summaryrefslogtreecommitdiff
path: root/compat/regex/regex.c
diff options
context:
space:
mode:
Diffstat (limited to 'compat/regex/regex.c')
-rw-r--r--compat/regex/regex.c4924
1 files changed, 4924 insertions, 0 deletions
diff --git a/compat/regex/regex.c b/compat/regex/regex.c
new file mode 100644
index 0000000000..556d8ab11f
--- /dev/null
+++ b/compat/regex/regex.c
@@ -0,0 +1,4924 @@
+/* Extended regular expression matching and search library,
+ version 0.12.
+ (Implements POSIX draft P10003.2/D11.2, except for
+ internationalization features.)
+
+ Copyright (C) 1993 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* AIX requires this to be the first thing in the file. */
+#if defined (_AIX) && !defined (REGEX_MALLOC)
+ #pragma alloca
+#endif
+
+#define _GNU_SOURCE
+
+/* We need this for `regex.h', and perhaps for the Emacs include files. */
+#include <sys/types.h>
+
+/* We used to test for `BSTRING' here, but only GCC and Emacs define
+ `BSTRING', as far as I know, and neither of them use this code. */
+#include <string.h>
+#ifndef bcmp
+#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
+#endif
+#ifndef bcopy
+#define bcopy(s, d, n) memcpy ((d), (s), (n))
+#endif
+#ifndef bzero
+#define bzero(s, n) memset ((s), 0, (n))
+#endif
+
+#include <stdlib.h>
+
+
+/* Define the syntax stuff for \<, \>, etc. */
+
+/* This must be nonzero for the wordchar and notwordchar pattern
+ commands in re_match_2. */
+#ifndef Sword
+#define Sword 1
+#endif
+
+#ifdef SYNTAX_TABLE
+
+extern char *re_syntax_table;
+
+#else /* not SYNTAX_TABLE */
+
+/* How many characters in the character set. */
+#define CHAR_SET_SIZE 256
+
+static char re_syntax_table[CHAR_SET_SIZE];
+
+static void
+init_syntax_once ()
+{
+ register int c;
+ static int done = 0;
+
+ if (done)
+ return;
+
+ bzero (re_syntax_table, sizeof re_syntax_table);
+
+ for (c = 'a'; c <= 'z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = 'A'; c <= 'Z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = '0'; c <= '9'; c++)
+ re_syntax_table[c] = Sword;
+
+ re_syntax_table['_'] = Sword;
+
+ done = 1;
+}
+
+#endif /* not SYNTAX_TABLE */
+
+#define SYNTAX(c) re_syntax_table[c]
+
+
+/* Get the interface, including the syntax bits. */
+#include "regex.h"
+
+/* isalpha etc. are used for the character classes. */
+#include <ctype.h>
+
+#ifndef isascii
+#define isascii(c) 1
+#endif
+
+#ifdef isblank
+#define ISBLANK(c) (isascii (c) && isblank (c))
+#else
+#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+#endif
+#ifdef isgraph
+#define ISGRAPH(c) (isascii (c) && isgraph (c))
+#else
+#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
+#endif
+
+#define ISPRINT(c) (isascii (c) && isprint (c))
+#define ISDIGIT(c) (isascii (c) && isdigit (c))
+#define ISALNUM(c) (isascii (c) && isalnum (c))
+#define ISALPHA(c) (isascii (c) && isalpha (c))
+#define ISCNTRL(c) (isascii (c) && iscntrl (c))
+#define ISLOWER(c) (isascii (c) && islower (c))
+#define ISPUNCT(c) (isascii (c) && ispunct (c))
+#define ISSPACE(c) (isascii (c) && isspace (c))
+#define ISUPPER(c) (isascii (c) && isupper (c))
+#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
+
+#ifndef NULL
+#define NULL 0
+#endif
+
+/* We remove any previous definition of `SIGN_EXTEND_CHAR',
+ since ours (we hope) works properly with all combinations of
+ machines, compilers, `char' and `unsigned char' argument types.
+ (Per Bothner suggested the basic approach.) */
+#undef SIGN_EXTEND_CHAR
+#if __STDC__
+#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+#else /* not __STDC__ */
+/* As in Harbison and Steele. */
+#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
+#endif
+
+/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
+ use `alloca' instead of `malloc'. This is because using malloc in
+ re_search* or re_match* could cause memory leaks when C-g is used in
+ Emacs; also, malloc is slower and causes storage fragmentation. On
+ the other hand, malloc is more portable, and easier to debug.
+
+ Because we sometimes use alloca, some routines have to be macros,
+ not functions -- `alloca'-allocated space disappears at the end of the
+ function it is called in. */
+
+#ifdef REGEX_MALLOC
+
+#define REGEX_ALLOCATE malloc
+#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+
+#else /* not REGEX_MALLOC */
+
+/* Emacs already defines alloca, sometimes. */
+#ifndef alloca
+
+/* Make alloca work the best possible way. */
+#ifdef __GNUC__
+#define alloca __builtin_alloca
+#else /* not __GNUC__ */
+#if HAVE_ALLOCA_H
+#include <alloca.h>
+#else /* not __GNUC__ or HAVE_ALLOCA_H */
+#ifndef _AIX /* Already did AIX, up at the top. */
+char *alloca ();
+#endif /* not _AIX */
+#endif /* not HAVE_ALLOCA_H */
+#endif /* not __GNUC__ */
+
+#endif /* not alloca */
+
+#define REGEX_ALLOCATE alloca
+
+/* Assumes a `char *destination' variable. */
+#define REGEX_REALLOCATE(source, osize, nsize) \
+ (destination = (char *) alloca (nsize), \
+ bcopy (source, destination, osize), \
+ destination)
+
+#endif /* not REGEX_MALLOC */
+
+
+/* True if `size1' is non-NULL and PTR is pointing anywhere inside
+ `string1' or just past its end. This works if PTR is NULL, which is
+ a good thing. */
+#define FIRST_STRING_P(ptr) \
+ (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+/* (Re)Allocate N items of type T using malloc, or fail. */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 8 /* In bits. */
+
+#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
+
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+
+typedef char boolean;
+#define false 0
+#define true 1
+
+/* These are the command codes that appear in compiled regular
+ expressions. Some opcodes are followed by argument bytes. A
+ command code can specify any interpretation whatsoever for its
+ arguments. Zero bytes may appear in the compiled regular expression.
+
+ The value of `exactn' is needed in search.c (search_buffer) in Emacs.
+ So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
+ `exactn' we use here must also be 1. */
+
+typedef enum
+{
+ no_op = 0,
+
+ /* Followed by one byte giving n, then by n literal bytes. */
+ exactn = 1,
+
+ /* Matches any (more or less) character. */
+ anychar,
+
+ /* Matches any one char belonging to specified set. First
+ following byte is number of bitmap bytes. Then come bytes
+ for a bitmap saying which chars are in. Bits in each byte
+ are ordered low-bit-first. A character is in the set if its
+ bit is 1. A character too large to have a bit in the map is
+ automatically not in the set. */
+ charset,
+
+ /* Same parameters as charset, but match any character that is
+ not one of those specified. */
+ charset_not,
+
+ /* Start remembering the text that is matched, for storing in a
+ register. Followed by one byte with the register number, in
+ the range 0 to one less than the pattern buffer's re_nsub
+ field. Then followed by one byte with the number of groups
+ inner to this one. (This last has to be part of the
+ start_memory only because we need it in the on_failure_jump
+ of re_match_2.) */
+ start_memory,
+
+ /* Stop remembering the text that is matched and store it in a
+ memory register. Followed by one byte with the register
+ number, in the range 0 to one less than `re_nsub' in the
+ pattern buffer, and one byte with the number of inner groups,
+ just like `start_memory'. (We need the number of inner
+ groups here because we don't have any easy way of finding the
+ corresponding start_memory when we're at a stop_memory.) */
+ stop_memory,
+
+ /* Match a duplicate of something remembered. Followed by one
+ byte containing the register number. */
+ duplicate,
+
+ /* Fail unless at beginning of line. */
+ begline,
+
+ /* Fail unless at end of line. */
+ endline,
+
+ /* Succeeds if at beginning of buffer (if emacs) or at beginning
+ of string to be matched (if not). */
+ begbuf,
+
+ /* Analogously, for end of buffer/string. */
+ endbuf,
+
+ /* Followed by two byte relative address to which to jump. */
+ jump,
+
+ /* Same as jump, but marks the end of an alternative. */
+ jump_past_alt,
+
+ /* Followed by two-byte relative address of place to resume at
+ in case of failure. */
+ on_failure_jump,
+
+ /* Like on_failure_jump, but pushes a placeholder instead of the
+ current string position when executed. */
+ on_failure_keep_string_jump,
+
+ /* Throw away latest failure point and then jump to following
+ two-byte relative address. */
+ pop_failure_jump,
+
+ /* Change to pop_failure_jump if know won't have to backtrack to
+ match; otherwise change to jump. This is used to jump
+ back to the beginning of a repeat. If what follows this jump
+ clearly won't match what the repeat does, such that we can be
+ sure that there is no use backtracking out of repetitions
+ already matched, then we change it to a pop_failure_jump.
+ Followed by two-byte address. */
+ maybe_pop_jump,
+
+ /* Jump to following two-byte address, and push a dummy failure
+ point. This failure point will be thrown away if an attempt
+ is made to use it for a failure. A `+' construct makes this
+ before the first repeat. Also used as an intermediary kind
+ of jump when compiling an alternative. */
+ dummy_failure_jump,
+
+ /* Push a dummy failure point and continue. Used at the end of
+ alternatives. */
+ push_dummy_failure,
+
+ /* Followed by two-byte relative address and two-byte number n.
+ After matching N times, jump to the address upon failure. */
+ succeed_n,
+
+ /* Followed by two-byte relative address, and two-byte number n.
+ Jump to the address N times, then fail. */
+ jump_n,
+
+ /* Set the following two-byte relative address to the
+ subsequent two-byte number. The address *includes* the two
+ bytes of number. */
+ set_number_at,
+
+ wordchar, /* Matches any word-constituent character. */
+ notwordchar, /* Matches any char that is not a word-constituent. */
+
+ wordbeg, /* Succeeds if at word beginning. */
+ wordend, /* Succeeds if at word end. */
+
+ wordbound, /* Succeeds if at a word boundary. */
+ notwordbound /* Succeeds if not at a word boundary. */
+
+#ifdef emacs
+ ,before_dot, /* Succeeds if before point. */
+ at_dot, /* Succeeds if at point. */
+ after_dot, /* Succeeds if after point. */
+
+ /* Matches any character whose syntax is specified. Followed by
+ a byte which contains a syntax code, e.g., Sword. */
+ syntaxspec,
+
+ /* Matches any character whose syntax is not that specified. */
+ notsyntaxspec
+#endif /* emacs */
+} re_opcode_t;
+
+/* Common operations on the compiled pattern. */
+
+/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
+
+#define STORE_NUMBER(destination, number) \
+ do { \
+ (destination)[0] = (number) & 0377; \
+ (destination)[1] = (number) >> 8; \
+ } while (0)
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+ the byte after where the number is stored. Therefore, DESTINATION
+ must be an lvalue. */
+
+#define STORE_NUMBER_AND_INCR(destination, number) \
+ do { \
+ STORE_NUMBER (destination, number); \
+ (destination) += 2; \
+ } while (0)
+
+/* Put into DESTINATION a number stored in two contiguous bytes starting
+ at SOURCE. */
+
+#define EXTRACT_NUMBER(destination, source) \
+ do { \
+ (destination) = *(source) & 0377; \
+ (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
+ } while (0)
+
+#ifdef DEBUG
+static void
+extract_number (dest, source)
+ int *dest;
+ unsigned char *source;
+{
+ int temp = SIGN_EXTEND_CHAR (*(source + 1));
+ *dest = *source & 0377;
+ *dest += temp << 8;
+}
+
+#ifndef EXTRACT_MACROS /* To debug the macros. */
+#undef EXTRACT_NUMBER
+#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
+#endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+ SOURCE must be an lvalue. */
+
+#define EXTRACT_NUMBER_AND_INCR(destination, source) \
+ do { \
+ EXTRACT_NUMBER (destination, source); \
+ (source) += 2; \
+ } while (0)
+
+#ifdef DEBUG
+static void
+extract_number_and_incr (destination, source)
+ int *destination;
+ unsigned char **source;
+{
+ extract_number (destination, *source);
+ *source += 2;
+}
+
+#ifndef EXTRACT_MACROS
+#undef EXTRACT_NUMBER_AND_INCR
+#define EXTRACT_NUMBER_AND_INCR(dest, src) \
+ extract_number_and_incr (&dest, &src)
+#endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+
+/* If DEBUG is defined, Regex prints many voluminous messages about what
+ it is doing (if the variable `debug' is nonzero). If linked with the
+ main program in `iregex.c', you can enter patterns and strings
+ interactively. And if linked with the main program in `main.c' and
+ the other test files, you can run the already-written tests. */
+
+#ifdef DEBUG
+
+/* We use standard I/O for debugging. */
+#include <stdio.h>
+
+/* It is useful to test things that ``must'' be true when debugging. */
+#include <assert.h>
+
+static int debug = 0;
+
+#define DEBUG_STATEMENT(e) e
+#define DEBUG_PRINT1(x) if (debug) printf (x)
+#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
+ if (debug) print_partial_compiled_pattern (s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
+ if (debug) print_double_string (w, s1, sz1, s2, sz2)
+
+
+extern void printchar ();
+
+/* Print the fastmap in human-readable form. */
+
+void
+print_fastmap (fastmap)
+ char *fastmap;
+{
+ unsigned was_a_range = 0;
+ unsigned i = 0;
+
+ while (i < (1 << BYTEWIDTH))
+ {
+ if (fastmap[i++])
+ {
