Age | Commit message (Collapse) | Author | Files | Lines |
|
This reverts commit 5ced7c3da009090c5a926e3123a71314c7f28d42, which was
put in place as a temporary measure to avoid optimizations unstably
erroring out on no destination having a majority of the necessary
renames for directories that had no new files and thus no need for
directory rename detection anyway. Now that optimizations are in place
to prevent us from trying to compute directory rename count computations
for directories that do not need it, we can undo this temporary measure.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
The plan is to just delete merge-recursive, but not until everyone is
comfortable with merge-ort as a replacement. Given that I haven't
switched all callers of merge-recursive over yet (e.g. git-am still uses
merge-recursive), maybe there's some value documenting known bugs in the
algorithm in case we end up keeping it or someone wants to dig it up in
the future.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
There are a variety of questions users might ask while resolving
conflicts:
* What changes have been made since the previous (first) parent?
* What changes are staged?
* What is still unstaged? (or what is still conflicted?)
* What changes did I make to resolve conflicts so far?
The first three of these have simple answers:
* git diff HEAD
* git diff --cached
* git diff
There was no way to answer the final question previously. Adding one
is trivial in merge-ort, since it works by creating a tree representing
what should be written to the working copy complete with conflict
markers. Simply write that tree to .git/AUTO_MERGE, allowing users to
answer the fourth question with
* git diff AUTO_MERGE
I avoided using a name like "MERGE_AUTO", because that would be
merge-specific (much like MERGE_HEAD, REBASE_HEAD, REVERT_HEAD,
CHERRY_PICK_HEAD) and I wanted a name that didn't change depending on
which type of operation the merge was part of.
Ensure that paths which clean out other temporary operation-specific
files (e.g. CHERRY_PICK_HEAD, MERGE_MSG, rebase-merge/ state directory)
also clean out this AUTO_MERGE file.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
merge-ort handles submodules (and directory/file conflicts in general)
differently than merge-recursive does; it basically puts all the special
handling for different filetypes into one place in the codebase instead
of needing special handling for different filetypes in many different
code paths. This one code path in merge-ort could perhaps use some work
still (there are still test_expect_failure cases in the testsuite), but
it passes all the tests that merge-recursive does as well as 12
additional ones that merge-recursive fails. Mark those 12 tests as
test_expect_success under merge-ort.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
When merge conflicts occur in paths removed by a sparse-checkout, we
need to unsparsify those paths (clear the SKIP_WORKTREE bit), and write
out the conflicted file to the working copy. In the very unlikely case
that someone manually put a file into the working copy at the location
of the SKIP_WORKTREE file, we need to avoid overwriting whatever edits
they have made and move that file to a different location first.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
If there is a conflict during a merge for a SKIP_WORKTREE entry, we
expect that file to be written to the working copy and have the
SKIP_WORKTREE bit cleared in the index. If the user had manually
created a file in the working tree despite SKIP_WORKTREE being set, we
do not want to clobber their changes to that file, but want to move it
out of the way. Add tests that check for these behaviors.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
merge-recursive has some simple code to support subtree shifting; copy
it over to merge-ort. This fixes t6409.12 under
GIT_TEST_MERGE_ALGORITHM=ort.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
When we have a modify/delete conflict, but the only change to the
modification is e.g. change of line endings, then if renormalization is
requested then we should be able to recognize such a case as a
not-modified/delete and resolve the conflict automatically.
This fixes t6418.10 under GIT_TEST_MERGE_ALGORITHM=ort.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
ll_merge() needs an index when renormalization is requested. Create one
specifically for just this purpose with just the one needed entry. This
fixes t6418.4 and t6418.5 under GIT_TEST_MERGE_ALGORITHM=ort.
NOTE 1: Even if the user has a working copy or a real index (which is
not a given as merge-ort can be used in bare repositories), we
explicitly ignore any .gitattributes file from either of these
locations. merge-ort can be used to merge two branches that are
unrelated to HEAD, so .gitattributes from the working copy and current
index should not be considered relevant.
NOTE 2: Since we are in the middle of merging, there is a risk that
.gitattributes itself is conflicted...leaving us with an ill-defined
situation about how to perform the rest of the merge. It could be that
the .gitattributes file does not even exist on one of the sides of the
merge, or that it has been modified on both sides. If it's been
modified on both sides, it's possible that it could itself be merged
cleanly, though it's also possible that it only merges cleanly if you
use the right version of the .gitattributes file to drive the merge. It
gets kind of complicated. The only test we ever had that attempted to
test behavior in this area was seemingly unaware of the undefined
behavior, but knew the test wouldn't work for lack of attribute handling
support, marked it as test_expect_failure from the beginning, but
managed to fail for several reasons unrelated to attribute handling.
