaping these arguments in a piecemeal fashion. For the test, require that we are not running on Windows since the '+' and '*' characters are not allowed on that filesystem. Reported-by: Emily Shaffer <emilyshaffer@google.com> Reported-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-24maintenance: extract platform-specific schedulingLibravatar Derrick Stolee1-27/+43
The existing schedule mechanism using 'cron' is supported by POSIX platforms, but not Windows. It also works slightly differently on macOS to significant detriment of the user experience. To allow for new implementations on these platforms, extract a method that performs the platform-specific scheduling mechanism. This will be swapped at compile time with new implementations on specialized platforms. As we add this generality, rename GIT_TEST_CRONTAB to GIT_TEST_MAINT_SCHEDULER. Further, this variable is now parsed as "<scheduler>:<command>" so we can test platform-specific scheduling logic even when not on the correct platform. By specifying the <scheduler> in this string, we will be able to test all three sets of Git logic from a Linux machine. Co-authored-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-21gc: rename keep_base_pack variable for --keep-largest-packLibravatar Ævar Arnfjörð Bjarmason1-4/+4
As noted in an earlier change the keep_base_pack variable name is a relic from an earlier on-list version of ae4e89e549 ("gc: add --keep-largest-pack option", 2018-04-15) before it was renamed to --keep-largest-pack. Let's change the variable name to avoid that confusion, it's easier to read the code if there's a 1=1 mapping between the variable name and option name. Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-18gc: fix cast in compare_tasks_by_selection()Libravatar René Scharfe1-4/+2
compare_tasks_by_selection() is used with QSORT and gets passed pointers to the elements of "static struct maintenance_task tasks[]". It casts the *addresses* of these passed pointers to element pointers, though, and thus effectively compares some unrelated values from the stack. Fix the casts to actually compare array elements. Detected by USan (make SANITIZE=undefined test). Signed-off-by: René Scharfe <l.s.r@web.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-18Merge branch 'ds/maintenance-part-3'Libravatar Junio C Hamano1-6/+275
Parts of "git maintenance" to ease writing crontab entries (and other scheduling system configuration) for it. * ds/maintenance-part-3: maintenance: add troubleshooting guide to docs maintenance: use 'incremental' strategy by default maintenance: create maintenance.strategy config maintenance: add start/stop subcommands maintenance: add [un]register subcommands for-each-repo: run subcommands on configured repos maintenance: add --schedule option and config maintenance: optionally skip --auto process
2020-11-11Merge branch 'rs/clear-commit-marks-in-repo'Libravatar Junio C Hamano1-1/+1
Code clean-up. * rs/clear-commit-marks-in-repo: bisect: clear flags in passed repository object: allow clear_commit_marks_all to handle any repo
2020-11-02Merge branch 'ds/maintenance-commit-graph-auto-fix'Libravatar Junio C Hamano1-1/+11
Test-coverage enhancement of running commit-graph task "git maintenance" as needed led to discovery and fix of a bug. * ds/maintenance-commit-graph-auto-fix: maintenance: core.commitGraph=false prevents writes maintenance: test commit-graph auto condition
2020-10-31object: allow clear_commit_marks_all to handle any repoLibravatar René Scharfe1-1/+1
Allow callers to specify the repository to use. Rename the function to repo_clear_commit_marks to document its new scope. No functional change intended. Signed-off-by: René Scharfe <l.s.r@web.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-10-16maintenance: use 'incremental' strategy by defaultLibravatar Derrick Stolee1-0/+10
The 'git maintenance (register|start)' subcommands add the current repository to the global Git config so maintenance will operate on that repository. It does not specify what maintenance should occur or how often. To make it simple for users to start background maintenance with a recommended schedlue, update the 'maintenance.strategy' config option in both the 'register' and 'start' subcommands. This allows users to customize beyond the defaults using individual 'maintenance.<task>.schedule' options, but also the user can opt-out of this strategy using 'maintenance.strategy=none'. Helped-by: Martin Ågren <martin.agren@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-10-16maintenance: create maintenance.strategy configLibravatar Derrick Stolee1-2/+26