+ was_a_range = 0;
+ printchar (i - 1);
+ while (i < (1 << BYTEWIDTH) && fastmap[i])
+ {
+ was_a_range = 1;
+ i++;
+ }
+ if (was_a_range)
+ {
+ printf ("-");
+ printchar (i - 1);
+ }
+ }
+ }
+ putchar ('\n');
+}
+
+
+/* Print a compiled pattern string in human-readable form, starting at
+ the START pointer into it and ending just before the pointer END. */
+
+void
+print_partial_compiled_pattern (start, end)
+ unsigned char *start;
+ unsigned char *end;
+{
+ int mcnt, mcnt2;
+ unsigned char *p = start;
+ unsigned char *pend = end;
+
+ if (start == NULL)
+ {
+ printf ("(null)\n");
+ return;
+ }
+
+ /* Loop over pattern commands. */
+ while (p < pend)
+ {
+ switch ((re_opcode_t) *p++)
+ {
+ case no_op:
+ printf ("/no_op");
+ break;
+
+ case exactn:
+ mcnt = *p++;
+ printf ("/exactn/%d", mcnt);
+ do
+ {
+ putchar ('/');
+ printchar (*p++);
+ }
+ while (--mcnt);
+ break;
+
+ case start_memory:
+ mcnt = *p++;
+ printf ("/start_memory/%d/%d", mcnt, *p++);
+ break;
+
+ case stop_memory:
+ mcnt = *p++;
+ printf ("/stop_memory/%d/%d", mcnt, *p++);
+ break;
+
+ case duplicate:
+ printf ("/duplicate/%d", *p++);
+ break;
+
+ case anychar:
+ printf ("/anychar");
+ break;
+
+ case charset:
+ case charset_not:
+ {
+ register int c;
+
+ printf ("/charset%s",
+ (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
+
+ assert (p + *p < pend);
+
+ for (c = 0; c < *p; c++)
+ {
+ unsigned bit;
+ unsigned char map_byte = p[1 + c];
+
+ putchar ('/');
+
+ for (bit = 0; bit < BYTEWIDTH; bit++)
+ if (map_byte & (1 << bit))
+ printchar (c * BYTEWIDTH + bit);
+ }
+ p += 1 + *p;
+ break;
+ }
+
+ case begline:
+ printf ("/begline");
+ break;
+
+ case endline:
+ printf ("/endline");
+ break;
+
+ case on_failure_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/on_failure_jump/0/%d", mcnt);
+ break;
+
+ case on_failure_keep_string_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/on_failure_keep_string_jump/0/%d", mcnt);
+ break;
+
+ case dummy_failure_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/dummy_failure_jump/0/%d", mcnt);
+ break;
+
+ case push_dummy_failure:
+ printf ("/push_dummy_failure");
+ break;
+
+ case maybe_pop_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/maybe_pop_jump/0/%d", mcnt);
+ break;
+
+ case pop_failure_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/pop_failure_jump/0/%d", mcnt);
+ break;
+
+ case jump_past_alt:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/jump_past_alt/0/%d", mcnt);
+ break;
+
+ case jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/jump/0/%d", mcnt);
+ break;
+
+ case succeed_n:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
+ printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
+ break;
+
+ case jump_n:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
+ printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
+ break;
+
+ case set_number_at:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
+ printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
+ break;
+
+ case wordbound:
+ printf ("/wordbound");
+ break;
+
+ case notwordbound:
+ printf ("/notwordbound");
+ break;
+
+ case wordbeg:
+ printf ("/wordbeg");
+ break;
+
+ case wordend:
+ printf ("/wordend");
+
+#ifdef emacs
+ case before_dot:
+ printf ("/before_dot");
+ break;
+
+ case at_dot:
+ printf ("/at_dot");
+ break;
+
+ case after_dot:
+ printf ("/after_dot");
+ break;
+
+ case syntaxspec:
+ printf ("/syntaxspec");
+ mcnt = *p++;
+ printf ("/%d", mcnt);
+ break;
+
+ case notsyntaxspec:
+ printf ("/notsyntaxspec");
+ mcnt = *p++;
+ printf ("/%d", mcnt);
+ break;
+#endif /* emacs */
+
+ case wordchar:
+ printf ("/wordchar");
+ break;
+
+ case notwordchar:
+ printf ("/notwordchar");
+ break;
+
+ case begbuf:
+ printf ("/begbuf");
+ break;
+
+ case endbuf:
+ printf ("/endbuf");
+ break;
+
+ default:
+ printf ("?%d", *(p-1));
+ }
+ }
+ printf ("/\n");
+}
+
+
+void
+print_compiled_pattern (bufp)
+ struct re_pattern_buffer *bufp;
+{
+ unsigned char *buffer = bufp->buffer;
+
+ print_partial_compiled_pattern (buffer, buffer + bufp->used);
+ printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
+
+ if (bufp->fastmap_accurate && bufp->fastmap)
+ {
+ printf ("fastmap: ");
+ print_fastmap (bufp->fastmap);
+ }
+
+ printf ("re_nsub: %d\t", bufp->re_nsub);
+ printf ("regs_alloc: %d\t", bufp->regs_allocated);
+ printf ("can_be_null: %d\t", bufp->can_be_null);
+ printf ("newline_anchor: %d\n", bufp->newline_anchor);
+ printf ("no_sub: %d\t", bufp->no_sub);
+ printf ("not_bol: %d\t", bufp->not_bol);
+ printf ("not_eol: %d\t", bufp->not_eol);
+ printf ("syntax: %d\n", bufp->syntax);
+ /* Perhaps we should print the translate table? */
+}
+
+
+void
+print_double_string (where, string1, size1, string2, size2)
+ const char *where;
+ const char *string1;
+ const char *string2;
+ int size1;
+ int size2;
+{
+ unsigned this_char;
+
+ if (where == NULL)
+ printf ("(null)");
+ else
+ {
+ if (FIRST_STRING_P (where))
+ {
+ for (this_char = where - string1; this_char < size1; this_char++)
+ printchar (string1[this_char]);
+
+ where = string2;
+ }
+
+ for (this_char = where - string2; this_char < size2; this_char++)
+ printchar (string2[this_char]);
+ }
+}
+
+#else /* not DEBUG */
+
+#undef assert
+#define assert(e)
+
+#define DEBUG_STATEMENT(e)
+#define DEBUG_PRINT1(x)
+#define DEBUG_PRINT2(x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+
+#endif /* not DEBUG */
+
+/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
+ also be assigned to arbitrarily: each pattern buffer stores its own
+ syntax, so it can be changed between regex compilations. */
+reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
+
+
+/* Specify the precise syntax of regexps for compilation. This provides
+ for compatibility for various utilities which historically have
+ different, incompatible syntaxes.
+
+ The argument SYNTAX is a bit mask comprised of the various bits
+ defined in regex.h. We return the old syntax. */
+
+reg_syntax_t
+re_set_syntax (syntax)
+ reg_syntax_t syntax;
+{
+ reg_syntax_t ret = re_syntax_options;
+
+ re_syntax_options = syntax;
+ return ret;
+}
+
+/* This table gives an error message for each of the error codes listed
+ in regex.h. Obviously the order here has to be same as there. */
+
+static const char *re_error_msg[] =
+ { NULL, /* REG_NOERROR */
+ "No match", /* REG_NOMATCH */
+ "Invalid regular expression", /* REG_BADPAT */
+ "Invalid collation character", /* REG_ECOLLATE */
+ "Invalid character class name", /* REG_ECTYPE */
+ "Trailing backslash", /* REG_EESCAPE */
+ "Invalid back reference", /* REG_ESUBREG */
+ "Unmatched [ or [^", /* REG_EBRACK */
+ "Unmatched ( or \\(", /* REG_EPAREN */
+ "Unmatched \\{", /* REG_EBRACE */
+ "Invalid content of \\{\\}", /* REG_BADBR */
+ "Invalid range end", /* REG_ERANGE */
+ "Memory exhausted", /* REG_ESPACE */
+ "Invalid preceding regular expression", /* REG_BADRPT */
+ "Premature end of regular expression", /* REG_EEND */
+ "Regular expression too big", /* REG_ESIZE */
+ "Unmatched ) or \\)", /* REG_ERPAREN */
+ };
+
+/* Subroutine declarations and macros for regex_compile. */
+
+static void store_op1 (), store_op2 ();
+static void insert_op1 (), insert_op2 ();
+static boolean at_begline_loc_p (), at_endline_loc_p ();
+static boolean group_in_compile_stack ();
+static reg_errcode_t compile_range ();
+
+/* Fetch the next character in the uncompiled pattern---translating it
+ if necessary. Also cast from a signed character in the constant
+ string passed to us by the user to an unsigned char that we can use
+ as an array index (in, e.g., `translate'). */
+#define PATFETCH(c) \
+ do {if (p == pend) return REG_EEND; \
+ c = (unsigned char) *p++; \
+ if (translate) c = translate[c]; \
+ } while (0)
+
+/* Fetch the next character in the uncompiled pattern, with no
+ translation. */
+#define PATFETCH_RAW(c) \
+ do {if (p == pend) return REG_EEND; \
+ c = (unsigned char) *p++; \
+ } while (0)
+
+/* Go backwards one character in the pattern. */
+#define PATUNFETCH p--
+
+
+/* If `translate' is non-null, return translate[D], else just D. We
+ cast the subscript to translate because some data is declared as
+ `char *', to avoid warnings when a string constant is passed. But
+ when we use a character as a subscript we must make it unsigned. */
+#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
+
+
+/* Macros for outputting the compiled pattern into `buffer'. */
+
+/* If the buffer isn't allocated when it comes in, use this. */
+#define INIT_BUF_SIZE 32
+
+/* Make sure we have at least N more bytes of space in buffer. */
+#define GET_BUFFER_SPACE(n) \
+ while (b - bufp->buffer + (n) > bufp->allocated) \
+ EXTEND_BUFFER ()
+
+/* Make sure we have one more byte of buffer space and then add C to it. */
+#define BUF_PUSH(c) \
+ do { \
+ GET_BUFFER_SPACE (1); \
+ *b++ = (unsigned char) (c); \
+ } while (0)
+
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
+#define BUF_PUSH_2(c1, c2) \
+ do { \
+ GET_BUFFER_SPACE (2); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ } while (0)
+
+
+/* As with BUF_PUSH_2, except for three bytes. */
+#define BUF_PUSH_3(c1, c2, c3) \
+ do { \
+ GET_BUFFER_SPACE (3); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ *b++ = (unsigned char) (c3); \
+ } while (0)
+
+
+/* Store a jump with opcode OP at LOC to location TO. We store a
+ relative address offset by the three bytes the jump itself occupies. */
+#define STORE_JUMP(op, loc, to) \
+ store_op1 (op, loc, (to) - (loc) - 3)
+
+/* Likewise, for a two-argument jump. */
+#define STORE_JUMP2(op, loc, to, arg) \
+ store_op2 (op, loc, (to) - (loc) - 3, arg)
+
+/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP(op, loc, to) \
+ insert_op1 (op, loc, (to) - (loc) - 3, b)
+
+/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP2(op, loc, to, arg) \
+ insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
+
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+ into the pattern are two bytes long. So if 2^16 bytes turns out to
+ be too small, many things would have to change. */
+#define MAX_BUF_SIZE (1L << 16)
+
+
+/* Extend the buffer by twice its current size via realloc and
+ reset the pointers that pointed into the old block to point to the
+ correct places in the new one. If extending the buffer results in it
+ being larger than MAX_BUF_SIZE, then flag memory exhausted. */
+#define EXTEND_BUFFER() \
+ do { \
+ unsigned char *old_buffer = bufp->buffer; \
+ if (bufp->allocated == MAX_BUF_SIZE) \
+ return REG_ESIZE; \
+ bufp->allocated <<= 1; \
+ if (bufp->allocated > MAX_BUF_SIZE) \
+ bufp->allocated = MAX_BUF_SIZE; \
+ bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
+ if (bufp->buffer == NULL) \
+ return REG_ESPACE; \
+ /* If the buffer moved, move all the pointers into it. */ \
+ if (old_buffer != bufp->buffer) \
+ { \
+ b = (b - old_buffer) + bufp->buffer; \
+ begalt = (begalt - old_buffer) + bufp->buffer; \
+ if (fixup_alt_jump) \
+ fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
+ if (laststart) \
+ laststart = (laststart - old_buffer) + bufp->buffer; \
+ if (pending_exact) \
+ pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+ } \
+ } while (0)
+
+
+/* Since we have one byte reserved for the register number argument to
+ {start,stop}_memory, the maximum number of groups we can report
+ things about is what fits in that byte. */
+#define MAX_REGNUM 255
+
+/* But patterns can have more than `MAX_REGNUM' registers. We just
+ ignore the excess. */
+typedef unsigned regnum_t;
+
+
+/* Macros for the compile stack. */
+
+/* Since offsets can go either forwards or backwards, this type needs to
+ be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
+typedef int pattern_offset_t;
+
+typedef struct
+{
+ pattern_offset_t begalt_offset;
+ pattern_offset_t fixup_alt_jump;
+ pattern_offset_t inner_group_offset;
+ pattern_offset_t laststart_offset;
+ regnum_t regnum;
+} compile_stack_elt_t;
+
+
+typedef struct
+{
+ compile_stack_elt_t *stack;
+ unsigned size;
+ unsigned avail; /* Offset of next open position. */
+} compile_stack_type;
+
+
+#define INIT_COMPILE_STACK_SIZE 32
+
+#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
+
+/* The next available element. */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+
+/* Set the bit for character C in a list. */
+#define SET_LIST_BIT(c) \
+ (b[((unsigned char) (c)) / BYTEWIDTH] \
+ |= 1 << (((unsigned char) c) % BYTEWIDTH))
+
+
+/* Get the next unsigned number in the uncompiled pattern. */
+#define GET_UNSIGNED_NUMBER(num) \
+ { if (p != pend) \
+ { \
+ PATFETCH (c); \
+ while (ISDIGIT (c)) \
+ { \
+ if (num < 0) \
+ num = 0; \
+ num = num * 10 + c - '0'; \
+ if (p == pend) \
+ break; \
+ PATFETCH (c); \
+ } \
+ } \
+ }
+
+#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
+
+#define IS_CHAR_CLASS(string) \
+ (STREQ (string, "alpha") || STREQ (string, "upper") \
+ || STREQ (string, "lower") || STREQ (string, "digit") \
+ || STREQ (string, "alnum") || STREQ (string, "xdigit") \
+ || STREQ (string, "space") || STREQ (string, "print") \
+ || STREQ (string, "punct") || STREQ (string, "graph") \
+ || STREQ (string, "cntrl") || STREQ (string, "blank"))
+
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+ Returns one of error codes defined in `regex.h', or zero for success.