See commit 6f6e7cfb52 ("t6038: remove problematic test", 2020-08-03) for
details. So there are probably various ways to improve what
initialize_attr_index() picks in the case of a conflicted .gitattributes
but for now I just implemented something simple -- look for whatever
.gitattributes file we can find in any of the higher order stages and
use it.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
renormalize_buffer() requires an index_state, which is something that
merge-ort does not operate with. However, all the renormalization code
needs is an index with a .gitattributes file...plus a little bit of
setup. Create such an index, along with the deallocation and
attr_direction handling.
A subsequent commit will add a function to finish the initialization
of this index.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
rename/rename conflict handling depends on the fact that if both sides
renamed the same path, that the one on the MERGE_SIDE1 will appear first
in the combined diff_queue_struct passed to process_renames(). Since we
add all pairs from MERGE_SIDE1 to combined first, and then all pairs
from MERGE_SIDE2, and then sort based on filename, this will only be
true if the sort used is stable. This was found due to the fact that
Mac, unlike Linux, apparently has a system-defined qsort that is not
stable.
While we are at it, review the other callers of QSORT and add comments
about why they can remain as calls to QSORT instead of being modified
to call STABLE_QSORT.
Signed-off-by: Elijah Newren <newren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
As noted a few commits ago ("diffcore-rename: only compute
dir_rename_count for relevant directories"), when a source file rename
is used as part of directory rename detection, we need to increment
counts for each ancestor directory in dirs_removed with value
RELEVANT_FOR_SELF. However, a few commits ago ("diffcore-rename: check
if we have enough renames for directories early on"), we may have
downgraded all relevant ancestor directories from RELEVANT_FOR_SELF to
RELEVANT_FOR_ANCESTOR.
For a given file, if no ancestor directory is found in dirs_removed with
a value of RELEVANT_FOR_SELF, then we can downgrade
relevant_source[PATH] from RELEVANT_LOCATION to RELEVANT_NO_MORE. This
means we can skip detecting a rename for that particular path (and any
other paths in the same directory).
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 5.680 s ± 0.096 s 5.665 s ± 0.129 s
mega-renames: 13.812 s ± 0.162 s 11.435 s ± 0.158 s
just-one-mega: 506.0 ms ± 3.9 ms 494.2 ms ± 6.1 ms
While this improvement looks rather modest for these testcases (because
all the previous optimizations were sufficient to nearly remove all time
spent in rename detection already), consider this alternative testcase
tweaked from the ones in commit 557ac0350d as follows
<Same initial setup as commit 557ac0350d, then...>
$ git switch -c add-empty-file v5.5
$ >drivers/gpu/drm/i915/new-empty-file
$ git add drivers/gpu/drm/i915/new-empty-file
$ git commit -m "new file"
$ git switch 5.4-rename
$ git cherry-pick --strategy=ort add-empty-file
For this testcase, we see the following improvement:
Before After
pick-empty: 1.936 s ± 0.024 s 688.1 ms ± 4.2 ms
So roughly a factor of 3 speedup. At $DAYJOB, there was a particular
repository and cherry-pick that inspired this optimization; for that
case I saw a speedup factor of 7 with this optimization.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
There are two different reasons we might want a rename for a file -- for
three-way content merging or as part of directory rename detection.
Record the reason. diffcore-rename will potentially be able to filter
some of the ones marked as needed only for directory rename detection,
if it can determine those directory renames based solely on renames
found via exact rename detection and basename-guided rename detection.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
The previous commit can only be effective if we have a computation of
the number of paths under a given directory which are still have pending
renames, and expected this number to be recorded in the dir_rename_count
map under the key UNKNOWN_DIR. Add the code necessary to compute these
values.
Note that this change means dir_rename_count might have a directory
whose only entry (for UNKNOWN_DIR) was removed by the time merge-ort
goes to check it. To account for this, merge-ort needs to check for the
case where the max count is 0.
With this change we are now computing the necessary value for each
directory in dirs_removed, but are not using that value anywhere. The
next two commits will make use of the values stored in dirs_removed in
order to compute whether each relevant_source (that is needed only for
directory rename detection) has become unnecessary.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
As noted in the past few commits, if we can determine that a directory
already has enough renames to determine how directory rename detection
will be decided for that directory, then we can mark that directory as
no longer needing any more renames detected for files underneath it.
For such directories, we change the value in the dirs_removed map from
RELEVANT_TO_SELF to RELEVANT_FOR_ANCESTOR.
A subsequent patch will use this information while iterating over the
remaining potential rename sources to mark ones that were only
location_relevant as unneeded if no containing directory is still marked
as RELEVANT_TO_SELF.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
When one side adds files to a directory that the other side renamed,
directory rename detection is used to either move the new paths to the
newer directory or warn the user about the fact that another path
location might be better.