To provide an on-ramp for users to use background maintenance without several 'git config' commands, create a 'maintenance.strategy' config option. Currently, the only important value is 'incremental' which assigns the following schedule: * gc: never * prefetch: hourly * commit-graph: hourly * loose-objects: daily * incremental-repack: daily These tasks are chosen to minimize disruptions to foreground Git commands and use few compute resources. The 'maintenance.strategy' is intended as a baseline that can be customzied further by manually assigning 'maintenance.<task>.enabled' and 'maintenance.<task>.schedule' config options, which will override any recommendation from 'maintenance.strategy'. This operates similarly to config options like 'feature.experimental' which operate as "meta" config options that change default config values. This presents a way forward for updating the 'incremental' strategy in the future or adding new strategies. For example, a potential strategy could be to include a 'full' strategy that runs the 'gc' task weekly and no other tasks by default. Helped-by: Martin Ågren <martin.agren@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-10-12maintenance: core.commitGraph=false prevents writesLibravatar Derrick Stolee1-0/+4
Recently, a user had an issue due to combining fetch.writeCommitGraph=true with core.commitGraph=false. The root bug has been resolved by preventing commit-graph writes when core.commitGraph is disabled. This happens inside the 'git commit-graph write' command, but we can be more aware of this situation and prevent that process from ever starting in the 'commit-graph' maintenance task. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-10-08maintenance: test commit-graph auto conditionLibravatar Derrick Stolee1-1/+7
The auto condition for the commit-graph maintenance task walks refs looking for commits that are not in the commit-graph file. This was added in 4ddc79b2 (maintenance: add auto condition for commit-graph task, 2020-09-17) but was left untested. The initial goal of this change was to demonstrate the feature works properly by adding tests. However, there was an off-by-one error that caused the basic tests around maintenance.commit-graph.auto=1 to fail when it should work. The subtlety is that if a ref tip is not in the commit-graph, then we were not adding that to the total count. In the test, we see that we have only added one commit since our last commit-graph write, so the auto condition would say there is nothing to do. The fix is simple: add the check for the commit-graph position to see that the tip is not in the commit-graph file before starting our walk. Since this happens before adding to the DFS stack, we do not need to clear our (currently empty) commit list. This does add some extra complexity for the test, because we also want to verify that the walk along the parents actually does some work. This means we need to add at least two commits in a row without writing the commit-graph. However, we also need to make sure no additional refs are pointing to the middle of this list or else the for_each_ref() in should_write_commit_graph() might visit these commits as tips instead of doing a DFS walk. Hence, the last two commits are added with "git commit" instead of "test_commit". Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: add start/stop subcommandsLibravatar Derrick Stolee1-0/+124
Add new subcommands to 'git maintenance' that start or stop background maintenance using 'cron', when available. This integration is as simple as I could make it, barring some implementation complications. The schedule is laid out as follows: 0 1-23 * * * $cmd maintenance run --schedule=hourly 0 0 * * 1-6 $cmd maintenance run --schedule=daily 0 0 * * 0 $cmd maintenance run --schedule=weekly where $cmd is a properly-qualified 'git for-each-repo' execution: $cmd=$path/git --exec-path=$path for-each-repo --config=maintenance.repo where $path points to the location of the Git executable running 'git maintenance start'. This is critical for systems with multiple versions of Git. Specifically, macOS has a system version at '/usr/bin/git' while the version that users can install resides at '/usr/local/bin/git' (symlinked to '/usr/local/libexec/git-core/git'). This will also use your locally-built version if you build and run this in your development environment without installing first. This conditional schedule avoids having cron launch multiple 'git for-each-repo' commands in parallel. Such parallel commands would likely lead to the 'hourly' and 'daily' tasks competing over the object database lock. This could lead to to some tasks never being run! Since the --schedule=<frequency> argument will run all tasks with _at least_ the given frequency, the daily runs will also run the hourly tasks. Similarly, the weekly runs will also run the daily and hourly tasks. The GIT_TEST_CRONTAB environment variable is not intended for users to edit, but instead as a way to mock the 'crontab [-l]' command. This variable is set in test-lib.sh to avoid a future test from accidentally running anything with the cron integration from modifying the user's schedule. We use GIT_TEST_CRONTAB='test-tool crontab <file>' in our tests to check how the schedule is modified in 'git maintenance (start|stop)' commands. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: add [un]register subcommandsLibravatar Derrick Stolee1-1/+54
