summaryrefslogtreecommitdiff
path: root/epoch.c
diff options
context:
space:
mode:
Diffstat (limited to 'epoch.c')
-rw-r--r--epoch.c639
1 files changed, 639 insertions, 0 deletions
diff --git a/epoch.c b/epoch.c
new file mode 100644
index 0000000000..db44f5ca9f
--- /dev/null
+++ b/epoch.c
@@ -0,0 +1,639 @@
+/*
+ * Copyright (c) 2005, Jon Seymour
+ *
+ * For more information about epoch theory on which this module is based,
+ * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
+ * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
+ * for some of the algorithms used here.
+ *
+ */
+#include <stdlib.h>
+
+/* Provides arbitrary precision integers required to accurately represent
+ * fractional mass: */
+#include <openssl/bn.h>
+
+#include "cache.h"
+#include "commit.h"
+#include "epoch.h"
+
+struct fraction {
+ BIGNUM numerator;
+ BIGNUM denominator;
+};
+
+#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
+
+static BN_CTX *context = NULL;
+static struct fraction *one = NULL;
+static struct fraction *zero = NULL;
+
+static BN_CTX *get_BN_CTX(void)
+{
+ if (!context) {
+ context = BN_CTX_new();
+ }
+ return context;
+}
+
+static struct fraction *new_zero(void)
+{
+ struct fraction *result = xmalloc(sizeof(*result));
+ BN_init(&result->numerator);
+ BN_init(&result->denominator);
+ BN_zero(&result->numerator);
+ BN_one(&result->denominator);
+ return result;
+}
+
+static void clear_fraction(struct fraction *fraction)
+{
+ BN_clear(&fraction->numerator);
+ BN_clear(&fraction->denominator);
+}
+
+static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor)
+{
+ BIGNUM bn_divisor;
+
+ BN_init(&bn_divisor);
+ BN_set_word(&bn_divisor, divisor);
+
+ BN_copy(&result->numerator, &fraction->numerator);
+ BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX());
+
+ BN_clear(&bn_divisor);
+ return result;
+}
+
+static struct fraction *init_fraction(struct fraction *fraction)
+{
+ BN_init(&fraction->numerator);
+ BN_init(&fraction->denominator);
+ BN_zero(&fraction->numerator);
+ BN_one(&fraction->denominator);
+ return fraction;
+}
+
+static struct fraction *get_one(void)
+{
+ if (!one) {
+ one = new_zero();
+ BN_one(&one->numerator);
+ }
+ return one;
+}
+
+static struct fraction *get_zero(void)
+{
+ if (!zero) {
+ zero = new_zero();
+ }
+ return zero;
+}
+
+static struct fraction *copy(struct fraction *to, struct fraction *from)
+{
+ BN_copy(&to->numerator, &from->numerator);
+ BN_copy(&to->denominator, &from->denominator);
+ return to;
+}
+
+static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right)
+{
+ BIGNUM a, b, gcd;
+
+ BN_init(&a);
+ BN_init(&b);
+ BN_init(&gcd);
+
+ BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
+ BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
+ BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX());
+ BN_add(&result->numerator, &a, &b);
+
+ BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX());
+ BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX());
+ BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX());
+
+ BN_clear(&a);
+ BN_clear(&b);
+ BN_clear(&gcd);
+
+ return result;
+}
+
+static int compare(struct fraction *left, struct fraction *right)
+{
+ BIGNUM a, b;
+ int result;
+
+ BN_init(&a);
+ BN_init(&b);
+
+ BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
+ BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
+
+ result = BN_cmp(&a, &b);
+
+ BN_clear(&a);
+ BN_clear(&b);
+
+ return result;
+}
+
+struct mass_counter {
+ struct fraction seen;
+ struct fraction pending;
+};
+
+static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending)
+{
+ struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter));
+ memset(mass_counter, 0, sizeof(*mass_counter));
+
+ init_fraction(&mass_counter->seen);
+ init_fraction(&mass_counter->pending);
+
+ copy(&mass_counter->pending, pending);
+ copy(&mass_counter->seen, get_zero());
+
+ if (commit->object.util) {
+ die("multiple attempts to initialize mass counter for %s",
+ sha1_to_hex(commit->object.sha1));
+ }
+
+ commit->object.util = mass_counter;
+
+ return mass_counter;
+}
+
+static void free_mass_counter(struct mass_counter *counter)
+{
+ clear_fraction(&counter->seen);
+ clear_fraction(&counter->pending);
+ free(counter);
+}
+
+/*
+ * Finds the base commit of a list of commits.
+ *
+ * One property of the commit being searched for is that every commit reachable
+ * from the base commit is reachable from the commits in the starting list only
+ * via paths that include the base commit.