+
+ Assumes the `allocated' (and perhaps `buffer') and `translate'
+ fields are set in BUFP on entry.
+
+ If it succeeds, results are put in BUFP (if it returns an error, the
+ contents of BUFP are undefined):
+ `buffer' is the compiled pattern;
+ `syntax' is set to SYNTAX;
+ `used' is set to the length of the compiled pattern;
+ `fastmap_accurate' is zero;
+ `re_nsub' is the number of subexpressions in PATTERN;
+ `not_bol' and `not_eol' are zero;
+
+ The `fastmap' and `newline_anchor' fields are neither
+ examined nor set. */
+
+static reg_errcode_t
+regex_compile (pattern, size, syntax, bufp)
+ const char *pattern;
+ int size;
+ reg_syntax_t syntax;
+ struct re_pattern_buffer *bufp;
+{
+ /* We fetch characters from PATTERN here. Even though PATTERN is
+ `char *' (i.e., signed), we declare these variables as unsigned, so
+ they can be reliably used as array indices. */
+ register unsigned char c, c1;
+
+ /* A random temporary spot in PATTERN. */
+ const char *p1;
+
+ /* Points to the end of the buffer, where we should append. */
+ register unsigned char *b;
+
+ /* Keeps track of unclosed groups. */
+ compile_stack_type compile_stack;
+
+ /* Points to the current (ending) position in the pattern. */
+ const char *p = pattern;
+ const char *pend = pattern + size;
+
+ /* How to translate the characters in the pattern. */
+ char *translate = bufp->translate;
+
+ /* Address of the count-byte of the most recently inserted `exactn'
+ command. This makes it possible to tell if a new exact-match
+ character can be added to that command or if the character requires
+ a new `exactn' command. */
+ unsigned char *pending_exact = 0;
+
+ /* Address of start of the most recently finished expression.
+ This tells, e.g., postfix * where to find the start of its
+ operand. Reset at the beginning of groups and alternatives. */
+ unsigned char *laststart = 0;
+
+ /* Address of beginning of regexp, or inside of last group. */
+ unsigned char *begalt;
+
+ /* Place in the uncompiled pattern (i.e., the {) to
+ which to go back if the interval is invalid. */
+ const char *beg_interval;
+
+ /* Address of the place where a forward jump should go to the end of
+ the containing expression. Each alternative of an `or' -- except the
+ last -- ends with a forward jump of this sort. */
+ unsigned char *fixup_alt_jump = 0;
+
+ /* Counts open-groups as they are encountered. Remembered for the
+ matching close-group on the compile stack, so the same register
+ number is put in the stop_memory as the start_memory. */
+ regnum_t regnum = 0;
+
+#ifdef DEBUG
+ DEBUG_PRINT1 ("\nCompiling pattern: ");
+ if (debug)
+ {
+ unsigned debug_count;
+
+ for (debug_count = 0; debug_count < size; debug_count++)
+ printchar (pattern[debug_count]);
+ putchar ('\n');
+ }
+#endif /* DEBUG */
+
+ /* Initialize the compile stack. */
+ compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+ if (compile_stack.stack == NULL)
+ return REG_ESPACE;
+
+ compile_stack.size = INIT_COMPILE_STACK_SIZE;
+ compile_stack.avail = 0;
+
+ /* Initialize the pattern buffer. */
+ bufp->syntax = syntax;
+ bufp->fastmap_accurate = 0;
+ bufp->not_bol = bufp->not_eol = 0;
+
+ /* Set `used' to zero, so that if we return an error, the pattern
+ printer (for debugging) will think there's no pattern. We reset it
+ at the end. */
+ bufp->used = 0;
+
+ /* Always count groups, whether or not bufp->no_sub is set. */
+ bufp->re_nsub = 0;
+
+#if !defined (emacs) && !defined (SYNTAX_TABLE)
+ /* Initialize the syntax table. */
+ init_syntax_once ();
+#endif
+
+ if (bufp->allocated == 0)
+ {
+ if (bufp->buffer)
+ { /* If zero allocated, but buffer is non-null, try to realloc
+ enough space. This loses if buffer's address is bogus, but
+ that is the user's responsibility. */
+ RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+ }
+ else
+ { /* Caller did not allocate a buffer. Do it for them. */
+ bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+ }
+ if (!bufp->buffer) return REG_ESPACE;
+
+ bufp->allocated = INIT_BUF_SIZE;
+ }
+
+ begalt = b = bufp->buffer;
+
+ /* Loop through the uncompiled pattern until we're at the end. */
+ while (p != pend)
+ {
+ PATFETCH (c);
+
+ switch (c)
+ {
+ case '^':
+ {
+ if ( /* If at start of pattern, it's an operator. */
+ p == pattern + 1
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's come before. */
+ || at_begline_loc_p (pattern, p, syntax))
+ BUF_PUSH (begline);
+ else
+ goto normal_char;
+ }
+ break;
+
+
+ case '$':
+ {
+ if ( /* If at end of pattern, it's an operator. */
+ p == pend
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's next. */
+ || at_endline_loc_p (p, pend, syntax))
+ BUF_PUSH (endline);
+ else
+ goto normal_char;
+ }
+ break;
+
+
+ case '+':
+ case '?':
+ if ((syntax & RE_BK_PLUS_QM)
+ || (syntax & RE_LIMITED_OPS))
+ goto normal_char;
+ handle_plus:
+ case '*':
+ /* If there is no previous pattern... */
+ if (!laststart)
+ {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ return REG_BADRPT;
+ else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ }
+
+ {
+ /* Are we optimizing this jump? */
+ boolean keep_string_p = false;
+
+ /* 1 means zero (many) matches is allowed. */
+ char zero_times_ok = 0, many_times_ok = 0;
+
+ /* If there is a sequence of repetition chars, collapse it
+ down to just one (the right one). We can't combine
+ interval operators with these because of, e.g., `a{2}*',
+ which should only match an even number of `a's. */
+
+ for (;;)
+ {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+
+ if (p == pend)
+ break;
+
+ PATFETCH (c);
+
+ if (c == '*'
+ || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
+ ;
+
+ else if (syntax & RE_BK_PLUS_QM && c == '\\')
+ {
+ if (p == pend) return REG_EESCAPE;
+
+ PATFETCH (c1);
+ if (!(c1 == '+' || c1 == '?'))
+ {
+ PATUNFETCH;
+ PATUNFETCH;
+ break;
+ }
+
+ c = c1;
+ }
+ else
+ {
+ PATUNFETCH;
+ break;
+ }
+
+ /* If we get here, we found another repeat character. */
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart)
+ break;
+
+ /* Now we know whether or not zero matches is allowed
+ and also whether or not two or more matches is allowed. */
+ if (many_times_ok)
+ { /* More than one repetition is allowed, so put in at the
+ end a backward relative jump from `b' to before the next
+ jump we're going to put in below (which jumps from
+ laststart to after this jump).
+
+ But if we are at the `*' in the exact sequence `.*\n',
+ insert an unconditional jump backwards to the .,
+ instead of the beginning of the loop. This way we only
+ push a failure point once, instead of every time
+ through the loop. */
+ assert (p - 1 > pattern);
+
+ /* Allocate the space for the jump. */
+ GET_BUFFER_SPACE (3);
+
+ /* We know we are not at the first character of the pattern,
+ because laststart was nonzero. And we've already
+ incremented `p', by the way, to be the character after
+ the `*'. Do we have to do something analogous here
+ for null bytes, because of RE_DOT_NOT_NULL? */
+ if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
+ && zero_times_ok
+ && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
+ && !(syntax & RE_DOT_NEWLINE))
+ { /* We have .*\n. */
+ STORE_JUMP (jump, b, laststart);
+ keep_string_p = true;
+ }
+ else
+ /* Anything else. */
+ STORE_JUMP (maybe_pop_jump, b, laststart - 3);
+
+ /* We've added more stuff to the buffer. */
+ b += 3;
+ }
+
+ /* On failure, jump from laststart to b + 3, which will be the
+ end of the buffer after this jump is inserted. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
+ : on_failure_jump,
+ laststart, b + 3);
+ pending_exact = 0;
+ b += 3;
+
+ if (!zero_times_ok)
+ {
+ /* At least one repetition is required, so insert a
+ `dummy_failure_jump' before the initial
+ `on_failure_jump' instruction of the loop. This
+ effects a skip over that instruction the first time
+ we hit that loop. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
+ b += 3;
+ }
+ }
+ break;
+
+
+ case '.':
+ laststart = b;
+ BUF_PUSH (anychar);
+ break;
+
+
+ case '[':
+ {
+ boolean had_char_class = false;
+
+ if (p == pend) return REG_EBRACK;
+
+ /* Ensure that we have enough space to push a charset: the
+ opcode, the length count, and the bitset; 34 bytes in all. */
+ GET_BUFFER_SPACE (34);
+
+ laststart = b;
+
+ /* We test `*p == '^' twice, instead of using an if
+ statement, so we only need one BUF_PUSH. */
+ BUF_PUSH (*p == '^' ? charset_not : charset);
+ if (*p == '^')
+ p++;
+
+ /* Remember the first position in the bracket expression. */
+ p1 = p;
+
+ /* Push the number of bytes in the bitmap. */
+ BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* Clear the whole map. */
+ bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* charset_not matches newline according to a syntax bit. */
+ if ((re_opcode_t) b[-2] == charset_not
+ && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+ SET_LIST_BIT ('\n');
+
+ /* Read in characters and ranges, setting map bits. */
+ for (;;)
+ {
+ if (p == pend) return REG_EBRACK;
+
+ PATFETCH (c);
+
+ /* \ might escape characters inside [...] and [^...]. */
+ if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+ {
+ if (p == pend) return REG_EESCAPE;
+
+ PATFETCH (c1);
+ SET_LIST_BIT (c1);
+ continue;
+ }
+
+ /* Could be the end of the bracket expression. If it's
+ not (i.e., when the bracket expression is `[]' so
+ far), the ']' character bit gets set way below. */
+ if (c == ']' && p != p1 + 1)
+ break;
+
+ /* Look ahead to see if it's a range when the last thing
+ was a character class. */
+ if (had_char_class && c == '-' && *p != ']')
+ return REG_ERANGE;
+
+ /* Look ahead to see if it's a range when the last thing
+ was a character: if this is a hyphen not at the
+ beginning or the end of a list, then it's the range
+ operator. */
+ if (c == '-'
+ && !(p - 2 >= pattern && p[-2] == '[')
+ && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
+ && *p != ']')
+ {
+ reg_errcode_t ret
+ = compile_range (&p, pend, translate, syntax, b);
+ if (ret != REG_NOERROR) return ret;
+ }
+
+ else if (p[0] == '-' && p[1] != ']')
+ { /* This handles ranges made up of characters only. */
+ reg_errcode_t ret;
+
+ /* Move past the `-'. */
+ PATFETCH (c1);
+
+ ret = compile_range (&p, pend, translate, syntax, b);
+ if (ret != REG_NOERROR) return ret;
+ }
+
+ /* See if we're at the beginning of a possible character
+ class. */
+
+ else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
+ { /* Leave room for the null. */
+ char str[CHAR_CLASS_MAX_LENGTH + 1];
+
+ PATFETCH (c);
+ c1 = 0;
+
+ /* If pattern is `[[:'. */
+ if (p == pend) return REG_EBRACK;
+
+ for (;;)
+ {
+ PATFETCH (c);
+ if (c == ':' || c == ']' || p == pend
+ || c1 == CHAR_CLASS_MAX_LENGTH)
+ break;
+ str[c1++] = c;
+ }
+ str[c1] = '\0';
+
+ /* If isn't a word bracketed by `[:' and:`]':
+ undo the ending character, the letters, and leave
+ the leading `:' and `[' (but set bits for them). */
+ if (c == ':' && *p == ']')
+ {
+ int ch;
+ boolean is_alnum = STREQ (str, "alnum");
+ boolean is_alpha = STREQ (str, "alpha");
+ boolean is_blank = STREQ (str, "blank");
+ boolean is_cntrl = STREQ (str, "cntrl");
+ boolean is_digit = STREQ (str, "digit");
+ boolean is_graph = STREQ (str, "graph");
+ boolean is_lower = STREQ (str, "lower");
+ boolean is_print = STREQ (str, "print");
+ boolean is_punct = STREQ (str, "punct");
+ boolean is_space = STREQ (str, "space");
+ boolean is_upper = STREQ (str, "upper");
+ boolean is_xdigit = STREQ (str, "xdigit");
+
+ if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
+
+ /* Throw away the ] at the end of the character
+ class. */
+ PATFETCH (c);
+
+ if (p == pend) return REG_EBRACK;
+
+ for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
+ {
+ if ( (is_alnum && ISALNUM (ch))
+ || (is_alpha && ISALPHA (ch))
+ || (is_blank && ISBLANK (ch))
+ || (is_cntrl && ISCNTRL (ch))
+ || (is_digit && ISDIGIT (ch))
+ || (is_graph && ISGRAPH (ch))
+ || (is_lower && ISLOWER (ch))
+ || (is_print && ISPRINT (ch))
+ || (is_punct && ISPUNCT (ch))
+ || (is_space && ISSPACE (ch))
+ || (is_upper && ISUPPER (ch))
+ || (is_xdigit && ISXDIGIT (ch)))
+ SET_LIST_BIT (ch);
+ }
+ had_char_class = true;
+ }
+ else
+ {
+ c1++;
+ while (c1--)
+ PATUNFETCH;
+ SET_LIST_BIT ('[');
+ SET_LIST_BIT (':');
+ had_char_class = false;
+ }
+ }
+ else
+ {
+ had_char_class = false;
+ SET_LIST_BIT (c);
+ }
+ }
+
+ /* Discard any (non)matching list bytes that are all 0 at the
+ end of the map. Decrease the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ b += b[-1];
+ }
+ break;
+
+
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_open;
+ else
+ goto normal_char;
+
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_close;
+ else
+ goto normal_char;
+
+
+ case '\n':
+ if (syntax & RE_NEWLINE_ALT)
+ goto handle_alt;
+ else
+ goto normal_char;
+
+
+ case '|':
+ if (syntax & RE_NO_BK_VBAR)
+ goto handle_alt;
+ else
+ goto normal_char;
+
+
+ case '{':
+ if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+ goto handle_interval;
+ else
+ goto normal_char;
+
+
+ case '\\':
+ if (p == pend) return REG_EESCAPE;
+
+ /* Do not translate the character after the \, so that we can
+ distinguish, e.g., \B from \b, even if we normally would
+ translate, e.g., B to b. */
+ PATFETCH_RAW (c);
+
+ switch (c)
+ {
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto normal_backslash;
+
+ handle_open:
+ bufp->re_nsub++;
+ regnum++;
+
+ if (COMPILE_STACK_FULL)
+ {
+ RETALLOC (compile_stack.stack, compile_stack.size << 1,
+ compile_stack_elt_t);
+ if (compile_stack.stack == NULL) return REG_ESPACE;
+
+ compile_stack.size <<= 1;
+ }
+
+ /* These are the values to restore when we hit end of this
+ group. They are all relative offsets, so that if the
+ whole pattern moves because of realloc, they will still
+ be valid. */
+ COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ COMPILE_STACK_TOP.fixup_alt_jump
+ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+ COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+ COMPILE_STACK_TOP.regnum = regnum;
+
+ /* We will eventually replace the 0 with the number of
+ groups inner to this one. But do not push a
+ start_memory for groups beyond the last one we can
+ represent in the compiled pattern. */
+ if (regnum <= MAX_REGNUM)
+ {
+ COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
+ BUF_PUSH_3 (start_memory, regnum, 0);
+ }
+
+ compile_stack.avail++;
+
+ fixup_alt_jump = 0;
+ laststart = 0;
+ begalt = b;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+ break;
+
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+
+ if (COMPILE_STACK_EMPTY)
+ {
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_backslash;
+ else
+ return REG_ERPAREN;
+ }
+
+ handle_close:
+ if (fixup_alt_jump)
+ { /* Push a dummy failure point at the end of the
+ alternative for a possible future
+ `pop_failure_jump' to pop. See comments at
+ `push_dummy_failure' in `re_match_2'. */
+ BUF_PUSH (push_dummy_failure);
+
+ /* We allocated space for this jump when we assigned
+ to `fixup_alt_jump', in the `handle_alt' case below. */
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
+ }
+
+ /* See similar code for backslashed left paren above. */
+ if (COMPILE_STACK_EMPTY)
+ {
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_char;
+ else
+ return REG_ERPAREN;
+ }
+
+ /* Since we just checked for an empty stack above, this
+ ``can't happen''. */
+ assert (compile_stack.avail != 0);
+ {
+ /* We don't just want to restore into `regnum', because
+ later groups should continue to be numbered higher,
+ as in `(ab)c(de)' -- the second group is #2. */
+ regnum_t this_group_regnum;
+
+ compile_stack.avail--;
+ begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ fixup_alt_jump
+ = COMPILE_STACK_TOP.fixup_alt_jump
+ ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ : 0;
+ laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ this_group_regnum = COMPILE_STACK_TOP.regnum;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+
+ /* We're at the end of the group, so now we know how many
+ groups were inside this one. */
+ if (this_group_regnum <= MAX_REGNUM)
+ {
+ unsigned char *inner_group_loc
+ = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+
+ *inner_group_loc = regnum - this_group_regnum;
+ BUF_PUSH_3 (stop_memory, this_group_regnum,
+ regnum - this_group_regnum);
+ }
+ }
+ break;
+
+
+ case '|': /* `\|'. */
+ if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+ goto normal_backslash;
+ handle_alt:
+ if (syntax & RE_LIMITED_OPS)
+ goto normal_char;
+
+ /* Insert before the previous alternative a jump which
+ jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, begalt, b + 6);
+ pending_exact = 0;
+ b += 3;
+
+ /* The alternative before this one has a jump after it
+ which gets executed if it gets matched. Adjust that
+ jump so it will jump to this alternative's analogous
+ jump (put in below, which in turn will jump to the next
+ (if any) alternative's such jump, etc.). The last such
+ jump jumps to the correct final destination. A picture:
+ _____ _____
+ | | | |
+ | v | v
+ a | b | c
+
+ If we are at `b', then fixup_alt_jump right now points to a
+ three-byte space after `a'. We'll put in the jump, set
+ fixup_alt_jump to right after `b', and leave behind three
+ bytes which we'll fill in when we get to after `c'. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+ /* Mark and leave space for a jump after this alternative,
+ to be filled in later either by next alternative or
+ when know we're at the end of a series of alternatives. */
+ fixup_alt_jump = b;
+ GET_BUFFER_SPACE (3);
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
+ break;
+
+
+ case '{':
+ /* If \{ is a literal. */
+ if (!(syntax & RE_INTERVALS)
+ /* If we're at `\{' and it's not the open-interval
+ operator. */
+ || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+ || (p - 2 == pattern && p == pend))
+ goto normal_backslash;
+
+ handle_interval:
+ {
+ /* If got here, then the syntax allows intervals. */
+
+ /* At least (most) this many matches must be made. */
+ int lower_bound = -1, upper_bound = -1;
+
+ beg_interval = p - 1;
+
+ if (p == pend)
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_EBRACE;
+ }
+
+ GET_UNSIGNED_NUMBER (lower_bound);
+
+ if (c == ',')
+ {
+ GET_UNSIGNED_NUMBER (upper_bound);
+ if (upper_bound < 0) upper_bound = RE_DUP_MAX;
+ }
+ else
+ /* Interval such as `{1}' => match exactly once. */
+ upper_bound = lower_bound;
+
+ if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+ || lower_bound > upper_bound)
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_BADBR;
+ }
+
+ if (!(syntax & RE_NO_BK_BRACES))
+ {
+ if (c != '\\') return REG_EBRACE;
+
+ PATFETCH (c);
+ }
+
+ if (c != '}')
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_BADBR;
+ }
+
+ /* We just parsed a valid interval. */
+
+ /* If it's invalid to have no preceding re. */
+ if (!laststart)
+ {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ return REG_BADRPT;
+ else if (syntax & RE_CONTEXT_INDEP_OPS)
+ laststart = b;
+ else
+ goto unfetch_interval;
+ }
+
+ /* If the upper bound is zero, don't want to succeed at
+ all; jump from `laststart' to `b + 3', which will be
+ the end of the buffer after we insert the jump. */
+ if (upper_bound == 0)
+ {
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (jump, laststart, b + 3);
+ b += 3;
+ }
+
+ /* Otherwise, we have a nontrivial interval. When
+ we're all done, the pattern will look like:
+ set_number_at <jump count> <upper bound>
+ set_number_at <succeed_n count> <lower bound>
+ succeed_n <after jump addr> <succeed_n count>
+ <body of loop>
+ jump_n <succeed_n addr> <jump count>
+ (The upper bound and `jump_n' are omitted if
+ `upper_bound' is 1, though.) */
+ else
+ { /* If the upper bound is > 1, we need to insert
+ more at the end of the loop. */
+ unsigned nbytes = 10 + (upper_bound > 1) * 10;
+
+ GET_BUFFER_SPACE (nbytes);
+
+ /* Initialize lower bound of the `succeed_n', even
+ though it will be set during matching by its
+ attendant `set_number_at' (inserted next),
+ because `re_compile_fastmap' needs to know.
+ Jump to the `jump_n' we might insert below. */
+ INSERT_JUMP2 (succeed_n, laststart,
+ b + 5 + (upper_bound > 1) * 5,
+ lower_bound);
+ b += 5;
+
+ /* Code to initialize the lower bound. Insert
+ before the `succeed_n'. The `5' is the last two
+ bytes of this `set_number_at', plus 3 bytes of
+ the following `succeed_n'. */
+ insert_op2 (set_number_at, laststart, 5, lower_bound, b);
+ b += 5;
+
+ if (upper_bound > 1)
+ { /* More than one repetition is allowed, so
+ append a backward jump to the `succeed_n'
+ that starts this interval.
+
+ When we've reached this during matching,
+ we'll have matched the interval once, so
+ jump back only `upper_bound - 1' times. */
+ STORE_JUMP2 (jump_n, b, laststart + 5,
+ upper_bound - 1);
+ b += 5;
+
+ /* The location we want to set is the second
+ parameter of the `jump_n'; that is `b-2' as
+ an absolute address. `laststart' will be
+ the `set_number_at' we're about to insert;
+ `laststart+3' the number to set, the source
+ for the relative address. But we are
+ inserting into the middle of the pattern --
+ so everything is getting moved up by 5.
+ Conclusion: (b - 2) - (laststart + 3) + 5,
+ i.e., b - laststart.
+
+ We insert this at the beginning of the loop
+ so that if we fail during matching, we'll
+ reinitialize the bounds. */
+ insert_op2 (set_number_at, laststart, b - laststart,
+ upper_bound - 1, b);
+ b += 5;
+ }
+ }
+ pending_exact = 0;
+ beg_interval = NULL;
+ }
+ break;
+
+ unfetch_interval:
+ /* If an invalid interval, match the characters as literals. */
+ assert (beg_interval);
+ p = beg_interval;
+ beg_interval = NULL;
+
+ /* normal_char and normal_backslash need `c'. */
+ PATFETCH (c);
+
+ if (!(syntax & RE_NO_BK_BRACES))
+ {
+ if (p > pattern && p[-1] == '\\')
+ goto normal_backslash;
+ }
+ goto normal_char;
+
+#ifdef emacs
+ /* There is no way to specify the before_dot and after_dot
+ operators. rms says this is ok. --karl */
+ case '=':
+ BUF_PUSH (at_dot);
+ break;
+
+ case 's':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'S':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+ break;
+#endif /* emacs */
+
+
+ case 'w':
+ laststart = b;
+ BUF_PUSH (wordchar);
+ break;
+
+
+ case 'W':
+ laststart = b;
+ BUF_PUSH (notwordchar);
+ break;
+
+
+ case '<':
+ BUF_PUSH (wordbeg);
+ break;
+
+ case '>':
+ BUF_PUSH (wordend);
+ break;
+
+ case 'b':
+ BUF_PUSH (wordbound);
+ break;
+
+ case 'B':
+ BUF_PUSH (notwordbound);
+ break;
+
+ case '`':
+ BUF_PUSH (begbuf);
+ break;
+
+ case '\'':
+ BUF_PUSH (endbuf);
+ break;
+
+ case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9':
+ if (syntax & RE_NO_BK_REFS)
+ goto normal_char;
+
+ c1 = c - '0';
+
+ if (c1 > regnum)
+ return REG_ESUBREG;
+
+ /* Can't back reference to a subexpression if inside of it. */
+ if (group_in_compile_stack (compile_stack, c1))
+ goto normal_char;
+
+ laststart = b;
+ BUF_PUSH_2 (duplicate, c1);
+ break;
+
+
+ case '+':
+ case '?':
+ if (syntax & RE_BK_PLUS_QM)
+ goto handle_plus;
+ else
+ goto normal_backslash;
+
+ default:
+ normal_backslash:
+ /* You might think it would be useful for \ to mean
+ not to translate; but if we don't translate it
+ it will never match anything. */
+ c = TRANSLATE (c);
+ goto normal_char;
+ }
+ break;
+
+
+ default:
+ /* Expects the character in `c'. */
+ normal_char:
+ /* If no exactn currently being built. */
+ if (!pending_exact
+
+ /* If last exactn not at current position. */
+ || pending_exact + *pending_exact + 1 != b
+
+ /* We have only one byte following the exactn for the count. */
+ || *pending_exact == (1 << BYTEWIDTH) - 1
+
+ /* If followed by a repetition operator. */
+ || *p == '*' || *p == '^'
+ || ((syntax & RE_BK_PLUS_QM)
+ ? *p == '\\' && (p[1] == '+' || p[1] == '?')
+ : (*p == '+' || *p == '?'))
+ || ((syntax & RE_INTERVALS)
+ && ((syntax & RE_NO_BK_BRACES)
+ ? *p == '{'
+ : (p[0] == '\\' && p[1] == '{'))))
+ {
+ /* Start building a new exactn. */
+
+ laststart = b;
+
+ BUF_PUSH_2 (exactn, 0);
+ pending_exact = b - 1;
+ }
+
+ BUF_PUSH (c);
+ (*pending_exact)++;
+ break;
+ } /* switch (c) */
+ } /* while p != pend */
+
+
+ /* Through the pattern now. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+ if (!COMPILE_STACK_EMPTY)
+ return REG_EPAREN;
+
+ free (compile_stack.stack);
+
+ /* We have succeeded; set the length of the buffer. */
+ bufp->used = b - bufp->buffer;
+
+#ifdef DEBUG
+ if (debug)
+ {
+ DEBUG_PRINT1 ("\nCompiled pattern: ");
+ print_compiled_pattern (bufp);
+ }
+#endif /* DEBUG */
+
+ return REG_NOERROR;
+} /* regex_compile */
+
+/* Subroutines for `regex_compile'. */
+
+/* Store OP at LOC followed by two-byte integer parameter ARG. */
+
+static void
+store_op1 (op, loc, arg)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg;
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg);
+}
+
+
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+static void
+store_op2 (op, loc, arg1, arg2)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg1, arg2;
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg1);
+ STORE_NUMBER (loc + 3, arg2);
+}
+
+
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+ for OP followed by two-byte integer parameter ARG. */
+
+static void
+insert_op1 (op, loc, arg, end)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg;
+ unsigned char *end;
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 3;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op1 (op, loc, arg);
+}
+
+
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+static void
+insert_op2 (op, loc, arg1, arg2, end)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg1, arg2;
+ unsigned char *end;
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 5;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op2 (op, loc, arg1, arg2);
+}
+
+
+/* P points to just after a ^ in PATTERN. Return true if that ^ comes
+ after an alternative or a begin-subexpression. We assume there is at
+ least one character before the ^. */
+
+static boolean
+at_begline_loc_p (pattern, p, syntax)
+ const char *pattern, *p;
+ reg_syntax_t syntax;
+{
+ const char *prev = p - 2;
+ boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+
+ return
+ /* After a subexpression? */
+ (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+ /* After an alternative? */
+ || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
+}
+
+
+/* The dual of at_begline_loc_p. This one is for $. We assume there is
+ at least one character after the $, i.e., `P < PEND'. */
+
+static boolean
+at_endline_loc_p (p, pend, syntax)
+ const char *p, *pend;
+ int syntax;
+{
+ const char *next = p;
+ boolean next_backslash = *next == '\\';
+ const char *next_next = p + 1 < pend ? p + 1 : NULL;
+
+ return
+ /* Before a subexpression? */
+ (syntax & RE_NO_BK_PARENS ? *next == ')'
+ : next_backslash && next_next && *next_next == ')')
+ /* Before an alternative? */
+ || (syntax & RE_NO_BK_VBAR ? *next == '|'
+ : next_backslash && next_next && *next_next == '|');
+}
+
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+ false if it's not. */
+
+static boolean
+group_in_compile_stack (compile_stack, regnum)
+ compile_stack_type compile_stack;
+ regnum_t regnum;
+{
+ int this_element;
+
+ for (this_element = compile_stack.avail - 1;
+ this_element >= 0;
+ this_element--)
+ if (compile_stack.stack[this_element].regnum == regnum)
+ return true;
+
+ return false;
+}
+
+
+/* Read the ending character of a range (in a bracket expression) from the
+ uncompiled pattern *P_PTR (which ends at PEND). We assume the
+ starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
+ Then we set the translation of all bits between the starting and
+ ending characters (inclusive) in the compiled pattern B.