In preparation for launching background maintenance from the 'git maintenance' builtin, create register/unregister subcommands. These commands update the new 'maintenance.repos' config option in the global config so the background maintenance job knows which repositories to maintain. These commands allow users to add a repository to the background maintenance list without disrupting the actual maintenance mechanism. For example, a user can run 'git maintenance register' when no background maintenance is running and it will not start the background maintenance. A later update to start running background maintenance will then pick up this repository automatically. The opposite example is that a user can run 'git maintenance unregister' to remove the current repository from background maintenance without halting maintenance for other repositories. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: add --schedule option and configLibravatar Derrick Stolee1-3/+61
Maintenance currently triggers when certain data-size thresholds are met, such as number of pack-files or loose objects. Users may want to run certain maintenance tasks based on frequency instead. For example, a user may want to perform a 'prefetch' task every hour, or 'gc' task every day. To help these users, update the 'git maintenance run' command to include a '--schedule=<frequency>' option. The allowed frequencies are 'hourly', 'daily', and 'weekly'. These values are also allowed in a new config value 'maintenance.<task>.schedule'. The 'git maintenance run --schedule=<frequency>' checks the '*.schedule' config value for each enabled task to see if the configured frequency is at least as frequent as the frequency from the '--schedule' argument. We use the following order, for full clarity: 'hourly' > 'daily' > 'weekly' Use new 'enum schedule_priority' to track these values numerically. The following cron table would run the scheduled tasks with the correct frequencies: 0 1-23 * * * git -C <repo> maintenance run --schedule=hourly 0 0 * * 1-6 git -C <repo> maintenance run --schedule=daily 0 0 * * 0 git -C <repo> maintenance run --schedule=weekly This cron schedule will run --schedule=hourly every hour except at midnight. This avoids a concurrent run with the --schedule=daily that runs at midnight every day except the first day of the week. This avoids a concurrent run with the --schedule=weekly that runs at midnight on the first day of the week. Since --schedule=daily also runs the 'hourly' tasks and --schedule=weekly runs the 'hourly' and 'daily' tasks, we will still see all tasks run with the proper frequencies. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: add incremental-repack auto conditionLibravatar Derrick Stolee1-0/+31
The incremental-repack task updates the multi-pack-index by deleting pack- files that have been replaced with new packs, then repacking a batch of small pack-files into a larger pack-file. This incremental repack is faster than rewriting all object data, but is slower than some other maintenance activities. The 'maintenance.incremental-repack.auto' config option specifies how many pack-files should exist outside of the multi-pack-index before running the step. These pack-files could be created by 'git fetch' commands or by the loose-objects task. The default value is 10. Setting the option to zero disables the task with the '--auto' option, and a negative value makes the task run every time. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: auto-size incremental-repack batchLibravatar Derrick Stolee1-1/+42
When repacking during the 'incremental-repack' task, we use the --batch-size option in 'git multi-pack-index repack'. The initial setting used --batch-size=0 to repack everything into a single pack-file. This is not sustainable for a large repository. The amount of work required is also likely to use too many system resources for a background job. Update the 'incremental-repack' task by dynamically computing a --batch-size option based on the current pack-file structure. The dynamic default size is computed with this idea in mind for a client repository that was cloned from a very large remote: there is likely one "big" pack-file that was created at clone time. Thus, do not try repacking it as it is likely packed efficiently by the server. Instead, we select the second-largest pack-file, and create a batch size that is one larger than that pack-file. If there are three or more pack-files, then this guarantees that at least two will be combined into a new pack-file. Of course, this means that the second-largest pack-file size is likely to grow over time and may eventually surpass the initially-cloned pack-file. Recall that the pack-file batch is selected in a greedy manner: the packs are considered from oldest to newest and are selected if they have size smaller than the batch size until the total selected size is larger than the batch size. Thus, that oldest "clone" pack will be first to repack after the new data creates a pack larger than that. We also want to place some limits on how large these pack-files become, in order to bound the amount of time spent repacking. A maximum batch-size of two gigabytes means that large repositories will never be packed into a single pack-file