summaryrefslogtreecommitdiff
path: root/banned.h
AgeCommit message (Collapse)AuthorFilesLines
2019-08-26banned.h: fix vsprintf()'s ban messageLibravatar Taylor Blau1-1/+1
In cc8fdaee1e (banned.h: mark sprintf() as banned, 2018-07-24), both 'sprintf()' and 'vsprintf()' were marked as banned functions. The non-variadic macro to ban 'vsprintf' has a typo which says that 'sprintf', not 'vsprintf' is banned. The variadic version does not have the same typo. Fix this by updating the explicit form of 'vsprintf' as the banned version of itself, not 'sprintf'. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-01-02banned.h: mark strncat() as bannedLibravatar Eric Wong1-0/+2
strncat() has the same quadratic behavior as strcat() and is difficult-to-read and bug-prone. While it hasn't yet been a problem in git iself, strncat() found it's way into 'master' of cgit and caused segfaults on my system. Signed-off-by: Eric Wong <e@80x24.org> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-26banned.h: mark strncpy() as bannedLibravatar Jeff King1-0/+2
The strncpy() function is less horrible than strcpy(), but is still pretty easy to misuse because of its funny termination semantics. Namely, that if it truncates it omits the NUL terminator, and you must remember to add it yourself. Even if you use it correctly, it's sometimes hard for a reader to verify this without hunting through the code. If you're thinking about using it, consider instead: - strlcpy() if you really just need a truncated but NUL-terminated string (we provide a compat version, so it's always available) - xsnprintf() if you're sure that what you're copying should fit - strbuf or xstrfmt() if you need to handle arbitrary-length heap-allocated strings Note that there is one instance of strncpy in compat/regex/regcomp.c, which is fine (it allocates a sufficiently large string before copying). But this doesn't trigger the ban-list even when compiling with NO_REGEX=1, because: 1. we don't use git-compat-util.h when compiling it (instead we rely on the system includes from the upstream library); and 2. It's in an "#ifdef DEBUG" block Since it's doesn't trigger the banned.h code, we're better off leaving it to keep our divergence from upstream minimal. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-26banned.h: mark sprintf() as bannedLibravatar Jeff King1-0/+10
The sprintf() function (and its variadic form vsprintf) make it easy to accidentally introduce a buffer overflow. If you're thinking of using them, you're better off either using a dynamic string (strbuf or xstrfmt), or xsnprintf if you really know that you won't overflow. The last sprintf() call went away quite a while ago in f0766bf94e (fsck: use for_each_loose_file_in_objdir, 2015-09-24). Note that we respect HAVE_VARIADIC_MACROS here, which some ancient platforms lack. As a fallback, we can just "guess" that the caller will provide 3 arguments. If they do, then the macro will work as usual. If not, then they'll get a slightly less useful error, like: git.c:718:24: error: macro "sprintf" passed 3 arguments, but takes just 2 That's not ideal, but it at least alerts them to the problem area. And anyway, we're primarily targeting people adding new code. Most developers should be on modern enough platforms to see the normal "good" error message. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-26banned.h: mark strcat() as bannedLibravatar Jeff King1-0/+2
The strcat() function has all of the same overflow problems as strcpy(). And as a bonus, it's easy to end up accidentally quadratic, as each subsequent call has to walk through the existing string. The last strcat() call went away in f063d38b80 (daemon: use cld->env_array when re-spawning, 2015-09-24). In general, strcat() can be replaced either with a dynamic string (strbuf or xstrfmt), or with xsnprintf if you know the length is bounded. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-26automatically ban strcpy()Libravatar Jeff King1-0/+16
There are a few standard C functions (like strcpy) which are easy to misuse. E.g.: char path[PATH_MAX]; strcpy(path, arg); may overflow the "path" buffer. Sometimes there's an earlier constraint on the size of "arg", but even in such a case it's hard to verify that the code is correct. If the size really is unbounded, you're better off using a dynamic helper like strbuf: struct strbuf path = STRBUF_INIT; strbuf_addstr(path, arg); or if it really is bounded, then use xsnprintf to show your expectation (and get a run-time assertion): char path[PATH_MAX]; xsnprintf(path, sizeof(path), "%s", arg); which makes further auditing easier. We'd usually catch undesirable code like this in a review, but there's no automated enforcement. Adding that enforcement can help us be more consistent and save effort (and a round-trip) during review. This patch teaches the compiler to report an error when it sees strcpy (and will become a model for banning a few other functions). This has a few advantages over a separate linting tool: 1. We know it's run as part of a build cycle, so it's hard to ignore. Whereas an external linter is an extra step the developer needs to remember to do. 2. Likewise, it's basically free since the compiler is parsing the code anyway. 