+ *
+ * This algorithm uses a conservation of mass approach to find the base commit.
+ *
+ * We start by injecting one unit of mass into the graph at each
+ * of the commits in the starting list. Injecting mass into a commit
+ * is achieved by adding to its pending mass counter and, if it is not already
+ * enqueued, enqueuing the commit in a list of pending commits, in latest
+ * commit date first order.
+ *
+ * The algorithm then preceeds to visit each commit in the pending queue.
+ * Upon each visit, the pending mass is added to the mass already seen for that
+ * commit and then divided into N equal portions, where N is the number of
+ * parents of the commit being visited. The divided portions are then injected
+ * into each of the parents.
+ *
+ * The algorithm continues until we discover a commit which has seen all the
+ * mass originally injected or until we run out of things to do.
+ *
+ * If we find a commit that has seen all the original mass, we have found
+ * the common base of all the commits in the starting list.
+ *
+ * The algorithm does _not_ depend on accurate timestamps for correct operation.
+ * However, reasonably sane (e.g. non-random) timestamps are required in order
+ * to prevent an exponential performance characteristic. The occasional
+ * timestamp inaccuracy will not dramatically affect performance but may
+ * result in more nodes being processed than strictly necessary.
+ *
+ * This procedure sets *boundary to the address of the base commit. It returns
+ * non-zero if, and only if, there was a problem parsing one of the
+ * commits discovered during the traversal.
+ */
+static int find_base_for_list(struct commit_list *list, struct commit **boundary)
+{
+ int ret = 0;
+ struct commit_list *cleaner = NULL;
+ struct commit_list *pending = NULL;
+ struct fraction injected;
+ init_fraction(&injected);
+ *boundary = NULL;
+
+ for (; list; list = list->next) {
+ struct commit *item = list->item;
+
+ if (!item->object.util) {
+ new_mass_counter(list->item, get_one());
+ add(&injected, &injected, get_one());
+
+ commit_list_insert(list->item, &cleaner);
+ commit_list_insert(list->item, &pending);
+ }
+ }
+
+ while (!*boundary && pending && !ret) {
+ struct commit *latest = pop_commit(&pending);
+ struct mass_counter *latest_node = (struct mass_counter *) latest->object.util;
+ int num_parents;
+
+ if ((ret = parse_commit(latest)))
+ continue;
+ add(&latest_node->seen, &latest_node->seen, &latest_node->pending);
+
+ num_parents = count_parents(latest);
+ if (num_parents) {
+ struct fraction distribution;
+ struct commit_list *parents;
+
+ divide(init_fraction(&distribution), &latest_node->pending, num_parents);
+
+ for (parents = latest->parents; parents; parents = parents->next) {
+ struct commit *parent = parents->item;
+ struct mass_counter *parent_node = (struct mass_counter *) parent->object.util;
+
+ if (!parent_node) {
+ parent_node = new_mass_counter(parent, &distribution);
+ insert_by_date(parent, &pending);
+ commit_list_insert(parent, &cleaner);
+ } else {
+ if (!compare(&parent_node->pending, get_zero()))
+ insert_by_date(parent, &pending);
+ add(&parent_node->pending, &parent_node->pending, &distribution);
+ }
+ }
+
+ clear_fraction(&distribution);
+ }
+
+ if (!compare(&latest_node->seen, &injected))
+ *boundary = latest;
+ copy(&latest_node->pending, get_zero());
+ }
+
+ while (cleaner) {
+ struct commit *next = pop_commit(&cleaner);
+ free_mass_counter((struct mass_counter *) next->object.util);
+ next->object.util = NULL;
+ }
+
+ if (pending)
+ free_commit_list(pending);
+
+ clear_fraction(&injected);
+ return ret;
+}
+
+
+/*
+ * Finds the base of an minimal, non-linear epoch, headed at head, by
+ * applying the find_base_for_list to a list consisting of the parents
+ */
+static int find_base(struct commit *head, struct commit **boundary)
+{
+ int ret = 0;
+ struct commit_list *pending = NULL;
+ struct commit_list *next;
+
+ for (next = head->parents; next; next = next->next) {
+ commit_list_insert(next->item, &pending);
+ }
+ ret = find_base_for_list(pending, boundary);
+ free_commit_list(pending);
+
+ return ret;
+}
+
+/*
+ * This procedure traverses to the boundary of the first epoch in the epoch
+ * sequence of the epoch headed at head_of_epoch. This is either the end of
+ * the maximal linear epoch or the base of a minimal non-linear epoch.
+ *
+ * The queue of pending nodes is sorted in reverse date order and each node
+ * is currently in the queue at most once.