using this job, but also that repack is rather expensive. This is a trade-off that is valuable to have if the maintenance is being run automatically or in the background. Users who truly want to optimize for space and performance (and are willing to pay the upfront cost of a full repack) can use the 'gc' task to do so. Create a test for this two gigabyte limit by creating an EXPENSIVE test that generates two pack-files of roughly 2.5 gigabytes in size, then performs an incremental repack. Check that the --batch-size argument in the subcommand uses the hard-coded maximum. Helped-by: Chris Torek <chris.torek@gmail.com> Reported-by: Son Luong Ngoc <sluongng@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: add incremental-repack taskLibravatar Derrick Stolee1-0/+76
The previous change cleaned up loose objects using the 'loose-objects' that can be run safely in the background. Add a similar job that performs similar cleanups for pack-files. One issue with running 'git repack' is that it is designed to repack all pack-files into a single pack-file. While this is the most space-efficient way to store object data, it is not time or memory efficient. This becomes extremely important if the repo is so large that a user struggles to store two copies of the pack on their disk. Instead, perform an "incremental" repack by collecting a few small pack-files into a new pack-file. The multi-pack-index facilitates this process ever since 'git multi-pack-index expire' was added in 19575c7 (multi-pack-index: implement 'expire' subcommand, 2019-06-10) and 'git multi-pack-index repack' was added in ce1e4a1 (midx: implement midx_repack(), 2019-06-10). The 'incremental-repack' task runs the following steps: 1. 'git multi-pack-index write' creates a multi-pack-index file if one did not exist, and otherwise will update the multi-pack-index with any new pack-files that appeared since the last write. This is particularly relevant with the background fetch job. When the multi-pack-index sees two copies of the same object, it stores the offset data into the newer pack-file. This means that some old pack-files could become "unreferenced" which I will use to mean "a pack-file that is in the pack-file list of the multi-pack-index but none of the objects in the multi-pack-index reference a location inside that pack-file." 2. 'git multi-pack-index expire' deletes any unreferenced pack-files and updaes the multi-pack-index to drop those pack-files from the list. This is safe to do as concurrent Git processes will see the multi-pack-index and not open those packs when looking for object contents. (Similar to the 'loose-objects' job, there are some Git commands that open pack-files regardless of the multi-pack-index, but they are rarely used. Further, a user that self-selects to use background operations would likely refrain from using those commands.) 3. 'git multi-pack-index repack --bacth-size=<size>' collects a set of pack-files that are listed in the multi-pack-index and creates a new pack-file containing the objects whose offsets are listed by the multi-pack-index to be in those objects. The set of pack- files is selected greedily by sorting the pack-files by modified time and adding a pack-file to the set if its "expected size" is smaller than the batch size until the total expected size of the selected pack-files is at least the batch size. The "expected size" is calculated by taking the size of the pack-file divided by the number of objects in the pack-file and multiplied by the number of objects from the multi-pack-index with offset in that pack-file. The expected size approximates how much data from that pack-file will contribute to the resulting pack-file size. The intention is that the resulting pack-file will be close in size to the provided batch size. The next run of the incremental-repack task will delete these repacked pack-files during the 'expire' step. In this version, the batch size is set to "0" which ignores the size restrictions when selecting the pack-files. It instead selects all pack-files and repacks all packed objects into a single pack-file. This will be updated in the next change, but it requires doing some calculations that are better isolated to a separate change. These steps are based on a similar background maintenance step in Scalar (and VFS for Git) [1]. This was incredibly effective for users of the Windows OS repository. After using the same VFS for Git repository for over a year, some users had _thousands_ of pack-files that combined to up to 250 GB of data. We noticed a few users were running into the open file descriptor limits (due in part to a bug in the multi-pack-index fixed by af96fe3 (midx: add packs to packed_git linked list, 2019-04-29). These pack-files were mostly small since they contained the commits and trees that were pushed to the origin in a given hour. The GVFS protocol includes a "prefetch" step that asks for pre-computed pack- files containing commits and trees by timestamp. These pack-files were grouped into "daily" pack-files once a day for up to 30 days. If a user did not request prefetch