+
+ Return an error code.
+
+ We use these short variable names so we can use the same macros as
+ `regex_compile' itself. */
+
+static reg_errcode_t
+compile_range (p_ptr, pend, translate, syntax, b)
+ const char **p_ptr, *pend;
+ char *translate;
+ reg_syntax_t syntax;
+ unsigned char *b;
+{
+ unsigned this_char;
+
+ const char *p = *p_ptr;
+ int range_start, range_end;
+
+ if (p == pend)
+ return REG_ERANGE;
+
+ /* Even though the pattern is a signed `char *', we need to fetch
+ with unsigned char *'s; if the high bit of the pattern character
+ is set, the range endpoints will be negative if we fetch using a
+ signed char *.
+
+ We also want to fetch the endpoints without translating them; the
+ appropriate translation is done in the bit-setting loop below. */
+ range_start = ((unsigned char *) p)[-2];
+ range_end = ((unsigned char *) p)[0];
+
+ /* Have to increment the pointer into the pattern string, so the
+ caller isn't still at the ending character. */
+ (*p_ptr)++;
+
+ /* If the start is after the end, the range is empty. */
+ if (range_start > range_end)
+ return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
+
+ /* Here we see why `this_char' has to be larger than an `unsigned
+ char' -- the range is inclusive, so if `range_end' == 0xff
+ (assuming 8-bit characters), we would otherwise go into an infinite
+ loop, since all characters <= 0xff. */
+ for (this_char = range_start; this_char <= range_end; this_char++)
+ {
+ SET_LIST_BIT (TRANSLATE (this_char));
+ }
+
+ return REG_NOERROR;
+}
+
+/* Failure stack declarations and macros; both re_compile_fastmap and
+ re_match_2 use a failure stack. These have to be macros because of
+ REGEX_ALLOCATE. */
+
+
+/* Number of failure points for which to initially allocate space
+ when matching. If this number is exceeded, we allocate more
+ space, so it is not a hard limit. */
+#ifndef INIT_FAILURE_ALLOC
+#define INIT_FAILURE_ALLOC 5
+#endif
+
+/* Roughly the maximum number of failure points on the stack. Would be
+ exactly that if always used MAX_FAILURE_SPACE each time we failed.
+ This is a variable only so users of regex can assign to it; we never
+ change it ourselves. */
+int re_max_failures = 2000;
+
+typedef const unsigned char *fail_stack_elt_t;
+
+typedef struct
+{
+ fail_stack_elt_t *stack;
+ unsigned size;
+ unsigned avail; /* Offset of next open position. */
+} fail_stack_type;
+
+#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
+#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
+#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
+#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
+
+
+/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
+
+#define INIT_FAIL_STACK() \
+ do { \
+ fail_stack.stack = (fail_stack_elt_t *) \
+ REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
+ \
+ if (fail_stack.stack == NULL) \
+ return -2; \
+ \
+ fail_stack.size = INIT_FAILURE_ALLOC; \
+ fail_stack.avail = 0; \
+ } while (0)
+
+
+/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
+
+ Return 1 if succeeds, and 0 if either ran out of memory
+ allocating space for it or it was already too large.
+
+ REGEX_REALLOCATE requires `destination' be declared. */
+
+#define DOUBLE_FAIL_STACK(fail_stack) \
+ ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
+ ? 0 \
+ : ((fail_stack).stack = (fail_stack_elt_t *) \
+ REGEX_REALLOCATE ((fail_stack).stack, \
+ (fail_stack).size * sizeof (fail_stack_elt_t), \
+ ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
+ \
+ (fail_stack).stack == NULL \
+ ? 0 \
+ : ((fail_stack).size <<= 1, \
+ 1)))
+
+
+/* Push PATTERN_OP on FAIL_STACK.
+
+ Return 1 if was able to do so and 0 if ran out of memory allocating
+ space to do so. */
+#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
+ ((FAIL_STACK_FULL () \
+ && !DOUBLE_FAIL_STACK (fail_stack)) \
+ ? 0 \
+ : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
+ 1))
+
+/* This pushes an item onto the failure stack. Must be a four-byte
+ value. Assumes the variable `fail_stack'. Probably should only
+ be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_ITEM(item) \
+ fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
+
+/* The complement operation. Assumes `fail_stack' is nonempty. */
+#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
+
+/* Used to omit pushing failure point id's when we're not debugging. */
+#ifdef DEBUG
+#define DEBUG_PUSH PUSH_FAILURE_ITEM
+#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
+#else
+#define DEBUG_PUSH(item)
+#define DEBUG_POP(item_addr)
+#endif
+
+
+/* Push the information about the state we will need
+ if we ever fail back to it.
+
+ Requires variables fail_stack, regstart, regend, reg_info, and
+ num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
+ declared.
+
+ Does `return FAILURE_CODE' if runs out of memory. */
+
+#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
+ do { \
+ char *destination; \
+ /* Must be int, so when we don't save any registers, the arithmetic \
+ of 0 + -1 isn't done as unsigned. */ \
+ int this_reg; \
+ \
+ DEBUG_STATEMENT (failure_id++); \
+ DEBUG_STATEMENT (nfailure_points_pushed++); \
+ DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
+ DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
+ DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
+ \
+ DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
+ DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
+ \
+ /* Ensure we have enough space allocated for what we will push. */ \
+ while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
+ { \
+ if (!DOUBLE_FAIL_STACK (fail_stack)) \
+ return failure_code; \
+ \
+ DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
+ (fail_stack).size); \
+ DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
+ } \
+ \
+ /* Push the info, starting with the registers. */ \
+ DEBUG_PRINT1 ("\n"); \
+ \
+ for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
+ this_reg++) \
+ { \
+ DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
+ DEBUG_STATEMENT (num_regs_pushed++); \
+ \
+ DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
+ PUSH_FAILURE_ITEM (regstart[this_reg]); \
+ \
+ DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
+ PUSH_FAILURE_ITEM (regend[this_reg]); \
+ \
+ DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
+ DEBUG_PRINT2 (" match_null=%d", \
+ REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" matched_something=%d", \
+ MATCHED_SOMETHING (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" ever_matched=%d", \
+ EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
+ DEBUG_PRINT1 ("\n"); \
+ PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
+ } \
+ \
+ DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
+ PUSH_FAILURE_ITEM (lowest_active_reg); \
+ \
+ DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
+ PUSH_FAILURE_ITEM (highest_active_reg); \
+ \
+ DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
+ PUSH_FAILURE_ITEM (pattern_place); \
+ \
+ DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
+ DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
+ size2); \
+ DEBUG_PRINT1 ("'\n"); \
+ PUSH_FAILURE_ITEM (string_place); \
+ \
+ DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
+ DEBUG_PUSH (failure_id); \
+ } while (0)
+
+/* This is the number of items that are pushed and popped on the stack
+ for each register. */
+#define NUM_REG_ITEMS 3
+
+/* Individual items aside from the registers. */
+#ifdef DEBUG
+#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
+#else
+#define NUM_NONREG_ITEMS 4
+#endif
+
+/* We push at most this many items on the stack. */
+#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
+
+/* We actually push this many items. */
+#define NUM_FAILURE_ITEMS \
+ ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
+ + NUM_NONREG_ITEMS)
+
+/* How many items can still be added to the stack without overflowing it. */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+
+/* Pops what PUSH_FAIL_STACK pushes.
+
+ We restore into the parameters, all of which should be lvalues:
+ STR -- the saved data position.
+ PAT -- the saved pattern position.
+ LOW_REG, HIGH_REG -- the highest and lowest active registers.
+ REGSTART, REGEND -- arrays of string positions.
+ REG_INFO -- array of information about each subexpression.
+
+ Also assumes the variables `fail_stack' and (if debugging), `bufp',
+ `pend', `string1', `size1', `string2', and `size2'. */
+
+#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
+{ \
+ DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
+ int this_reg; \
+ const unsigned char *string_temp; \
+ \
+ assert (!FAIL_STACK_EMPTY ()); \
+ \
+ /* Remove failure points and point to how many regs pushed. */ \
+ DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
+ DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
+ DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
+ \
+ assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
+ \
+ DEBUG_POP (&failure_id); \
+ DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
+ \
+ /* If the saved string location is NULL, it came from an \
+ on_failure_keep_string_jump opcode, and we want to throw away the \
+ saved NULL, thus retaining our current position in the string. */ \
+ string_temp = POP_FAILURE_ITEM (); \
+ if (string_temp != NULL) \
+ str = (const char *) string_temp; \
+ \
+ DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
+ DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
+ DEBUG_PRINT1 ("'\n"); \
+ \
+ pat = (unsigned char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
+ \
+ /* Restore register info. */ \
+ high_reg = (unsigned) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
+ \
+ low_reg = (unsigned) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
+ \
+ for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
+ { \
+ DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
+ \
+ reg_info[this_reg].word = POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
+ \
+ regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
+ \
+ regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
+ } \
+ \
+ DEBUG_STATEMENT (nfailure_points_popped++); \
+} /* POP_FAILURE_POINT */
+
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+ BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
+ characters can start a string that matches the pattern. This fastmap
+ is used by re_search to skip quickly over impossible starting points.
+
+ The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+ area as BUFP->fastmap.
+
+ We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+ the pattern buffer.
+
+ Returns 0 if we succeed, -2 if an internal error. */
+
+int
+re_compile_fastmap (bufp)
+ struct re_pattern_buffer *bufp;
+{
+ int j, k;
+ fail_stack_type fail_stack;
+#ifndef REGEX_MALLOC
+ char *destination;
+#endif
+ /* We don't push any register information onto the failure stack. */
+ unsigned num_regs = 0;
+
+ register char *fastmap = bufp->fastmap;
+ unsigned char *pattern = bufp->buffer;
+ unsigned long size = bufp->used;
+ const unsigned char *p = pattern;
+ register unsigned char *pend = pattern + size;
+
+ /* Assume that each path through the pattern can be null until
+ proven otherwise. We set this false at the bottom of switch
+ statement, to which we get only if a particular path doesn't
+ match the empty string. */
+ boolean path_can_be_null = true;
+
+ /* We aren't doing a `succeed_n' to begin with. */
+ boolean succeed_n_p = false;
+
+ assert (fastmap != NULL && p != NULL);
+
+ INIT_FAIL_STACK ();
+ bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
+ bufp->fastmap_accurate = 1; /* It will be when we're done. */
+ bufp->can_be_null = 0;
+
+ while (p != pend || !FAIL_STACK_EMPTY ())
+ {
+ if (p == pend)
+ {
+ bufp->can_be_null |= path_can_be_null;
+
+ /* Reset for next path. */
+ path_can_be_null = true;
+
+ p = fail_stack.stack[--fail_stack.avail];
+ }
+
+ /* We should never be about to go beyond the end of the pattern. */
+ assert (p < pend);
+
+#ifdef SWITCH_ENUM_BUG
+ switch ((int) ((re_opcode_t) *p++))
+#else
+ switch ((re_opcode_t) *p++)
+#endif
+ {
+
+ /* I guess the idea here is to simply not bother with a fastmap
+ if a backreference is used, since it's too hard to figure out
+ the fastmap for the corresponding group. Setting
+ `can_be_null' stops `re_search_2' from using the fastmap, so
+ that is all we do. */
+ case duplicate:
+ bufp->can_be_null = 1;
+ return 0;
+
+
+ /* Following are the cases which match a character. These end
+ with `break'. */
+
+ case exactn:
+ fastmap[p[1]] = 1;
+ break;
+
+
+ case charset:
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+ fastmap[j] = 1;
+ break;
+
+
+ case charset_not:
+ /* Chars beyond end of map must be allowed. */
+ for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+ fastmap[j] = 1;
+ break;
+
+
+ case wordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) == Sword)
+ fastmap[j] = 1;
+ break;
+
+
+ case notwordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) != Sword)
+ fastmap[j] = 1;
+ break;
+
+
+ case anychar:
+ /* `.' matches anything ... */
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+
+ /* ... except perhaps newline. */
+ if (!(bufp->syntax & RE_DOT_NEWLINE))
+ fastmap['\n'] = 0;
+
+ /* Return if we have already set `can_be_null'; if we have,
+ then the fastmap is irrelevant. Something's wrong here. */
+ else if (bufp->can_be_null)
+ return 0;
+
+ /* Otherwise, have to check alternative paths. */
+ break;
+
+
+#ifdef emacs
+ case syntaxspec:
+ k = *p++;
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) == (enum syntaxcode) k)
+ fastmap[j] = 1;
+ break;
+
+
+ case notsyntaxspec:
+ k = *p++;
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) != (enum syntaxcode) k)
+ fastmap[j] = 1;
+ break;
+
+
+ /* All cases after this match the empty string. These end with
+ `continue'. */
+
+
+ case before_dot:
+ case at_dot:
+ case after_dot:
+ continue;
+#endif /* not emacs */
+
+
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ case wordbound:
+ case notwordbound:
+ case wordbeg:
+ case wordend:
+ case push_dummy_failure:
+ continue;
+
+
+ case jump_n:
+ case pop_failure_jump:
+ case maybe_pop_jump:
+ case jump:
+ case jump_past_alt:
+ case dummy_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (j, p);
+ p += j;
+ if (j > 0)
+ continue;
+
+ /* Jump backward implies we just went through the body of a
+ loop and matched nothing. Opcode jumped to should be
+ `on_failure_jump' or `succeed_n'. Just treat it like an
+ ordinary jump. For a * loop, it has pushed its failure
+ point already; if so, discard that as redundant. */
+ if ((re_opcode_t) *p != on_failure_jump
+ && (re_opcode_t) *p != succeed_n)
+ continue;
+
+ p++;
+ EXTRACT_NUMBER_AND_INCR (j, p);
+ p += j;
+
+ /* If what's on the stack is where we are now, pop it. */
+ if (!FAIL_STACK_EMPTY ()
+ && fail_stack.stack[fail_stack.avail - 1] == p)
+ fail_stack.avail--;
+
+ continue;
+
+
+ case on_failure_jump:
+ case on_failure_keep_string_jump:
+ handle_on_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (j, p);
+
+ /* For some patterns, e.g., `(a?)?', `p+j' here points to the
+ end of the pattern. We don't want to push such a point,
+ since when we restore it above, entering the switch will
+ increment `p' past the end of the pattern. We don't need
+ to push such a point since we obviously won't find any more
+ fastmap entries beyond `pend'. Such a pattern can match
+ the null string, though. */
+ if (p + j < pend)
+ {
+ if (!PUSH_PATTERN_OP (p + j, fail_stack))
+ return -2;
+ }
+ else
+ bufp->can_be_null = 1;
+
+ if (succeed_n_p)
+ {
+ EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
+ succeed_n_p = false;
+ }
+
+ continue;
+
+
+ case succeed_n:
+ /* Get to the number of times to succeed. */
+ p += 2;
+
+ /* Increment p past the n for when k != 0. */
+ EXTRACT_NUMBER_AND_INCR (k, p);
+ if (k == 0)
+ {
+ p -= 4;
+ succeed_n_p = true; /* Spaghetti code alert. */
+ goto handle_on_failure_jump;
+ }
+ continue;
+
+
+ case set_number_at:
+ p += 4;
+ continue;
+
+
+ case start_memory:
+ case stop_memory:
+ p += 2;
+ continue;
+
+
+ default:
+ abort (); /* We have listed all the cases. */
+ } /* switch *p++ */
+
+ /* Getting here means we have found the possible starting
+ characters for one path of the pattern -- and that the empty
+ string does not match. We need not follow this path further.