+ */
+static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary)
+{
+ int ret;
+ struct commit *item = head_of_epoch;
+
+ ret = parse_commit(item);
+ if (ret)
+ return ret;
+
+ if (HAS_EXACTLY_ONE_PARENT(item)) {
+ /*
+ * We are at the start of a maximimal linear epoch.
+ * Traverse to the end.
+ */
+ while (HAS_EXACTLY_ONE_PARENT(item) && !ret) {
+ item = item->parents->item;
+ ret = parse_commit(item);
+ }
+ *boundary = item;
+
+ } else {
+ /*
+ * Otherwise, we are at the start of a minimal, non-linear
+ * epoch - find the common base of all parents.
+ */
+ ret = find_base(item, boundary);
+ }
+
+ return ret;
+}
+
+/*
+ * Returns non-zero if parent is known to be a parent of child.
+ */
+static int is_parent_of(struct commit *parent, struct commit *child)
+{
+ struct commit_list *parents;
+ for (parents = child->parents; parents; parents = parents->next) {
+ if (!memcmp(parent->object.sha1, parents->item->object.sha1,
+ sizeof(parents->item->object.sha1)))
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Pushes an item onto the merge order stack. If the top of the stack is
+ * marked as being a possible "break", we check to see whether it actually
+ * is a break.
+ */
+static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item)
+{
+ struct commit_list *top = *stack;
+ if (top && (top->item->object.flags & DISCONTINUITY)) {
+ if (is_parent_of(top->item, item)) {
+ top->item->object.flags &= ~DISCONTINUITY;
+ }
+ }
+ commit_list_insert(item, stack);
+}
+
+/*
+ * Marks all interesting, visited commits reachable from this commit
+ * as uninteresting. We stop recursing when we reach the epoch boundary,
+ * an unvisited node or a node that has already been marking uninteresting.
+ *
+ * This doesn't actually mark all ancestors between the start node and the
+ * epoch boundary uninteresting, but does ensure that they will eventually
+ * be marked uninteresting when the main sort_first_epoch() traversal
+ * eventually reaches them.
+ */
+static void mark_ancestors_uninteresting(struct commit *commit)
+{
+ unsigned int flags = commit->object.flags;
+ int visited = flags & VISITED;
+ int boundary = flags & BOUNDARY;
+ int uninteresting = flags & UNINTERESTING;
+ struct commit_list *next;
+
+ commit->object.flags |= UNINTERESTING;
+
+ /*
+ * We only need to recurse if
+ * we are not on the boundary and
+ * we have not already been marked uninteresting and
+ * we have already been visited.
+ *
+ * The main sort_first_epoch traverse will mark unreachable
+ * all uninteresting, unvisited parents as they are visited
+ * so there is no need to duplicate that traversal here.
+ *
+ * Similarly, if we are already marked uninteresting
+ * then either all ancestors have already been marked
+ * uninteresting or will be once the sort_first_epoch
+ * traverse reaches them.
+ */
+
+ if (uninteresting || boundary || !visited)
+ return;
+
+ for (next = commit->parents; next; next = next->next)
+ mark_ancestors_uninteresting(next->item);
+}
+
+/*
+ * Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
+ * into merge order.
+ */
+static void sort_first_epoch(struct commit *head, struct commit_list **stack)
+{
+ struct commit_list *parents;
+
+ head->object.flags |= VISITED;
+
+ /*
+ * TODO: By sorting the parents in a different order, we can alter the
+ * merge order to show contemporaneous changes in parallel branches
+ * occurring after "local" changes. This is useful for a developer
+ * when a developer wants to see all changes that were incorporated
+ * into the same merge as her own changes occur after her own
+ * changes.
+ */
+
+ for (parents = head->parents; parents; parents = parents->next) {
+ struct commit *parent = parents->item;
+
+ if (head->object.flags & UNINTERESTING) {
+ /*
+ * Propagates the uninteresting bit to all parents.
+ * if we have already visited this parent, then
+ * the uninteresting bit will be propagated to each
+ * reachable commit that is still not marked
+ * uninteresting and won't otherwise be reached.
+ */
+ mark_ancestors_uninteresting(parent);
+ }
+
+ if (!(parent->object.flags & VISITED)) {
+ if (parent->object.flags & BOUNDARY) {
+ if (*stack) {
+ die("something else is on the stack - %s",
+ sha1_to_hex((*stack)->item->object.sha1));
+ }
+ push_onto_merge_order_stack(stack, parent);
+ parent->object.flags |= VISITED;
+
+ } else {
+ sort_first_epoch(parent, stack);
+ if (parents) {
+ /*
+ * This indicates a possible
+ * discontinuity it may not be be
+ * actual discontinuity if the head
+ * of parent N happens to be the tail
+ * of parent N+1.