packs for over 30 days, then they would get the entire history of commits and trees in a new, large pack-file. This led to a large number of pack-files that had poor delta compression. By running this pack-file maintenance step once per day, these repos with thousands of packs spanning 200+ GB dropped to dozens of pack- files spanning 30-50 GB. This was done all without removing objects from the system and using a constant batch size of two gigabytes. Once the work was done to reduce the pack-files to small sizes, the batch size of two gigabytes means that not every run triggers a repack operation, so the following run will not expire a pack-file. This has kept these repos in a "clean" state. [1] https://github.com/microsoft/scalar/blob/master/Scalar.Common/Maintenance/PackfileMaintenanceStep.cs Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: create auto condition for loose-objectsLibravatar Derrick Stolee1-0/+30
The loose-objects task deletes loose objects that already exist in a pack-file, then place the remaining loose objects into a new pack-file. If this step runs all the time, then we risk creating pack-files with very few objects with every 'git commit' process. To prevent overwhelming the packs directory with small pack-files, place a minimum number of objects to justify the task. The 'maintenance.loose-objects.auto' config option specifies a minimum number of loose objects to justify the task to run under the '--auto' option. This defaults to 100 loose objects. Setting the value to zero will prevent the step from running under '--auto' while a negative value will force it to run every time. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: add loose-objects taskLibravatar Derrick Stolee1-0/+97
One goal of background maintenance jobs is to allow a user to disable auto-gc (gc.auto=0) but keep their repository in a clean state. Without any cleanup, loose objects will clutter the object database and slow operations. In addition, the loose objects will take up extra space because they are not stored with deltas against similar objects. Create a 'loose-objects' task for the 'git maintenance run' command. This helps clean up loose objects without disrupting concurrent Git commands using the following sequence of events: 1. Run 'git prune-packed' to delete any loose objects that exist in a pack-file. Concurrent commands will prefer the packed version of the object to the loose version. (Of course, there are exceptions for commands that specifically care about the location of an object. These are rare for a user to run on purpose, and we hope a user that has selected background maintenance will not be trying to do foreground maintenance.) 2. Run 'git pack-objects' on a batch of loose objects. These objects are grouped by scanning the loose object directories in lexicographic order until listing all loose objects -or- reaching 50,000 objects. This is more than enough if the loose objects are created only by a user doing normal development. We noticed users with _millions_ of loose objects because VFS for Git downloads blobs on-demand when a file read operation requires populating a virtual file. This step is based on a similar step in Scalar [1] and VFS for Git. [1] https://github.com/microsoft/scalar/blob/master/Scalar.Common/Maintenance/LooseObjectsStep.cs Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-25maintenance: add prefetch taskLibravatar Derrick Stolee1-0/+51
When working with very large repositories, an incremental 'git fetch' command can download a large amount of data. If there are many other users pushing to a common repo, then this data can rival the initial pack-file size of a 'git clone' of a medium-size repo. Users may want to keep the data on their local repos as close as possible to the data on the remote repos by fetching periodically in the background. This can break up a large daily fetch into several smaller hourly fetches. The task is called "prefetch" because it is work done in advance of a foreground fetch to make that 'git fetch' command much faster. However, if we simply ran 'git fetch <remote>' in the background, then the user running a foreground 'git fetch <remote>' would lose some important feedback when a new branch appears or an existing branch updates. This is especially true if a remote branch is force-updated and this isn't noticed by the user because it occurred in the background. Further, the functionality of 'git push --force-with-lease' becomes suspect. When running 'git fetch <remote> <options>' in the background, use the following options for careful updating: 1. --no-tags prevents getting a new tag when a user wants to see the new tags appear in their foreground fetches. 2. --refmap= removes the configured refspec which usually updates refs/remotes/<remote>/* with the refs advertised by the remote. While this looks confusing, this was documented and tested by b40a50264ac (fetch: document and test --refmap="", 2020-01-21), including this sentence in the documentation: Providing an empty `<refspec>` to the `--refmap` option causes Git to ignore the configured refspecs and rely entirely on the refspecs supplied as command-line arguments. 