diff options
Diffstat (limited to 'compat/win32/pthread.c')
-rw-r--r-- | compat/win32/pthread.c | 196 |
1 files changed, 196 insertions, 0 deletions
diff --git a/compat/win32/pthread.c b/compat/win32/pthread.c new file mode 100644 index 0000000000..010e875ec4 --- /dev/null +++ b/compat/win32/pthread.c @@ -0,0 +1,196 @@ +/* + * Copyright (C) 2009 Andrzej K. Haczewski <ahaczewski@gmail.com> + * + * DISCLAIMER: The implementation is Git-specific, it is subset of original + * Pthreads API, without lots of other features that Git doesn't use. + * Git also makes sure that the passed arguments are valid, so there's + * no need for double-checking. + */ + +#include "../../git-compat-util.h" +#include "pthread.h" + +#include <errno.h> +#include <limits.h> + +static unsigned __stdcall win32_start_routine(void *arg) +{ + pthread_t *thread = arg; + thread->tid = GetCurrentThreadId(); + thread->arg = thread->start_routine(thread->arg); + return 0; +} + +int pthread_create(pthread_t *thread, const void *unused, + void *(*start_routine)(void*), void *arg) +{ + thread->arg = arg; + thread->start_routine = start_routine; + thread->handle = (HANDLE) + _beginthreadex(NULL, 0, win32_start_routine, thread, 0, NULL); + + if (!thread->handle) + return errno; + else + return 0; +} + +int win32_pthread_join(pthread_t *thread, void **value_ptr) +{ + DWORD result = WaitForSingleObject(thread->handle, INFINITE); + switch (result) { + case WAIT_OBJECT_0: + if (value_ptr) + *value_ptr = thread->arg; + return 0; + case WAIT_ABANDONED: + return EINVAL; + default: + return err_win_to_posix(GetLastError()); + } +} + +pthread_t pthread_self(void) +{ + pthread_t t = { 0 }; + t.tid = GetCurrentThreadId(); + return t; +} + +int pthread_cond_init(pthread_cond_t *cond, const void *unused) +{ + cond->waiters = 0; + cond->was_broadcast = 0; + InitializeCriticalSection(&cond->waiters_lock); + + cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL); + if (!cond->sema) + die("CreateSemaphore() failed"); + + cond->continue_broadcast = CreateEvent(NULL, /* security */ + FALSE, /* auto-reset */ + FALSE, /* not signaled */ + NULL); /* name */ + if (!cond->continue_broadcast) + die("CreateEvent() failed"); + + return 0; +} + +int pthread_cond_destroy(pthread_cond_t *cond) +{ + CloseHandle(cond->sema); + CloseHandle(cond->continue_broadcast); + DeleteCriticalSection(&cond->waiters_lock); + return 0; +} + +int pthread_cond_wait(pthread_cond_t *cond, CRITICAL_SECTION *mutex) +{ + int last_waiter; + + EnterCriticalSection(&cond->waiters_lock); + cond->waiters++; + LeaveCriticalSection(&cond->waiters_lock); + + /* + * Unlock external mutex and wait for signal. + * NOTE: we've held mutex locked long enough to increment + * waiters count above, so there's no problem with + * leaving mutex unlocked before we wait on semaphore. + */ + LeaveCriticalSection(mutex); + + /* let's wait - ignore return value */ + WaitForSingleObject(cond->sema, INFINITE); + + /* + * Decrease waiters count. If we are the last waiter, then we must + * notify the broadcasting thread that it can continue. + * But if we continued due to cond_signal, we do not have to do that + * because the signaling thread knows that only one waiter continued. + */ + EnterCriticalSection(&cond->waiters_lock); + cond->waiters--; + last_waiter = cond->was_broadcast && cond->waiters == 0; + LeaveCriticalSection(&cond->waiters_lock); + + if (last_waiter) { + /* + * cond_broadcast was issued while mutex was held. This means + * that all other waiters have continued, but are contending + * for the mutex at the end of this function because the + * broadcasting thread did not leave cond_broadcast, yet. + * (This is so that it can be sure that each waiter has + * consumed exactly one slice of the semaphor.) + * The last waiter must tell the broadcasting thread that it + * can go on. + */ + SetEvent(cond->continue_broadcast); + /* + * Now we go on to contend with all other waiters for + * the mutex. Auf in den Kampf! + */ + } + /* lock external mutex again */ + EnterCriticalSection(mutex); + + return 0; +} + +/* + * IMPORTANT: This implementation requires that pthread_cond_signal + * is called while the mutex is held that is used in the corresponding + * pthread_cond_wait calls! + */ +int pthread_cond_signal(pthread_cond_t *cond) +{ + int have_waiters; + + EnterCriticalSection(&cond->waiters_lock); + have_waiters = cond->waiters > 0; + LeaveCriticalSection(&cond->waiters_lock); + + /* + * Signal only when there are waiters + */ + if (have_waiters) + return ReleaseSemaphore(cond->sema, 1, NULL) ? + 0 : err_win_to_posix(GetLastError()); + else + return 0; +} + +/* + * DOUBLY IMPORTANT: This implementation requires that pthread_cond_broadcast + * is called while the mutex is held that is used in the corresponding + * pthread_cond_wait calls! + */ +int pthread_cond_broadcast(pthread_cond_t *cond) +{ + EnterCriticalSection(&cond->waiters_lock); + + if ((cond->was_broadcast = cond->waiters > 0)) { + /* wake up all waiters */ + ReleaseSemaphore(cond->sema, cond->waiters, NULL); + LeaveCriticalSection(&cond->waiters_lock); + /* + * At this point all waiters continue. Each one takes its + * slice of the semaphor. Now it's our turn to wait: Since + * the external mutex is held, no thread can leave cond_wait, + * yet. For this reason, we can be sure that no thread gets + * a chance to eat *more* than one slice. OTOH, it means + * that the last waiter must send us a wake-up. + */ + WaitForSingleObject(cond->continue_broadcast, INFINITE); + /* + * Since the external mutex is held, no thread can enter + * cond_wait, and, hence, it is safe to reset this flag + * without cond->waiters_lock held. + */ + cond->was_broadcast = 0; + } else { + LeaveCriticalSection(&cond->waiters_lock); + } + return 0; +} |