+ *
+ * The next push onto the stack will
+ * resolve the question.
+ */
+ (*stack)->item->object.flags |= DISCONTINUITY;
+ }
+ }
+ }
+ }
+
+ push_onto_merge_order_stack(stack, head);
+}
+
+/*
+ * Emit the contents of the stack.
+ *
+ * The stack is freed and replaced by NULL.
+ *
+ * Sets the return value to STOP if no further output should be generated.
+ */
+static int emit_stack(struct commit_list **stack, emitter_func emitter, int include_last)
+{
+ unsigned int seen = 0;
+ int action = CONTINUE;
+
+ while (*stack && (action != STOP)) {
+ struct commit *next = pop_commit(stack);
+ seen |= next->object.flags;
+ if (*stack || include_last) {
+ if (!*stack)
+ next->object.flags |= BOUNDARY;
+ action = emitter(next);
+ }
+ }
+
+ if (*stack) {
+ free_commit_list(*stack);
+ *stack = NULL;
+ }
+
+ return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE;
+}
+
+/*
+ * Sorts an arbitrary epoch into merge order by sorting each epoch
+ * of its epoch sequence into order.
+ *
+ * Note: this algorithm currently leaves traces of its execution in the
+ * object flags of nodes it discovers. This should probably be fixed.
+ */
+static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter)
+{
+ struct commit *next = head_of_epoch;
+ int ret = 0;
+ int action = CONTINUE;
+
+ ret = parse_commit(head_of_epoch);
+
+ next->object.flags |= BOUNDARY;
+
+ while (next && next->parents && !ret && (action != STOP)) {
+ struct commit *base = NULL;
+
+ ret = find_next_epoch_boundary(next, &base);
+ if (ret)
+ return ret;
+ next->object.flags |= BOUNDARY;
+ if (base)
+ base->object.flags |= BOUNDARY;
+
+ if (HAS_EXACTLY_ONE_PARENT(next)) {
+ while (HAS_EXACTLY_ONE_PARENT(next)
+ && (action != STOP)
+ && !ret) {
+ if (next->object.flags & UNINTERESTING) {
+ action = STOP;
+ } else {
+ action = emitter(next);
+ }
+ if (action != STOP) {
+ next = next->parents->item;
+ ret = parse_commit(next);
+ }
+ }
+
+ } else {
+ struct commit_list *stack = NULL;
+ sort_first_epoch(next, &stack);
+ action = emit_stack(&stack, emitter, (base == NULL));
+ next = base;
+ }
+ }
+
+ if (next && (action != STOP) && !ret) {
+ emitter(next);
+ }
+
+ return ret;
+}
+
+/*
+ * Sorts the nodes reachable from a starting list in merge order, we
+ * first find the base for the starting list and then sort all nodes
+ * in this subgraph using the sort_first_epoch algorithm. Once we have
+ * reached the base we can continue sorting using sort_in_merge_order.
+ */
+int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter)
+{
+ struct commit_list *stack = NULL;
+ struct commit *base;
+ int ret = 0;
+ int action = CONTINUE;
+ struct commit_list *reversed = NULL;
+
+ for (; list; list = list->next)
+ commit_list_insert(list->item, &reversed);
+
+ if (!reversed)
+ return ret;
+ else if (!reversed->next) {
+ /*
+ * If there is only one element in the list, we can sort it
+ * using sort_in_merge_order.
+ */
+ base = reversed->item;
+ } else {
+ /*
+ * Otherwise, we search for the base of the list.
+ */
+ ret = find_base_for_list(reversed, &base);
+ if (ret)
+ return ret;
+ if (base)
+ base->object.flags |= BOUNDARY;
+
+ while (reversed) {
+ struct commit * next = pop_commit(&reversed);
+
+ if (!(next->object.flags & VISITED) && next!=base) {
+ sort_first_epoch(next, &stack);
+ if (reversed) {
+ /*
+ * If we have more commits
+ * to push, then the first
+ * push for the next parent may
+ * (or may * not) represent a
+ * discontinuity with respect
+ * to the parent currently on
+ * the top of the stack.
+ *
+ * Mark it for checking here,
+ * and check it with the next
+ * push. See sort_first_epoch()
+ * for more details.
+ */
+ stack->item->object.flags |= DISCONTINUITY;
+ }
+ }
+ }
+
+ action = emit_stack(&stack, emitter, (base==NULL));
+ }
+
+ if (base && (action != STOP)) {
+ ret = sort_in_merge_order(base, emitter);
+ }
+
+ return ret;
+}