3. By adding a new refspec "+refs/heads/*:refs/prefetch/<remote>/*" we can ensure that we actually load the new values somewhere in our refspace while not updating refs/heads or refs/remotes. By storing these refs here, the commit-graph job will update the commit-graph with the commits from these hidden refs. 4. --prune will delete the refs/prefetch/<remote> refs that no longer appear on the remote. 5. --no-write-fetch-head prevents updating FETCH_HEAD. We've been using this step as a critical background job in Scalar [1] (and VFS for Git). This solved a pain point that was showing up in user reports: fetching was a pain! Users do not like waiting to download the data that was created while they were away from their machines. After implementing background fetch, the foreground fetch commands sped up significantly because they mostly just update refs and download a small amount of new data. The effect is especially dramatic when paried with --no-show-forced-udpates (through fetch.showForcedUpdates=false). [1] https://github.com/microsoft/scalar/blob/master/Scalar.Common/Maintenance/FetchStep.cs Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: add trace2 regions for task executionLibravatar Derrick Stolee1-0/+2
Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: add auto condition for commit-graph taskLibravatar Derrick Stolee1-0/+82
Instead of writing a new commit-graph in every 'git maintenance run --auto' process (when maintenance.commit-graph.enalbed is configured to be true), only write when there are "enough" commits not in a commit-graph file. This count is controlled by the maintenance.commit-graph.auto config option. To compute the count, use a depth-first search starting at each ref, and leaving markers using the SEEN flag. If this count reaches the limit, then terminate early and start the task. Otherwise, this operation will peel every ref and parse the commit it points to. If these are all in the commit-graph, then this is typically a very fast operation. Users with many refs might feel a slow-down, and hence could consider updating their limit to be very small. A negative value will force the step to run every time. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: use pointers to check --autoLibravatar Derrick Stolee1-0/+16
The 'git maintenance run' command has an '--auto' option. This is used by other Git commands such as 'git commit' or 'git fetch' to check if maintenance should be run after adding data to the repository. Previously, this --auto option was only used to add the argument to the 'git gc' command as part of the 'gc' task. We will be expanding the other tasks to perform a check to see if they should do work as part of the --auto flag, when they are enabled by config. First, update the 'gc' task to perform the auto check inside the maintenance process. This prevents running an extra 'git gc --auto' command when not needed. It also shows a model for other tasks. Second, use the 'auto_condition' function pointer as a signal for whether we enable the maintenance task under '--auto'. For instance, we do not want to enable the 'fetch' task in '--auto' mode, so that function pointer will remain NULL. Now that we are not automatically calling 'git gc', a test in t5514-fetch-multiple.sh must be changed to watch for 'git maintenance' instead. We continue to pass the '--auto' option to the 'git gc' command when necessary, because of the gc.autoDetach config option changes behavior. Likely, we will want to absorb the daemonizing behavior implied by gc.autoDetach as a maintenance.autoDetach config option. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: create maintenance.<task>.enabled configLibravatar Derrick Stolee1-0/+19
Currently, a normal run of "git maintenance run" will only run the 'gc' task, as it is the only one enabled. This is mostly for backwards- compatible reasons since "git maintenance run --auto" commands replaced previous "git gc --auto" commands after some Git processes. Users could manually run specific maintenance tasks by calling "git maintenance run --task=<task>" directly. Allow users to customize which steps are run automatically using config. The 'maintenance.<task>.enabled' option then can turn on these other tasks (or turn off the 'gc' task). Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: take a lock on the objects directoryLibravatar Derrick Stolee1-0/+20
Performing maintenance on a Git repository involves writing data to the .git directory, which is not safe to do with multiple writers attempting the same operation. Ensure that only one 'git maintenance' process is running at a time by holding a file-based lock. Simply the presence of the .git/maintenance.lock file will prevent future maintenance. This lock is never committed, since it does not represent meaningful data. Instead, it is only a placeholder. If the lock file already exists, then no maintenance tasks are attempted. This will become very important later when we implement the 'prefetch' task, as this is our stop-gap from creating a recursive process loop between 'git fetch' and 'git maintenance run --auto'. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: add --task optionLibravatar Derrick Stolee1-3/+63