If a parent of the given directory had new files added to it, any
renames in the current directory are also part of determining where the
parent directory is renamed to. Thus, naively, we need to record each
rename N times for a path at depth N. However, we can use the
additional information added to dirs_removed in the last commit to avoid
traversing all N parent directories in many cases. Let's use an example
to explain how this works. If we have a path named
src/old_dir/a/b/file.c
and src/old_dir doesn't exist on one side of history, but the other
added a file named src/old_dir/newfile.c, then if one side renamed
src/old_dir/a/b/file.c => source/new_dir/a/b/file.c
then this file would affect potential directory rename detection counts
for
src/old_dir/a/b => source/new_dir/a/b
src/old_dir/a => source/new_dir/a
src/old_dir => source/new_dir
src => source
adding a weight of 1 to each in dir_rename_counts. However, if src/
exists on both sides of history, then we don't need to track any entries
for it in dir_rename_counts. That was implemented previously. What we
are adding now, is that if no new files were added to src/old_dir/a or
src/old_dir/b, then we don't need to have counts in dir_rename_count
for those directories either.
In short, we only need to track counts in dir_rename_count for
directories whose dirs_removed value is RELEVANT_FOR_SELF. And as soon
as we reach a directory that isn't in dirs_removed (signalled by
returning the default value of NOT_RELEVANT from strintmap_get()), we
can stop looking any further up the directory hierarchy.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
When one side of history renames a directory, and the other side of
history added files to the old directory, directory rename detection is
used to warn about the location of the added files so the user can
move them to the old directory or keep them with the new one.
This sets up three different types of directories:
* directories that had new files added to them
* directories underneath a directory that had new files added to them
* directories where no new files were added to it or any leading path
Save this information in dirs_removed; the next several commits will
make use of this information.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
As noted in the previous commit, we want to be able to take advantage of
the "majority rules" portion of directory rename detection to avoid
detecting more renames than necessary. However, for diffcore-rename to
take advantage of that, it needs to know whether a rename source file
was needed for just directory rename detection reasons, or if it is
wanted for potential three-way content merging. Modify relevant_sources
from a strset to a strintmap, so we can encode additional information.
We also modify dirs_removed from a strset to a strintmap at the same
time because trying to determine what files are needed for directory
rename detection will require us tracking a bit more information for
each directory.
This commit only changes the types of the two variables from strset to
strintmap; it does not actually store any special values yet and for now
only checks for presence of entries in the strintmap. Thus, the code is
functionally identical to how it behaved before. Future commits will
start associating values with each key for these two maps.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
In directory rename detection (when a directory is removed on one side
of history and the other side adds new files to that directory), we work
to find where the greatest number of files within that directory were
renamed to so that the new files can be moved with the majority of the
files.
Naively, we can just do this by detecting renames for *all* files within
the removed/renamed directory, looking at all the destination
directories where files within that directory were moved, and if there
is more than one such directory then taking the one with the greatest
number of files as the directory where the old directory was renamed to.
However, sometimes there are enough renames from exact rename detection
or basename-guided rename detection that we have enough information to
determine the majority winner already. Add a function meant to compute
whether particular renames are still needed based on this majority rules
check. The next several commits will then add the necessary
infrastructure to get the information we need to compute which
additional rename sources we can skip.
An important side note for future further optimization:
There is a possible improvement to this optimization that I have not yet
attempted and will not be included in this series of patches: we could
first check whether exact renames provide enough information for us to
determine directory renames, and avoid doing basename-guided rename
detection on some or all of the RELEVANT_LOCATION files within those
directories. In effect, this variant would mean doing the
handle_early_known_dir_renames() both after exact rename detection and
again after basename-guided rename detection, though it would also mean
decrementing the number of "unknown" renames for each rename we found
from basename-guided rename detection. Adding this additional check for
skippable renames right after exact rename detection might turn out to
be valuable, especially for partial clones where it might allow us to
download certain source files entirely. However, this particular
optimization was actually the last one I did in original implementation
order, and by the time I implemented this idea, every testcase I had was
sufficiently fast that further optimization was unwarranted. If future
testcases arise that tax rename detection more heavily (or perhaps
partial clones can benefit from avoiding loading more objects), it may
be worth implementing this more involved variant.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
The basename comparison optimization implemented in
find_basename_matches() is very beneficial since it allows a source to
sometimes only be compared with one other file instead of N other files.
When a match is found, both a source and destination can be removed from
the matrix of inexact rename comparisons. In contrast, the irrelevant
source optimization only allows us to remove a source from the matrix of
inexact rename comparisons...but it has the advantage of allowing a
source file to not even be loaded into memory at all and be compared to
0 other files. Generally, not even comparing is a bigger performance
win, so when both optimizations could apply, prefer to use the
irrelevant-source optimization.
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 5.708 s ± 0.111 s 5.680 s ± 0.096 s
mega-renames: 102.171 s ± 0.440 s 13.812 s ± 0.162 s
just-one-mega: 3.471 s ± 0.015 s 506.0 ms ± 3.9 ms
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
diffcore_rename_extended() will do a bunch of setup, then check for
exact renames, then abort before inexact rename detection if there are
no more sources or destinations that need to be matched. It will
sometimes be the case, however, that either
* we start with neither any sources or destinations
* we start with no *relevant* sources
In the first of these two cases, the setup and exact rename detection
will be very cheap since there are 0 files to operate on. In the second
case, it is quite possible to have thousands of files with none of the
source ones being relevant. Avoid calling diffcore_rename_extended() or
even some of the setup before diffcore_rename_extended() when we can
determine that rename detection is unnecessary.