+ Instead, look at the next alternative (remembered on the
+ stack), or quit if no more. The test at the top of the loop
+ does these things. */
+ path_can_be_null = false;
+ p = pend;
+ } /* while p */
+
+ /* Set `can_be_null' for the last path (also the first path, if the
+ pattern is empty). */
+ bufp->can_be_null |= path_can_be_null;
+ return 0;
+} /* re_compile_fastmap */
+
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+ ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
+ this memory for recording register information. STARTS and ENDS
+ must be allocated using the malloc library routine, and must each
+ be at least NUM_REGS * sizeof (regoff_t) bytes long.
+
+ If NUM_REGS == 0, then subsequent matches should allocate their own
+ register data.
+
+ Unless this function is called, the first search or match using
+ PATTERN_BUFFER will allocate its own register data, without
+ freeing the old data. */
+
+void
+re_set_registers (bufp, regs, num_regs, starts, ends)
+ struct re_pattern_buffer *bufp;
+ struct re_registers *regs;
+ unsigned num_regs;
+ regoff_t *starts, *ends;
+{
+ if (num_regs)
+ {
+ bufp->regs_allocated = REGS_REALLOCATE;
+ regs->num_regs = num_regs;
+ regs->start = starts;
+ regs->end = ends;
+ }
+ else
+ {
+ bufp->regs_allocated = REGS_UNALLOCATED;
+ regs->num_regs = 0;
+ regs->start = regs->end = (regoff_t *) 0;
+ }
+}
+
+/* Searching routines. */
+
+/* Like re_search_2, below, but only one string is specified, and
+ doesn't let you say where to stop matching. */
+
+int
+re_search (bufp, string, size, startpos, range, regs)
+ struct re_pattern_buffer *bufp;
+ const char *string;
+ int size, startpos, range;
+ struct re_registers *regs;
+{
+ return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
+ regs, size);
+}
+
+
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+ virtual concatenation of STRING1 and STRING2, starting first at index
+ STARTPOS, then at STARTPOS + 1, and so on.
+
+ STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+ RANGE is how far to scan while trying to match. RANGE = 0 means try
+ only at STARTPOS; in general, the last start tried is STARTPOS +
+ RANGE.
+
+ In REGS, return the indices of the virtual concatenation of STRING1
+ and STRING2 that matched the entire BUFP->buffer and its contained
+ subexpressions.
+
+ Do not consider matching one past the index STOP in the virtual
+ concatenation of STRING1 and STRING2.
+
+ We return either the position in the strings at which the match was
+ found, -1 if no match, or -2 if error (such as failure
+ stack overflow). */
+
+int
+re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
+ struct re_pattern_buffer *bufp;
+ const char *string1, *string2;
+ int size1, size2;
+ int startpos;
+ int range;
+ struct re_registers *regs;
+ int stop;
+{
+ int val;
+ register char *fastmap = bufp->fastmap;
+ register char *translate = bufp->translate;
+ int total_size = size1 + size2;
+ int endpos = startpos + range;
+
+ /* Check for out-of-range STARTPOS. */
+ if (startpos < 0 || startpos > total_size)
+ return -1;
+
+ /* Fix up RANGE if it might eventually take us outside
+ the virtual concatenation of STRING1 and STRING2. */
+ if (endpos < -1)
+ range = -1 - startpos;
+ else if (endpos > total_size)
+ range = total_size - startpos;
+
+ /* If the search isn't to be a backwards one, don't waste time in a
+ search for a pattern that must be anchored. */
+ if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
+ {
+ if (startpos > 0)
+ return -1;
+ else
+ range = 1;
+ }
+
+ /* Update the fastmap now if not correct already. */
+ if (fastmap && !bufp->fastmap_accurate)
+ if (re_compile_fastmap (bufp) == -2)
+ return -2;
+
+ /* Loop through the string, looking for a place to start matching. */
+ for (;;)
+ {
+ /* If a fastmap is supplied, skip quickly over characters that
+ cannot be the start of a match. If the pattern can match the
+ null string, however, we don't need to skip characters; we want
+ the first null string. */
+ if (fastmap && startpos < total_size && !bufp->can_be_null)
+ {
+ if (range > 0) /* Searching forwards. */
+ {
+ register const char *d;
+ register int lim = 0;
+ int irange = range;
+
+ if (startpos < size1 && startpos + range >= size1)
+ lim = range - (size1 - startpos);
+
+ d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
+
+ /* Written out as an if-else to avoid testing `translate'
+ inside the loop. */
+ if (translate)
+ while (range > lim
+ && !fastmap[(unsigned char)
+ translate[(unsigned char) *d++]])
+ range--;
+ else
+ while (range > lim && !fastmap[(unsigned char) *d++])
+ range--;
+
+ startpos += irange - range;
+ }
+ else /* Searching backwards. */
+ {
+ register char c = (size1 == 0 || startpos >= size1
+ ? string2[startpos - size1]
+ : string1[startpos]);
+
+ if (!fastmap[(unsigned char) TRANSLATE (c)])
+ goto advance;
+ }
+ }
+
+ /* If can't match the null string, and that's all we have left, fail. */
+ if (range >= 0 && startpos == total_size && fastmap
+ && !bufp->can_be_null)
+ return -1;
+
+ val = re_match_2 (bufp, string1, size1, string2, size2,
+ startpos, regs, stop);
+ if (val >= 0)
+ return startpos;
+
+ if (val == -2)
+ return -2;
+
+ advance:
+ if (!range)
+ break;
+ else if (range > 0)
+ {
+ range--;
+ startpos++;
+ }
+ else
+ {
+ range++;
+ startpos--;
+ }
+ }
+ return -1;
+} /* re_search_2 */
+
+/* Declarations and macros for re_match_2. */
+
+static int bcmp_translate ();
+static boolean alt_match_null_string_p (),
+ common_op_match_null_string_p (),
+ group_match_null_string_p ();
+
+/* Structure for per-register (a.k.a. per-group) information.
+ This must not be longer than one word, because we push this value
+ onto the failure stack. Other register information, such as the
+ starting and ending positions (which are addresses), and the list of
+ inner groups (which is a bits list) are maintained in separate
+ variables.
+
+ We are making a (strictly speaking) nonportable assumption here: that
+ the compiler will pack our bit fields into something that fits into
+ the type of `word', i.e., is something that fits into one item on the
+ failure stack. */
+typedef union
+{
+ fail_stack_elt_t word;
+ struct
+ {
+ /* This field is one if this group can match the empty string,
+ zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
+#define MATCH_NULL_UNSET_VALUE 3
+ unsigned match_null_string_p : 2;
+ unsigned is_active : 1;
+ unsigned matched_something : 1;
+ unsigned ever_matched_something : 1;
+ } bits;
+} register_info_type;
+
+#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
+#define IS_ACTIVE(R) ((R).bits.is_active)
+#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
+#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
+
+
+/* Call this when have matched a real character; it sets `matched' flags
+ for the subexpressions which we are currently inside. Also records
+ that those subexprs have matched. */
+#define SET_REGS_MATCHED() \
+ do \
+ { \
+ unsigned r; \
+ for (r = lowest_active_reg; r <= highest_active_reg; r++) \
+ { \
+ MATCHED_SOMETHING (reg_info[r]) \
+ = EVER_MATCHED_SOMETHING (reg_info[r]) \
+ = 1; \
+ } \
+ } \
+ while (0)
+
+
+/* This converts PTR, a pointer into one of the search strings `string1'
+ and `string2' into an offset from the beginning of that string. */
+#define POINTER_TO_OFFSET(ptr) \
+ (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
+
+/* Registers are set to a sentinel when they haven't yet matched. */
+#define REG_UNSET_VALUE ((char *) -1)
+#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
+
+
+/* Macros for dealing with the split strings in re_match_2. */
+
+#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
+
+/* Call before fetching a character with *d. This switches over to
+ string2 if necessary. */
+#define PREFETCH() \
+ while (d == dend) \
+ { \
+ /* End of string2 => fail. */ \
+ if (dend == end_match_2) \
+ goto fail; \
+ /* End of string1 => advance to string2. */ \
+ d = string2; \
+ dend = end_match_2; \
+ }
+
+
+/* Test if at very beginning or at very end of the virtual concatenation
+ of `string1' and `string2'. If only one string, it's `string2'. */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+
+/* Test if D points to a character which is word-constituent. We have
+ two special cases to check for: if past the end of string1, look at
+ the first character in string2; and if before the beginning of
+ string2, look at the last character in string1. */
+#define WORDCHAR_P(d) \
+ (SYNTAX ((d) == end1 ? *string2 \
+ : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
+ == Sword)
+
+/* Test if the character before D and the one at D differ with respect
+ to being word-constituent. */
+#define AT_WORD_BOUNDARY(d) \
+ (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
+ || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+
+
+/* Free everything we malloc. */
+#ifdef REGEX_MALLOC
+#define FREE_VAR(var) if (var) free (var); var = NULL
+#define FREE_VARIABLES() \
+ do { \
+ FREE_VAR (fail_stack.stack); \
+ FREE_VAR (regstart); \
+ FREE_VAR (regend); \
+ FREE_VAR (old_regstart); \
+ FREE_VAR (old_regend); \
+ FREE_VAR (best_regstart); \
+ FREE_VAR (best_regend); \
+ FREE_VAR (reg_info); \
+ FREE_VAR (reg_dummy); \
+ FREE_VAR (reg_info_dummy); \
+ } while (0)
+#else /* not REGEX_MALLOC */
+/* Some MIPS systems (at least) want this to free alloca'd storage. */
+#define FREE_VARIABLES() alloca (0)
+#endif /* not REGEX_MALLOC */
+
+
+/* These values must meet several constraints. They must not be valid
+ register values; since we have a limit of 255 registers (because
+ we use only one byte in the pattern for the register number), we can
+ use numbers larger than 255. They must differ by 1, because of
+ NUM_FAILURE_ITEMS above. And the value for the lowest register must
+ be larger than the value for the highest register, so we do not try
+ to actually save any registers when none are active. */
+#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+
+/* Matching routines. */
+
+#ifndef emacs /* Emacs never uses this. */
+/* re_match is like re_match_2 except it takes only a single string. */
+
+int
+re_match (bufp, string, size, pos, regs)
+ struct re_pattern_buffer *bufp;
+ const char *string;
+ int size, pos;
+ struct re_registers *regs;
+ {
+ return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
+}
+#endif /* not emacs */
+
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+ the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+ and SIZE2, respectively). We start matching at POS, and stop
+ matching at STOP.
+
+ If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+ store offsets for the substring each group matched in REGS. See the
+ documentation for exactly how many groups we fill.