3. We know it's robust against false positives (unlike a grep-based linter). The two big disadvantages are: 1. We'll only check code that is actually compiled, so it may miss code that isn't triggered on your particular system. But since presumably people don't add new code without compiling it (and if they do, the banned function list is the least of their worries), we really only care about failing to clean up old code when adding new functions to the list. And that's easy enough to address with a manual audit when adding a new function (which is what I did for the functions here). 2. If this ends up generating false positives, it's going to be harder to disable (as opposed to a separate linter, which may have mechanisms for overriding a particular case). But the intent is to only ban functions which are obviously bad, and for which we accept using an alternative even when this particular use isn't buggy (e.g., the xsnprintf alternative above). The implementation here is simple: we'll define a macro for the banned function which replaces it with a reference to a descriptively named but undeclared identifier. Replacing it with any invalid code would work (since we just want to break compilation). But ideally we'd meet these goals: - it should be portable; ideally this would trigger everywhere, and does not need to be part of a DEVELOPER=1 setup (because unlike warnings which may depend on the compiler or system, this is a clear indicator of something wrong in the code). - it should generate a readable error that gives the developer a clue what happened - it should avoid generating too much other cruft that makes it hard to see the actual error - it should mention the original callsite in the error The output with this patch looks like this (using gcc 7, on a checkout with 022d2ac1f3 reverted, which removed the final strcpy from blame.c): CC builtin/blame.o In file included from ./git-compat-util.h:1246, from ./cache.h:4, from builtin/blame.c:8: builtin/blame.c: In function ‘cmd_blame’: ./banned.h:11:22: error: ‘sorry_strcpy_is_a_banned_function’ undeclared (first use in this function) #define BANNED(func) sorry_##func##_is_a_banned_function ^~~~~~ ./banned.h:14:21: note: in expansion of macro ‘BANNED’ #define strcpy(x,y) BANNED(strcpy) ^~~~~~ builtin/blame.c:1074:4: note: in expansion of macro ‘strcpy’ strcpy(repeated_meta_color, GIT_COLOR_CYAN); ^~~~~~ ./banned.h:11:22: note: each undeclared identifier is reported only once for each function it appears in #define BANNED(func) sorry_##func##_is_a_banned_function ^~~~~~ ./banned.h:14:21: note: in expansion of macro ‘BANNED’ #define strcpy(x,y) BANNED(strcpy) ^~~~~~ builtin/blame.c:1074:4: note: in expansion of macro ‘strcpy’ strcpy(repeated_meta_color, GIT_COLOR_CYAN); ^~~~~~ This prominently shows the phrase "strcpy is a banned function", along with the original callsite in blame.c and the location of the ban code in banned.h. Which should be enough to get even a developer seeing this for the first time pointed in the right direction. This doesn't match our ideals perfectly, but it's a pretty good balance. A few alternatives I tried: 1. Instead of using an undeclared variable, using an undeclared function. This shortens the message, because the "each undeclared identifier" message is not needed (and as you can see above, it triggers a separate mention of each of the expansion points). But it doesn't actually stop compilation unless you use -Werror=implicit-function-declaration in your CFLAGS. This is the case for DEVELOPER=1, but not for a default build (on the other hand, we'd eventually produce a link error pointing to the correct source line with the descriptive name). 2. The linux kernel uses a similar mechanism in its BUILD_BUG_ON_MSG(), where they actually declare the function but do so with gcc's error attribute. But that's not portable to other compilers (and it also runs afoul of our error() macro). We could make a gcc-specific technique and fallback on other compilers, but it's probably not worth the complexity. It also isn't significantly shorter than the error message shown above. 3. We could drop the BANNED() macro, which would shorten the number of lines in the error. But curiously, removing it (and just expanding strcpy directly to the bogus identifier) causes gcc _not_ to report the original line of code. So this strategy seems to be an acceptable mix of information, portability, simplicity, and robustness, without _too_ much extra clutter. I also tested it with clang, and it looks as good (actually, slightly less cluttered than with gcc). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>