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 6.003 s ± 0.048 s 5.708 s ± 0.111 s
mega-renames: 114.009 s ± 0.236 s 102.171 s ± 0.440 s
just-one-mega: 3.489 s ± 0.017 s 3.471 s ± 0.015 s
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
The past several commits determined conditions when rename sources might
be needed, and filled a relevant_sources strset with those paths. Pass
these along to diffcore_rename_extended() to use to limit the sources
that we need to detect renames for.
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 12.596 s ± 0.061 s 6.003 s ± 0.048 s
mega-renames: 130.465 s ± 0.259 s 114.009 s ± 0.236 s
just-one-mega: 3.958 s ± 0.010 s 3.489 s ± 0.017 s
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
The point of directory rename detection is that if one side of history
renames a directory, and the other side adds new files under the old
directory, then the merge can move those new files into the new
directory. This leads to the following important observation:
* If the other side does not add any new files under the old
directory, we do not need to detect any renames for that directory.
Similarly, directory rename detection had an important requirement:
* If a directory still exists on one side of history, it has not been
renamed on that side of history. (See section 4 of t6423 or
Documentation/technical/directory-rename-detection.txt for more
details).
Using these two bits of information, we note that directory rename
detection is only needed in cases where (1) directories exist in the
merge base and on one side of history (i.e. dirmask == 3 or dirmask ==
5), and (2) where there is some new file added to that directory on the
side where it still exists (thus where the file has filemask == 2 or
filemask == 4, respectively). This has to be done in two steps, because
we have the dirmask when we are first considering the directory, and
won't get the filemasks for the files within it until we recurse into
that directory. So, we save
dir_rename_mask = dirmask - 1
when we hit a directory that is missing on one side, and then later look
for cases of
filemask == dir_rename_mask
One final note is that as soon as we hit a directory that needs
directory rename detection, we will need to detect renames in all
subdirectories of that directory as well due to the "majority rules"
decision when files are renamed into different directory hierarchies.
We arbitrarily use the special value of 0x07 to record when we've hit
such a directory.
The combination of all the above mean that we introduce a variable
named dir_rename_mask (couldn't think of a better name) which has one
of the following values as we traverse into a directory:
* 0x00: directory rename detection not needed
* 0x02 or 0x04: directory rename detection only needed if files added
* 0x07: directory rename detection definitely needed
We then pass this value through to add_pairs() so that it can mark
location_relevant as true only when dir_rename_mask is 0x07.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Add traverse_trees_wrapper() and traverse_trees_wrapper_callback()
functions. The former runs traverse_trees() with info->fn set to
traverse_trees_wrapper_callback, in order to simply save all the entries
without processing or recursing into any of them. This step allows
extra computation to be done (e.g. checking some condition across all
files) that can be used later. Then, after that is completed, it
iterates over all the saved entries and calls the original info->fn
callback with the saved data.
Currently, this does nothing more than marginally slowing down the tree
traversal since we do not take advantage of the opportunity to compute
anything special in traverse_trees_wrapper_callback(), and thus the real
callback will be called identically as it would have been without this
extra wrapper. However, a subsequent commit will add some special
computation of some values that the real callback will be able to use.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
In order to determine whether directory rename detection is needed, we
as a pre-requisite need a way to traverse through all the files in a
given tree before visiting any directories within that tree.
traverse_trees() only iterates through the entries in the order they
appear, so add some data structures that will store all the entries as
we iterate through them in traverse_trees(), which will allow us to
re-traverse them in our desired order.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
rename detection works by trying to pair all file deletions (or
"sources") with all file additions (or "destinations"), checking
similarity, and then marking the sufficiently similar ones as renames.
This can be expensive if there are many sources and destinations on a
given side of history as it results in an N x M comparison matrix.
However, there are many cases where we can compute in advance that
detecting renames for some of the sources provides no useful information
and thus that we can exclude those sources from the matrix.
To see why, first note that the merge machinery uses detected renames in
two ways:
* directory rename detection: when one side of history renames a
directory, and the other side of history adds new files to that
directory, we want to be able to warn the user about the need to
chose whether those new files stay in the old directory or move
to the new one.
* three-way content merging: in order to do three-way content merging
of files, we need three different file versions. If one side of
history renamed a file, then some of the content for the file is
found under a different path than in the merge base or on the
other side of history.
Add a simple testcase showing the two kinds of reasons renames are
relevant; it's a testcase that will only pass if we detect both kinds of
needed renames.
Other than the testcase added above, this commit concentrates just on
the three-way content merging; it will punt and mark all sources as
needed for directory rename detection, and leave it to future commits to
narrow that down more.