A user may want to only run certain maintenance tasks in a certain order. Add the --task=<task> option, which allows a user to specify an ordered list of tasks to run. These cannot be run multiple times, however. Here is where our array of maintenance_task pointers becomes critical. We can sort the array of pointers based on the task order, but we do not want to move the struct data itself in order to preserve the hashmap references. We use the hashmap to match the --task=<task> arguments into the task struct data. Keep in mind that the 'enabled' member of the maintenance_task struct is a placeholder for a future 'maintenance.<task>.enabled' config option. Thus, we use the 'enabled' member to specify which tasks are run when the user does not specify any --task=<task> arguments. The 'enabled' member should be ignored if --task=<task> appears. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: add commit-graph taskLibravatar Derrick Stolee1-0/+30
The first new task in the 'git maintenance' builtin is the 'commit-graph' task. This updates the commit-graph file incrementally with the command git commit-graph write --reachable --split By writing an incremental commit-graph file using the "--split" option we minimize the disruption from this operation. The default behavior is to merge layers until the new "top" layer is less than half the size of the layer below. This provides quick writes most of the time, with the longer writes following a power law distribution. Most importantly, concurrent Git processes only look at the commit-graph-chain file for a very short amount of time, so they will verly likely not be holding a handle to the file when we try to replace it. (This only matters on Windows.) If a concurrent process reads the old commit-graph-chain file, but our job expires some of the .graph files before they can be read, then those processes will see a warning message (but not fail). This could be avoided by a future update to use the --expire-time argument when writing the commit-graph. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: initialize task arrayLibravatar Derrick Stolee1-1/+42
In anticipation of implementing multiple maintenance tasks inside the 'maintenance' builtin, use a list of structs to describe the work to be done. The struct maintenance_task stores the name of the task (as given by a future command-line argument) along with a function pointer to its implementation and a boolean for whether the step is enabled. A list these structs are initialized with the full list of implemented tasks along with a default order. For now, this list only contains the "gc" task. This task is also the only task enabled by default. The run subcommand will return a nonzero exit code if any task fails. However, it will attempt all tasks in its loop before returning with the failure. Also each failed task will print an error message. Helped-by: Taylor Blau <me@ttaylorr.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: add --quiet optionLibravatar Derrick Stolee1-1/+10
Maintenance activities are commonly used as steps in larger scripts. Providing a '--quiet' option allows those scripts to be less noisy when run on a terminal window. Turn this mode on by default when stderr is not a terminal. Pipe the option to the 'git gc' child process. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-17maintenance: create basic maintenance runnerLibravatar Derrick Stolee1-0/+58
The 'gc' builtin is our current entrypoint for automatically maintaining a repository. This one tool does many operations, such as repacking the repository, packing refs, and rewriting the commit-graph file. The name implies it performs "garbage collection" which means several different things, and some users may not want to use this operation that rewrites the entire object database. Create a new 'maintenance' builtin that will become a more general- purpose command. To start, it will only support the 'run' subcommand, but will later expand to add subcommands for scheduling maintenance in the background. For now, the 'maintenance' builtin is a thin shim over the 'gc' builtin. In fact, the only option is the '--auto' toggle, which is handed directly to the 'gc' builtin. The current change is isolated to this simple operation to prevent more interesting logic from being lost in all of the boilerplate of adding a new builtin. Use existing builtin/gc.c file because we want to share code between the two builtins. It is possible that we will have 'maintenance' replace the 'gc' builtin entirely at some point, leaving 'git gc' as an alias for some specific arguments to 'git maintenance run'. Create a new test_subcommand helper that allows us to test if a certain subcommand was run. It requires storing the GIT_TRACE2_EVENT logs in a file. A negation mode is available that will be used in later tests. Helped-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>