+
+ We return -1 if no match, -2 if an internal error (such as the
+ failure stack overflowing). Otherwise, we return the length of the
+ matched substring. */
+
+int
+re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+ struct re_pattern_buffer *bufp;
+ const char *string1, *string2;
+ int size1, size2;
+ int pos;
+ struct re_registers *regs;
+ int stop;
+{
+ /* General temporaries. */
+ int mcnt;
+ unsigned char *p1;
+
+ /* Just past the end of the corresponding string. */
+ const char *end1, *end2;
+
+ /* Pointers into string1 and string2, just past the last characters in
+ each to consider matching. */
+ const char *end_match_1, *end_match_2;
+
+ /* Where we are in the data, and the end of the current string. */
+ const char *d, *dend;
+
+ /* Where we are in the pattern, and the end of the pattern. */
+ unsigned char *p = bufp->buffer;
+ register unsigned char *pend = p + bufp->used;
+
+ /* We use this to map every character in the string. */
+ char *translate = bufp->translate;
+
+ /* Failure point stack. Each place that can handle a failure further
+ down the line pushes a failure point on this stack. It consists of
+ restart, regend, and reg_info for all registers corresponding to
+ the subexpressions we're currently inside, plus the number of such
+ registers, and, finally, two char *'s. The first char * is where
+ to resume scanning the pattern; the second one is where to resume
+ scanning the strings. If the latter is zero, the failure point is
+ a ``dummy''; if a failure happens and the failure point is a dummy,
+ it gets discarded and the next next one is tried. */
+ fail_stack_type fail_stack;
+#ifdef DEBUG
+ static unsigned failure_id = 0;
+ unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
+
+ /* We fill all the registers internally, independent of what we
+ return, for use in backreferences. The number here includes
+ an element for register zero. */
+ unsigned num_regs = bufp->re_nsub + 1;
+
+ /* The currently active registers. */
+ unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+
+ /* Information on the contents of registers. These are pointers into
+ the input strings; they record just what was matched (on this
+ attempt) by a subexpression part of the pattern, that is, the
+ regnum-th regstart pointer points to where in the pattern we began
+ matching and the regnum-th regend points to right after where we
+ stopped matching the regnum-th subexpression. (The zeroth register
+ keeps track of what the whole pattern matches.) */
+ const char **regstart = NULL, **regend = NULL;
+
+ /* If a group that's operated upon by a repetition operator fails to
+ match anything, then the register for its start will need to be
+ restored because it will have been set to wherever in the string we
+ are when we last see its open-group operator. Similarly for a
+ register's end. */
+ const char **old_regstart = NULL, **old_regend = NULL;
+
+ /* The is_active field of reg_info helps us keep track of which (possibly
+ nested) subexpressions we are currently in. The matched_something
+ field of reg_info[reg_num] helps us tell whether or not we have
+ matched any of the pattern so far this time through the reg_num-th
+ subexpression. These two fields get reset each time through any
+ loop their register is in. */
+ register_info_type *reg_info = NULL;
+
+ /* The following record the register info as found in the above
+ variables when we find a match better than any we've seen before.
+ This happens as we backtrack through the failure points, which in
+ turn happens only if we have not yet matched the entire string. */
+ unsigned best_regs_set = false;
+ const char **best_regstart = NULL, **best_regend = NULL;
+
+ /* Logically, this is `best_regend[0]'. But we don't want to have to
+ allocate space for that if we're not allocating space for anything
+ else (see below). Also, we never need info about register 0 for
+ any of the other register vectors, and it seems rather a kludge to
+ treat `best_regend' differently than the rest. So we keep track of
+ the end of the best match so far in a separate variable. We
+ initialize this to NULL so that when we backtrack the first time
+ and need to test it, it's not garbage. */
+ const char *match_end = NULL;
+
+ /* Used when we pop values we don't care about. */
+ const char **reg_dummy = NULL;
+ register_info_type *reg_info_dummy = NULL;
+
+#ifdef DEBUG
+ /* Counts the total number of registers pushed. */
+ unsigned num_regs_pushed = 0;
+#endif
+
+ DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
+
+ INIT_FAIL_STACK ();
+
+ /* Do not bother to initialize all the register variables if there are
+ no groups in the pattern, as it takes a fair amount of time. If
+ there are groups, we include space for register 0 (the whole
+ pattern), even though we never use it, since it simplifies the
+ array indexing. We should fix this. */
+ if (bufp->re_nsub)
+ {
+ regstart = REGEX_TALLOC (num_regs, const char *);
+ regend = REGEX_TALLOC (num_regs, const char *);
+ old_regstart = REGEX_TALLOC (num_regs, const char *);
+ old_regend = REGEX_TALLOC (num_regs, const char *);
+ best_regstart = REGEX_TALLOC (num_regs, const char *);
+ best_regend = REGEX_TALLOC (num_regs, const char *);
+ reg_info = REGEX_TALLOC (num_regs, register_info_type);
+ reg_dummy = REGEX_TALLOC (num_regs, const char *);
+ reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
+
+ if (!(regstart && regend && old_regstart && old_regend && reg_info
+ && best_regstart && best_regend && reg_dummy && reg_info_dummy))
+ {
+ FREE_VARIABLES ();
+ return -2;
+ }
+ }
+#ifdef REGEX_MALLOC
+ else
+ {
+ /* We must initialize all our variables to NULL, so that
+ `FREE_VARIABLES' doesn't try to free them. */
+ regstart = regend = old_regstart = old_regend = best_regstart
+ = best_regend = reg_dummy = NULL;
+ reg_info = reg_info_dummy = (register_info_type *) NULL;
+ }
+#endif /* REGEX_MALLOC */
+
+ /* The starting position is bogus. */
+ if (pos < 0 || pos > size1 + size2)
+ {
+ FREE_VARIABLES ();
+ return -1;
+ }
+
+ /* Initialize subexpression text positions to -1 to mark ones that no
+ start_memory/stop_memory has been seen for. Also initialize the
+ register information struct. */
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
+ {
+ regstart[mcnt] = regend[mcnt]
+ = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+
+ REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
+ IS_ACTIVE (reg_info[mcnt]) = 0;
+ MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+ EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+ }
+
+ /* We move `string1' into `string2' if the latter's empty -- but not if
+ `string1' is null. */
+ if (size2 == 0 && string1 != NULL)
+ {
+ string2 = string1;
+ size2 = size1;
+ string1 = 0;
+ size1 = 0;
+ }
+ end1 = string1 + size1;
+ end2 = string2 + size2;
+
+ /* Compute where to stop matching, within the two strings. */
+ if (stop <= size1)
+ {
+ end_match_1 = string1 + stop;
+ end_match_2 = string2;
+ }
+ else
+ {
+ end_match_1 = end1;
+ end_match_2 = string2 + stop - size1;
+ }
+
+ /* `p' scans through the pattern as `d' scans through the data.
+ `dend' is the end of the input string that `d' points within. `d'
+ is advanced into the following input string whenever necessary, but
+ this happens before fetching; therefore, at the beginning of the
+ loop, `d' can be pointing at the end of a string, but it cannot
+ equal `string2'. */
+ if (size1 > 0 && pos <= size1)
+ {
+ d = string1 + pos;
+ dend = end_match_1;
+ }
+ else
+ {
+ d = string2 + pos - size1;
+ dend = end_match_2;
+ }
+
+ DEBUG_PRINT1 ("The compiled pattern is: ");
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+ DEBUG_PRINT1 ("The string to match is: `");
+ DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+ DEBUG_PRINT1 ("'\n");
+
+ /* This loops over pattern commands. It exits by returning from the
+ function if the match is complete, or it drops through if the match
+ fails at this starting point in the input data. */
+ for (;;)
+ {
+ DEBUG_PRINT2 ("\n0x%x: ", p);
+
+ if (p == pend)
+ { /* End of pattern means we might have succeeded. */
+ DEBUG_PRINT1 ("end of pattern ... ");
+
+ /* If we haven't matched the entire string, and we want the
+ longest match, try backtracking. */
+ if (d != end_match_2)
+ {
+ DEBUG_PRINT1 ("backtracking.\n");
+
+ if (!FAIL_STACK_EMPTY ())
+ { /* More failure points to try. */
+ boolean same_str_p = (FIRST_STRING_P (match_end)
+ == MATCHING_IN_FIRST_STRING);
+
+ /* If exceeds best match so far, save it. */
+ if (!best_regs_set
+ || (same_str_p && d > match_end)
+ || (!same_str_p && !MATCHING_IN_FIRST_STRING))
+ {
+ best_regs_set = true;
+ match_end = d;
+
+ DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
+ {
+ best_regstart[mcnt] = regstart[mcnt];
+ best_regend[mcnt] = regend[mcnt];
+ }
+ }
+ goto fail;
+ }
+
+ /* If no failure points, don't restore garbage. */
+ else if (best_regs_set)
+ {
+ restore_best_regs:
+ /* Restore best match. It may happen that `dend ==
+ end_match_1' while the restored d is in string2.
+ For example, the pattern `x.*y.*z' against the
+ strings `x-' and `y-z-', if the two strings are
+ not consecutive in memory. */
+ DEBUG_PRINT1 ("Restoring best registers.\n");
+
+ d = match_end;
+ dend = ((d >= string1 && d <= end1)
+ ? end_match_1 : end_match_2);
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
+ {
+ regstart[mcnt] = best_regstart[mcnt];
+ regend[mcnt] = best_regend[mcnt];
+ }
+ }
+ } /* d != end_match_2 */
+
+ DEBUG_PRINT1 ("Accepting match.\n");
+
+ /* If caller wants register contents data back, do it. */
+ if (regs && !bufp->no_sub)
+ {
+ /* Have the register data arrays been allocated? */
+ if (bufp->regs_allocated == REGS_UNALLOCATED)
+ { /* No. So allocate them with malloc. We need one
+ extra element beyond `num_regs' for the `-1' marker
+ GNU code uses. */
+ regs->num_regs = MAX (RE_NREGS, num_regs + 1);
+ regs->start = TALLOC (regs->num_regs, regoff_t);
+ regs->end = TALLOC (regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ return -2;
+ bufp->regs_allocated = REGS_REALLOCATE;
+ }
+ else if (bufp->regs_allocated == REGS_REALLOCATE)
+ { /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ if (regs->num_regs < num_regs + 1)
+ {
+ regs->num_regs = num_regs + 1;
+ RETALLOC (regs->start, regs->num_regs, regoff_t);
+ RETALLOC (regs->end, regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ return -2;
+ }
+ }
+ else
+ assert (bufp->regs_allocated == REGS_FIXED);
+
+ /* Convert the pointer data in `regstart' and `regend' to
+ indices. Register zero has to be set differently,
+ since we haven't kept track of any info for it. */
+ if (regs->num_regs > 0)
+ {
+ regs->start[0] = pos;
+ regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
+ : d - string2 + size1);
+ }
+
+ /* Go through the first `min (num_regs, regs->num_regs)'
+ registers, since that is all we initialized. */
+ for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
+ {
+ if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ else
+ {
+ regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
+ regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
+ }
+ }
+
+ /* If the regs structure we return has more elements than
+ were in the pattern, set the extra elements to -1. If
+ we (re)allocated the registers, this is the case,
+ because we always allocate enough to have at least one
+ -1 at the end. */
+ for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ } /* regs && !bufp->no_sub */
+
+ FREE_VARIABLES ();
+ DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
+ nfailure_points_pushed, nfailure_points_popped,
+ nfailure_points_pushed - nfailure_points_popped);
+ DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
+
+ mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+ ? string1
+ : string2 - size1);
+
+ DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
+
+ return mcnt;
+ }
+
+ /* Otherwise match next pattern command. */
+#ifdef SWITCH_ENUM_BUG
+ switch ((int) ((re_opcode_t) *p++))
+#else
+ switch ((re_opcode_t) *p++)
+#endif
+ {
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ currently have n == 0. */
+ case no_op:
+ DEBUG_PRINT1 ("EXECUTING no_op.\n");
+ break;
+
+
+ /* Match the next n pattern characters exactly. The following
+ byte in the pattern defines n, and the n bytes after that
+ are the characters to match. */
+ case exactn:
+ mcnt = *p++;
+ DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
+
+ /* This is written out as an if-else so we don't waste time
+ testing `translate' inside the loop. */
+ if (translate)
+ {
+ do
+ {
+ PREFETCH ();
+ if (translate[(unsigned char) *d++] != (char) *p++)
+ goto fail;
+ }
+ while (--mcnt);
+ }
+ else
+ {
+ do
+ {
+ PREFETCH ();
+ if (*d++ != (char) *p++) goto fail;
+ }
+ while (--mcnt);
+ }
+ SET_REGS_MATCHED ();
+ break;
+
+
+ /* Match any character except possibly a newline or a null. */
+ case anychar:
+ DEBUG_PRINT1 ("EXECUTING anychar.\n");
+
+ PREFETCH ();
+
+ if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
+ || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
+ goto fail;
+
+ SET_REGS_MATCHED ();
+ DEBUG_PRINT2 (" Matched `%d'.\n", *d);
+ d++;
+ break;
+
+
+ case charset:
+ case charset_not:
+ {
+ register unsigned char c;
+ boolean not = (re_opcode_t) *(p - 1) == charset_not;
+
+ DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
+
+ PREFETCH ();
+ c = TRANSLATE (*d); /* The character to match. */
+
+ /* Cast to `unsigned' instead of `unsigned char' in case the
+ bit list is a full 32 bytes long. */
+ if (c < (unsigned) (*p * BYTEWIDTH)
+ && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ not = !not;
+
+ p += 1 + *p;
+
+ if (!not) goto fail;
+
+ SET_REGS_MATCHED ();
+ d++;
+ break;
+ }
+
+
+ /* The beginning of a group is represented by start_memory.
+ The arguments are the register number in the next byte, and the
+ number of groups inner to this one in the next. The text
+ matched within the group is recorded (in the internal
+ registers data structure) under the register number. */
+ case start_memory:
+ DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
+
+ /* Find out if this group can match the empty string. */
+ p1 = p; /* To send to group_match_null_string_p. */
+
+ if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P (reg_info[*p])
+ = group_match_null_string_p (&p1, pend, reg_info);
+
+ /* Save the position in the string where we were the last time
+ we were at this open-group operator in case the group is
+ operated upon by a repetition operator, e.g., with `(a*)*b'
+ against `ab'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
+ : regstart[*p];
+ DEBUG_PRINT2 (" old_regstart: %d\n",
+ POINTER_TO_OFFSET (old_regstart[*p]));
+
+ regstart[*p] = d;
+ DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
+
+ IS_ACTIVE (reg_info[*p]) = 1;
+ MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+ /* This is the new highest active register. */
+ highest_active_reg = *p;
+
+ /* If nothing was active before, this is the new lowest active
+ register. */
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *p;
+
+ /* Move past the register number and inner group count. */
+ p += 2;
+ break;
+
+
+ /* The stop_memory opcode represents the end of a group. Its
+ arguments are the same as start_memory's: the register
+ number, and the number of inner groups. */
+ case stop_memory:
+ DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
+
+ /* We need to save the string position the last time we were at
+ this close-group operator in case the group is operated
+ upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+ against `aba'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ ? REG_UNSET (regend[*p]) ? d : regend[*p]
+ : regend[*p];
+ DEBUG_PRINT2 (" old_regend: %d\n",
+ POINTER_TO_OFFSET (old_regend[*p]));
+
+ regend[*p] = d;
+ DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
+
+ /* This register isn't active anymore. */
+ IS_ACTIVE (reg_info[*p]) = 0;
+
+ /* If this was the only register active, nothing is active
+ anymore. */
+ if (lowest_active_reg == highest_active_reg)
+ {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ }
+ else
+ { /* We must scan for the new highest active register, since
+ it isn't necessarily one less than now: consider
+ (a(b)c(d(e)f)g). When group 3 ends, after the f), the
+ new highest active register is 1. */
+ unsigned char r = *p - 1;
+ while (r > 0 && !IS_ACTIVE (reg_info[r]))
+ r--;
+
+ /* If we end up at register zero, that means that we saved
+ the registers as the result of an `on_failure_jump', not
+ a `start_memory', and we jumped to past the innermost
+ `stop_memory'. For example, in ((.)*) we save
+ registers 1 and 2 as a result of the *, but when we pop
+ back to the second ), we are at the stop_memory 1.