The point of three-way content merging is to reconcile changes made on
*both* sides of history. What if the file wasn't modified on both
sides? There are two possibilities:
* If it wasn't modified on the renamed side:
-> then we get to do exact rename detection, which is cheap.
* If it wasn't modified on the unrenamed side:
-> then detection of a rename for that source file is irrelevant
That latter claim might be surprising at first, so let's walk through a
case to show why rename detection for that source file is irrelevant.
Let's use two filenames, old.c & new.c, with the following abbreviated
object ids (and where the value '000000' is used to denote that the file
is missing in that commit):
old.c new.c
MERGE_BASE: 01d01d 000000
MERGE_SIDE1: 01d01d 000000
MERGE_SIDE2: 000000 5e1ec7
If the rename *isn't* detected:
then old.c looks like it was unmodified on one side and deleted on
the other and should thus be removed. new.c looks like a new file we
should keep as-is.
If the rename *is* detected:
then a three-way content merge is done. Since the version of the
file in MERGE_BASE and MERGE_SIDE1 are identical, the three-way merge
will produce exactly the version of the file whose abbreviated
object id is 5e1ec7. It will record that file at the path new.c,
while removing old.c from the directory.
Note that these two results are identical -- a single file named 'new.c'
with object id 5e1ec7. In other words, it doesn't matter if the rename
is detected in the case where the file is unmodified on the unrenamed
side.
Use this information to compute whether we need rename detection for
each source created in add_pair().
It's probably worth noting that there used to be a few other edge or
corner cases besides three-way content merges and directory rename
detection where lack of rename detection could have affected the result,
but those cases actually highlighted where conflict resolution methods
were not consistent with each other. Fixing those inconsistencies were
thus critically important to enabling this optimization. That work
involved the following:
* bringing consistency to add/add, rename/add, and rename/rename
conflict types, as done back in the topic merged at commit
ac193e0e0a ("Merge branch 'en/merge-path-collision'", 2019-01-04),
and further extended in commits 2a7c16c980 ("t6422, t6426: be more
flexible for add/add conflicts involving renames", 2020-08-10) and
e8eb99d4a6 ("t642[23]: be more flexible for add/add conflicts
involving pair renames", 2020-08-10)
* making rename/delete more consistent with modify/delete
as done in commits 1f3c9ba707 ("t6425: be more flexible with
rename/delete conflict messages", 2020-08-10) and 727c75b23f
("t6404, t6423: expect improved rename/delete handling in ort
backend", 2020-10-26)
Since the set of relevant_sources we compute has not yet been narrowed
down for directory rename detection, we do not pass it to
diffcore_rename_extended() yet. That will be done after subsequent
commits narrow down the list of relevant_sources needed for directory
rename detection reasons.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Add the ability to diffcore_rename_extended() to allow external callers
to declare that they only need renames detected for a subset of source
files, and use that information to skip detecting renames for them.
There are two important pieces to this optimization that may not be
obvious at first glance:
* We do not require callers to just filter the filepairs out
to remove the non-relevant sources, because exact rename detection
is fast and when it finds a match it can remove both a source and a
destination whereas the relevant_sources filter can only remove a
source.
* We need to filter out the source pairs in a preliminary pass instead
of adding a
strset_contains(relevant_sources, one->path)
check within the nested matrix loop. The reason for that is if we
have 30k renames, doing 30k * 30k = 900M strset_contains() calls
becomes extraordinarily expensive and defeats the performance gains
from this change; we only want to do 30k such calls instead.
If callers pass NULL for relevant_sources, that is special cases to
treat all sources as relevant. Since all callers currently pass NULL,
this optimization does not yet have any effect. Subsequent commits will
have merge-ort compute a set of relevant_sources to restrict which
sources we detect renames for, and have merge-ort pass that set of
relevant_sources to diffcore_rename_extended().
A note about filtering order:
Some may be curious why we don't filter out irrelevant sources at the
same time we filter out exact renames. While that technically could be
done at this point, there are two reasons to defer it:
First, was to reinforce a lesson that was too easy to forget. As I
mentioned above, in the past I filtered irrelevant sources out before
exact rename checking, and then discovered that exact renames' ability
to remove both sources and destinations was an important consideration
and thus doing the filtering after exact rename checking would speed
things up. Then at some point I realized that basename matching could
also remove both sources and destinations, and decided to put irrelevant
source filtering after basename filtering. That slowed things down a
lot. But, despite learning about this important ordering, in later
restructuring I forgot and made the same mistake of putting the
filtering after basename guided rename detection again. So, I have this
series of patches structured to do the irrelevant filtering last to
start to show how much extra it costs, and then add relevant filtering
in to find_basename_matches() to show how much it speeds things up.
Basically, it's a way to reinforce something that apparently was too
easy to forget, and make sure the commit messages record this lesson.
Second, the items in the "relevant_sources" in this patch series will
include all sources that *might be* relevant. It has to be conservative
and catch anything that might need a rename, but in the patch series
after this one we'll find ways to weed out more of the *might be*
relevant ones. Unfortunately, merge-ort does not have sufficient
information to weed those ones out, and there isn't enough information
at the time of filtering exact renames out to remove the extra ones
either. It has to be deferred. So the deferral is in part to simplify
some later additions.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
dir_rename_counts has a mapping of a mapping, in particular, it has
old_dir => { new_dir => count }
We want a simple mapping of
old_dir => new_dir
based on which new_dir had the highest count for a given old_dir.
Compute this and store it in dir_rename_guess.
This is the final piece of the puzzle needed to make our guesses at
which directory files have been moved to when basenames aren't unique.
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 12.775 s ± 0.062 s 12.596 s ± 0.061 s
mega-renames: 188.754 s ± 0.284 s 130.465 s ± 0.259 s
just-one-mega: 5.599 s ± 0.019 s 3.958 s ± 0.010 s
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
We are using dir_rename_counts to count the number of other directories
that files within a directory moved to. We only need this information
for directories that disappeared, though, so we can return early from
update_dir_rename_counts() for other paths.
If dirs_removed is passed to diffcore_rename_extended(), then it
provides the relevant bits of information for us to limit this counting
to relevant dirs. If dirs_removed is not passed, we would need to
compute some replacement in order to do this limiting. Introduce a new
info->relevant_source_dirs variable for this purpose, even though at
this stage we will only set it to dirs_removed for simplicity.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Compute dir_rename_counts based just on exact renames to start, as that
can provide us useful information in find_basename_matches(). This is
done by moving the code from compute_dir_rename_counts() into
initialize_dir_rename_info(), resulting in it being computed earlier and
based just on exact renames. Since that's an incomplete result, we
augment the counts via calling update_dir_rename_counts() after each
basename-guide and inexact rename detection match is found.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
When diffcore_rename_extended() is passed a NULL dir_rename_count, we
will still want to create a temporary one for use by
find_basename_matches(), but have it fully deallocated before
diffcore_rename_extended() returns. However, when
diffcore_rename_extended() is passed a dir_rename_count, we want to fill
that strmap with appropriate values and return it. However, for our
interim purposes we may also add entries corresponding to directories
that cannot have been renamed due to still existing on both sides.
Extend cleanup_dir_rename_info() to handle these two different cases,
cleaning up the relevant bits of information for each case.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
This continues the migration of the directory rename detection code into
diffcore-rename, now taking the simple step of combining it with the
dir_rename_info struct. Future commits will then make dir_rename_counts
be computed in stages, and add computation of dir_rename_guess.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
As we adjust the usage of dir_rename_count we want to have a function
for clearing, or partially clearing it out. Add a
partial_clear_dir_rename_count() function for this purpose.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Move the computation of dir_rename_count from merge-ort.c to
diffcore-rename.c, making slight adjustments to the data structures
based on the move. While the diffstat looks large, viewing this commit
with --color-moved makes it clear that only about 20 lines changed.
With this patch, the computation of dir_rename_count is still only done
after inexact rename detection, but subsequent commits will add a
preliminary computation of dir_rename_count after exact rename
detection, followed by some updates after inexact rename detection.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Compute a mapping of full filename to the index within rename_dst where
that filename is found, and store it in idx_map. idx_possible_rename()
needs this to quickly finding an array entry in rename_dst given the
pathname.
While at it, add placeholder initializations for dir_rename_count and
dir_rename_guess; these will be more fully populated in subsequent
commits.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Add a new struct dir_rename_info with various values we need inside our
idx_possible_rename() function introduced in the previous commit. Add a
basic implementation for this function showing how we plan to use the
variables, but which will just return early with a value of -1 (not
found) when those variables are not set up.
Future commits will do the work necessary to set up those other
variables so that idx_possible_rename() does not always return -1.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
A previous commit noted that it is very common for people to move files
across directories while keeping their filename the same. The last few
commits took advantage of this and showed that we can accelerate rename
detection significantly using basenames; since files with the same
basename serve as likely rename candidates, we can check those first and
remove them from the rename candidate pool if they are sufficiently
similar.
Unfortunately, the previous optimization was limited by the fact that
the remaining basenames after exact rename detection are not always
unique. Many repositories have hundreds of build files with the same
name (e.g. Makefile, .gitignore, build.gradle, etc.), and may even have
hundreds of source files with the same name. (For example, the linux
kernel has 100 setup.c, 87 irq.c, and 112 core.c files. A repository at
$DAYJOB has a lot of ObjectFactory.java and Plugin.java files).
For these files with non-unique basenames, we are faced with the task of
attempting to determine or guess which directory they may have been
relocated to. Such a task is precisely the job of directory rename
detection. However, there are two catches: (1) the directory rename
detection code has traditionally been part of the merge machinery rather
than diffcore-rename.c, and (2) directory rename detection currently
runs after regular rename detection is complete. The 1st catch is just
an implementation issue that can be overcome by some code shuffling.
The 2nd requires us to add a further approximation: we only have access
to exact renames at this point, so we need to do directory rename
detection based on just exact renames. In some cases we won't have
exact renames, in which case this extra optimization won't apply. We
also choose to not apply the optimization unless we know that the
underlying directory was removed, which will require extra data to be
passed in to diffcore_rename_extended(). Also, even if we get a
prediction about which directory a file may have relocated to, we will
still need to check to see if there is a file in the predicted
directory, and then compare the two files to see if they meet the higher
min_basename_score threshold required for marking the two files as
renames.
This commit introduces an idx_possible_rename() function which will
do this directory rename detection for us and give us the index within
rename_dst of the resulting filename. For now, this function is
hardcoded to return -1 (not found) and just hooks up how its results
would be used once we have a more complete implementation in place.
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
We want to pass additional information to diffcore_rename() (or some
variant thereof) without plumbing that extra information through
diff_tree_oid() and diffcore_std(). Further, since we will need to
gather additional special information related to diffs and are walking
the trees anyway in collect_merge_info(), it seems odd to have
diff_tree_oid()/diffcore_std() repeat those tree walks. And there may
be times where we can avoid traversing into a subtree in
collect_merge_info() (based on additional information at our disposal),
that the basic diff logic would be unable to take advantage of. For all
these reasons, just create the add and delete pairs ourself and then
call diffcore_rename() directly.
This change is primarily about enabling future optimizations; the
advantage of avoiding extra tree traversals is small compared to the
cost of rename detection, and the advantage of avoiding the extra tree
traversals is somewhat offset by the extra time spent in
collect_merge_info() collecting the additional data anyway. However...
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 13.294 s ± 0.103 s 12.775 s ± 0.062 s
mega-renames: 187.248 s ± 0.882 s 188.754 s ± 0.284 s
just-one-mega: 5.557 s ± 0.017 s 5.599 s ± 0.019 s
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
The last few patches have introduced a new preliminary step when rename
detection is on but both break detection and copy detection are off.
Document this new step. While we're at it, add a testcase that checks
the new behavior as well.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Make use of the new find_basename_matches() function added in the last
two patches, to find renames more rapidly in cases where we can match up
files based on basenames. As a quick reminder (see the last two commit
messages for more details), this means for example that
docs/extensions.txt and docs/config/extensions.txt are considered likely
renames if there are no remaining 'extensions.txt' files elsewhere among
the added and deleted files, and if a similarity check confirms they are
similar, then they are marked as a rename without looking for a better
similarity match among other files. This is a behavioral change, as
covered in more detail in the previous commit message.
We do not use this heuristic together with either break or copy
detection. The point of break detection is to say that filename
similarity does not imply file content similarity, and we only want to
know about file content similarity. The point of copy detection is to
use more resources to check for additional similarities, while this is
an optimization that uses far less resources but which might also result
in finding slightly fewer similarities. So the idea behind this
optimization goes against both of those features, and will be turned off
for both.
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 13.815 s ± 0.062 s 13.294 s ± 0.103 s
mega-renames: 1799.937 s ± 0.493 s 187.248 s ± 0.882 s
just-one-mega: 51.289 s ± 0.019 s 5.557 s ± 0.017 s
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
It is not uncommon in real world repositories for the majority of file
renames to not change the basename of the file; i.e. most "renames" are
just a move of files into different directories. We can make use of
this to avoid comparing all rename source candidates with all rename
destination candidates, by first comparing sources to destinations with
the same basenames. If two files with the same basename are
sufficiently similar, we record the rename; if not, we include those
files in the more exhaustive matrix comparison.
This means we are adding a set of preliminary additional comparisons,
but for each file we only compare it with at most one other file. For
example, if there was a include/media/device.h that was deleted and a
src/module/media/device.h that was added, and there are no other
device.h files in the remaining sets of added and deleted files after
exact rename detection, then these two files would be compared in the
preliminary step.
This commit does not yet actually employ this new optimization, it
merely adds a function which can be used for this purpose. The next
commit will do the necessary plumbing to make use of it.
Note that this optimization might give us different results than without
the optimization, because it's possible that despite files with the same
basename being sufficiently similar to be considered a rename, there's
an even better match between files without the same basename. I think
that is okay for four reasons: (1) it's easy to explain to the users
what happened if it does ever occur (or even for them to intuitively
figure out), (2) as the next patch will show it provides such a large
performance boost that it's worth the tradeoff, and (3) it's somewhat
unlikely that despite having unique matching basenames that other files
serve as better matches. Reason (4) takes a full paragraph to
explain...
If the previous three reasons aren't enough, consider what rename
detection already does. Break detection is not the default, meaning
that if files have the same _fullname_, then they are considered related
even if they are 0% similar. In fact, in such a case, we don't even
bother comparing the files to see if they are similar let alone
comparing them to all other files to see what they are most similar to.
Basically, we override content similarity based on sufficient filename
similarity. Without the filename similarity (currently implemented as
an exact match of filename), we swing the pendulum the opposite
direction and say that filename similarity is irrelevant and compare a
full N x M matrix of sources and destinations to find out which have the
most similar contents. This optimization just adds another form of
filename similarity comparison, but augments it with a file content
similarity check as well. Basically, if two files have the same
basename and are sufficiently similar to be considered a rename, mark
them as such without comparing the two to all other rename candidates.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
We want to make use of unique basenames among remaining source and
destination files to help inform rename detection, so that more likely
pairings can be checked first. (src/moduleA/foo.txt and
source/module/A/foo.txt are likely related if there are no other
'foo.txt' files among the remaining deleted and added files.) Add a new
function, not yet used, which creates a map of the unique basenames
within rename_src and another within rename_dst, together with the
indices within rename_src/rename_dst where those basenames show up.
Non-unique basenames still show up in the map, but have an invalid index
(-1).
This function was inspired by the fact that in real world repositories,
files are often moved across directories without changing names. Here
are some sample repositories and the percentage of their historical
renames (as of early 2020) that preserved basenames:
* linux: 76%
* gcc: 64%
* gecko: 79%
* webkit: 89%
These statistics alone don't prove that an optimization in this area
will help or how much it will help, since there are also unpaired adds
and deletes, restrictions on which basenames we consider, etc., but it
certainly motivated the idea to try something in this area.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
Add a simple test where a removed file is similar to two different added
files; one of them has the same basename, and the other has a slightly
higher content similarity. In the current test, content similarity is
weighted higher than filename similarity.
Subsequent commits will add a new rule that weighs a mixture of filename
similarity and content similarity in a manner that will change the
outcome of this testcase.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
We have to look at each entry in rename_src a total of rename_dst_nr
times. When we're not detecting copies, any exact renames or ignorable
rename paths will just be skipped over. While checking that these can
be skipped over is a relatively cheap check, it's still a waste of time
to do that check more than once, let alone rename_dst_nr times. When
rename_src_nr is a few thousand times bigger than the number of relevant
sources (such as when cherry-picking a commit that only touched a
handful of files, but from a side of history that has different names
for some high level directories), this time can add up.
First make an initial pass over the rename_src array and move all the
relevant entries to the front, so that we can iterate over just those
relevant entries.
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 14.119 s ± 0.101 s 13.815 s ± 0.062 s
mega-renames: 1802.044 s ± 0.828 s 1799.937 s ± 0.493 s
just-one-mega: 51.391 s ± 0.028 s 51.289 s ± 0.019 s
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
diffcore_rename() had some code to avoid having destination paths that
already had an exact rename detected from being re-checked for other
renames. Source paths, however, were re-checked because we wanted to
allow the possibility of detecting copies. But if copy detection isn't
turned on, then this merely amounts to attempting to find a
better-than-exact match, which naturally ends up being an expensive
no-op. In particular, copy detection is never turned on by the merge
machinery.
For the testcases mentioned in commit 557ac0350d ("merge-ort: begin
performance work; instrument with trace2_region_* calls", 2020-10-28),
this change improves the performance as follows:
Before After
no-renames: 14.263 s ± 0.053 s 14.119 s ± 0.101 s
mega-renames: 5504.231 s ± 5.150 s 1802.044 s ± 0.828 s
just-one-mega: 158.534 s ± 0.498 s 51.391 s ± 0.028 s
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
|
|
|
|
The "ort" merge strategy.
* en/merge-ort-perf:
merge-ort: begin performance work; instrument with trace2_region_* calls
merge-ort: ignore the directory rename split conflict for now
merge-ort: fix massive leak
|
|
ORT merge strategy learns to infer "renamed directory" while
merging.
* en/ort-directory-rename:
merge-ort: fix a directory rename detection bug
merge-ort: process_renames() now needs more defensiveness
merge-ort: implement apply_directory_rename_modifications()
merge-ort: add a new toplevel_dir field
merge-ort: implement handle_path_level_conflicts()
merge-ort: implement check_for_directory_rename()
merge-ort: implement apply_dir_rename() and check_dir_renamed()
merge-ort: implement compute_collisions()
merge-ort: modify collect_renames() for directory rename handling
merge-ort: implement handle_directory_level_conflicts()
merge-ort: implement compute_rename_counts()
merge-ort: copy get_renamed_dir_portion() from merge-recursive.c
merge-ort: add outline of get_provisional_directory_renames()
merge-ort: add outline for computing directory renames
merge-ort: collect which directories are removed in dirs_removed
merge-ort: initialize and free new directory rename data structures
merge-ort: add new data structures for directory rename detection
|
|
* tb/ci-run-cocci-with-18.04:
.github/workflows/main.yml: run static-analysis on bionic
|
|
The version of Ubuntu Linux used by default at GitHub Actions CI
has been updated to one that lack coccinelle; until it gets fixed,
work it around by sticking to the previous release (18.04).
* tb/ci-run-cocci-with-18.04:
.github/workflows/main.yml: run static-analysis on bionic
|