+ Thus, nothing is active. */
+ if (r == 0)
+ {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ }
+ else
+ highest_active_reg = r;
+ }
+
+ /* If just failed to match something this time around with a
+ group that's operated on by a repetition operator, try to
+ force exit from the ``loop'', and restore the register
+ information for this group that we had before trying this
+ last match. */
+ if ((!MATCHED_SOMETHING (reg_info[*p])
+ || (re_opcode_t) p[-3] == start_memory)
+ && (p + 2) < pend)
+ {
+ boolean is_a_jump_n = false;
+
+ p1 = p + 2;
+ mcnt = 0;
+ switch ((re_opcode_t) *p1++)
+ {
+ case jump_n:
+ is_a_jump_n = true;
+ case pop_failure_jump:
+ case maybe_pop_jump:
+ case jump:
+ case dummy_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ if (is_a_jump_n)
+ p1 += 2;
+ break;
+
+ default:
+ /* do nothing */ ;
+ }
+ p1 += mcnt;
+
+ /* If the next operation is a jump backwards in the pattern
+ to an on_failure_jump right before the start_memory
+ corresponding to this stop_memory, exit from the loop
+ by forcing a failure after pushing on the stack the
+ on_failure_jump's jump in the pattern, and d. */
+ if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
+ && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
+ {
+ /* If this group ever matched anything, then restore
+ what its registers were before trying this last
+ failed match, e.g., with `(a*)*b' against `ab' for
+ regstart[1], and, e.g., with `((a*)*(b*)*)*'
+ against `aba' for regend[3].
+
+ Also restore the registers for inner groups for,
+ e.g., `((a*)(b*))*' against `aba' (register 3 would
+ otherwise get trashed). */
+
+ if (EVER_MATCHED_SOMETHING (reg_info[*p]))
+ {
+ unsigned r;
+
+ EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+ /* Restore this and inner groups' (if any) registers. */
+ for (r = *p; r < *p + *(p + 1); r++)
+ {
+ regstart[r] = old_regstart[r];
+
+ /* xx why this test? */
+ if ((int) old_regend[r] >= (int) regstart[r])
+ regend[r] = old_regend[r];
+ }
+ }
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
+
+ goto fail;
+ }
+ }
+
+ /* Move past the register number and the inner group count. */
+ p += 2;
+ break;
+
+
+ /* \<digit> has been turned into a `duplicate' command which is
+ followed by the numeric value of <digit> as the register number. */
+ case duplicate:
+ {
+ register const char *d2, *dend2;
+ int regno = *p++; /* Get which register to match against. */
+ DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
+
+ /* Can't back reference a group which we've never matched. */
+ if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+ goto fail;
+
+ /* Where in input to try to start matching. */
+ d2 = regstart[regno];
+
+ /* Where to stop matching; if both the place to start and
+ the place to stop matching are in the same string, then
+ set to the place to stop, otherwise, for now have to use
+ the end of the first string. */
+
+ dend2 = ((FIRST_STRING_P (regstart[regno])
+ == FIRST_STRING_P (regend[regno]))
+ ? regend[regno] : end_match_1);
+ for (;;)
+ {
+ /* If necessary, advance to next segment in register
+ contents. */
+ while (d2 == dend2)
+ {
+ if (dend2 == end_match_2) break;
+ if (dend2 == regend[regno]) break;
+
+ /* End of string1 => advance to string2. */
+ d2 = string2;
+ dend2 = regend[regno];
+ }
+ /* At end of register contents => success */
+ if (d2 == dend2) break;
+
+ /* If necessary, advance to next segment in data. */
+ PREFETCH ();
+
+ /* How many characters left in this segment to match. */
+ mcnt = dend - d;
+
+ /* Want how many consecutive characters we can match in
+ one shot, so, if necessary, adjust the count. */
+ if (mcnt > dend2 - d2)
+ mcnt = dend2 - d2;
+
+ /* Compare that many; failure if mismatch, else move
+ past them. */
+ if (translate
+ ? bcmp_translate (d, d2, mcnt, translate)
+ : bcmp (d, d2, mcnt))
+ goto fail;
+ d += mcnt, d2 += mcnt;
+ }
+ }
+ break;
+
+
+ /* begline matches the empty string at the beginning of the string
+ (unless `not_bol' is set in `bufp'), and, if
+ `newline_anchor' is set, after newlines. */
+ case begline:
+ DEBUG_PRINT1 ("EXECUTING begline.\n");
+
+ if (AT_STRINGS_BEG (d))
+ {
+ if (!bufp->not_bol) break;
+ }
+ else if (d[-1] == '\n' && bufp->newline_anchor)
+ {
+ break;
+ }
+ /* In all other cases, we fail. */
+ goto fail;
+
+
+ /* endline is the dual of begline. */
+ case endline:
+ DEBUG_PRINT1 ("EXECUTING endline.\n");
+
+ if (AT_STRINGS_END (d))
+ {
+ if (!bufp->not_eol) break;
+ }
+
+ /* We have to ``prefetch'' the next character. */
+ else if ((d == end1 ? *string2 : *d) == '\n'
+ && bufp->newline_anchor)
+ {
+ break;
+ }
+ goto fail;
+
+
+ /* Match at the very beginning of the data. */
+ case begbuf:
+ DEBUG_PRINT1 ("EXECUTING begbuf.\n");
+ if (AT_STRINGS_BEG (d))
+ break;
+ goto fail;
+
+
+ /* Match at the very end of the data. */
+ case endbuf:
+ DEBUG_PRINT1 ("EXECUTING endbuf.\n");
+ if (AT_STRINGS_END (d))
+ break;
+ goto fail;
+
+
+ /* on_failure_keep_string_jump is used to optimize `.*\n'. It
+ pushes NULL as the value for the string on the stack. Then
+ `pop_failure_point' will keep the current value for the
+ string, instead of restoring it. To see why, consider
+ matching `foo\nbar' against `.*\n'. The .* matches the foo;
+ then the . fails against the \n. But the next thing we want
+ to do is match the \n against the \n; if we restored the
+ string value, we would be back at the foo.
+
+ Because this is used only in specific cases, we don't need to
+ check all the things that `on_failure_jump' does, to make
+ sure the right things get saved on the stack. Hence we don't
+ share its code. The only reason to push anything on the
+ stack at all is that otherwise we would have to change
+ `anychar's code to do something besides goto fail in this
+ case; that seems worse than this. */
+ case on_failure_keep_string_jump:
+ DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
+
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
+ break;
+
+
+ /* Uses of on_failure_jump:
+
+ Each alternative starts with an on_failure_jump that points
+ to the beginning of the next alternative. Each alternative
+ except the last ends with a jump that in effect jumps past
+ the rest of the alternatives. (They really jump to the
+ ending jump of the following alternative, because tensioning
+ these jumps is a hassle.)
+
+ Repeats start with an on_failure_jump that points past both
+ the repetition text and either the following jump or
+ pop_failure_jump back to this on_failure_jump. */
+ case on_failure_jump:
+ on_failure:
+ DEBUG_PRINT1 ("EXECUTING on_failure_jump");
+
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
+
+ /* If this on_failure_jump comes right before a group (i.e.,
+ the original * applied to a group), save the information
+ for that group and all inner ones, so that if we fail back
+ to this point, the group's information will be correct.
+ For example, in \(a*\)*\1, we need the preceding group,
+ and in \(\(a*\)b*\)\2, we need the inner group. */
+
+ /* We can't use `p' to check ahead because we push
+ a failure point to `p + mcnt' after we do this. */
+ p1 = p;
+
+ /* We need to skip no_op's before we look for the
+ start_memory in case this on_failure_jump is happening as
+ the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+ against aba. */
+ while (p1 < pend && (re_opcode_t) *p1 == no_op)
+ p1++;
+
+ if (p1 < pend && (re_opcode_t) *p1 == start_memory)
+ {
+ /* We have a new highest active register now. This will
+ get reset at the start_memory we are about to get to,
+ but we will have saved all the registers relevant to
+ this repetition op, as described above. */
+ highest_active_reg = *(p1 + 1) + *(p1 + 2);
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *(p1 + 1);
+ }
+
+ DEBUG_PRINT1 (":\n");
+ PUSH_FAILURE_POINT (p + mcnt, d, -2);
+ break;
+
+
+ /* A smart repeat ends with `maybe_pop_jump'.
+ We change it to either `pop_failure_jump' or `jump'. */
+ case maybe_pop_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
+ {
+ register unsigned char *p2 = p;
+
+ /* Compare the beginning of the repeat with what in the
+ pattern follows its end. If we can establish that there
+ is nothing that they would both match, i.e., that we
+ would have to backtrack because of (as in, e.g., `a*a')
+ then we can change to pop_failure_jump, because we'll
+ never have to backtrack.
+
+ This is not true in the case of alternatives: in
+ `(a|ab)*' we do need to backtrack to the `ab' alternative
+ (e.g., if the string was `ab'). But instead of trying to
+ detect that here, the alternative has put on a dummy
+ failure point which is what we will end up popping. */
+
+ /* Skip over open/close-group commands. */
+ while (p2 + 2 < pend
+ && ((re_opcode_t) *p2 == stop_memory
+ || (re_opcode_t) *p2 == start_memory))
+ p2 += 3; /* Skip over args, too. */
+
+ /* If we're at the end of the pattern, we can change. */
+ if (p2 == pend)
+ {
+ /* Consider what happens when matching ":\(.*\)"
+ against ":/". I don't really understand this code
+ yet. */
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1
+ (" End of pattern: change to `pop_failure_jump'.\n");
+ }
+
+ else if ((re_opcode_t) *p2 == exactn
+ || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
+ {
+ register unsigned char c
+ = *p2 == (unsigned char) endline ? '\n' : p2[2];
+ p1 = p + mcnt;
+
+ /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+ to the `maybe_finalize_jump' of this case. Examine what
+ follows. */
+ if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
+ c, p1[5]);
+ }
+
+ else if ((re_opcode_t) p1[3] == charset
+ || (re_opcode_t) p1[3] == charset_not)
+ {
+ int not = (re_opcode_t) p1[3] == charset_not;
+
+ if (c < (unsigned char) (p1[4] * BYTEWIDTH)
+ && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ not = !not;
+
+ /* `not' is equal to 1 if c would match, which means
+ that we can't change to pop_failure_jump. */
+ if (!not)
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ }
+ }
+ }
+ }
+ p -= 2; /* Point at relative address again. */
+ if ((re_opcode_t) p[-1] != pop_failure_jump)
+ {
+ p[-1] = (unsigned char) jump;
+ DEBUG_PRINT1 (" Match => jump.\n");
+ goto unconditional_jump;
+ }
+ /* Note fall through. */
+
+
+ /* The end of a simple repeat has a pop_failure_jump back to
+ its matching on_failure_jump, where the latter will push a
+ failure point. The pop_failure_jump takes off failure
+ points put on by this pop_failure_jump's matching
+ on_failure_jump; we got through the pattern to here from the
+ matching on_failure_jump, so didn't fail. */
+ case pop_failure_jump:
+ {
+ /* We need to pass separate storage for the lowest and
+ highest registers, even though we don't care about the
+ actual values. Otherwise, we will restore only one
+ register from the stack, since lowest will == highest in
+ `pop_failure_point'. */
+ unsigned dummy_low_reg, dummy_high_reg;
+ unsigned char *pdummy;
+ const char *sdummy;
+
+ DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
+ POP_FAILURE_POINT (sdummy, pdummy,
+ dummy_low_reg, dummy_high_reg,
+ reg_dummy, reg_dummy, reg_info_dummy);
+ }
+ /* Note fall through. */
+
+
+ /* Unconditionally jump (without popping any failure points). */
+ case jump:
+ unconditional_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
+ DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
+ p += mcnt; /* Do the jump. */
+ DEBUG_PRINT2 ("(to 0x%x).\n", p);
+ break;
+
+
+ /* We need this opcode so we can detect where alternatives end
+ in `group_match_null_string_p' et al. */
+ case jump_past_alt:
+ DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
+ goto unconditional_jump;
+
+
+ /* Normally, the on_failure_jump pushes a failure point, which
+ then gets popped at pop_failure_jump. We will end up at
+ pop_failure_jump, also, and with a pattern of, say, `a+', we
+ are skipping over the on_failure_jump, so we have to push
+ something meaningless for pop_failure_jump to pop. */
+ case dummy_failure_jump:
+ DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
+ /* It doesn't matter what we push for the string here. What
+ the code at `fail' tests is the value for the pattern. */
+ PUSH_FAILURE_POINT (0, 0, -2);
+ goto unconditional_jump;
+
+
+ /* At the end of an alternative, we need to push a dummy failure
+ point in case we are followed by a `pop_failure_jump', because
+ we don't want the failure point for the alternative to be
+ popped. For example, matching `(a|ab)*' against `aab'
+ requires that we match the `ab' alternative. */
+ case push_dummy_failure:
+ DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
+ /* See comments just above at `dummy_failure_jump' about the
+ two zeroes. */
+ PUSH_FAILURE_POINT (0, 0, -2);
+ break;
+
+ /* Have to succeed matching what follows at least n times.
+ After that, handle like `on_failure_jump'. */
+ case succeed_n:
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
+
+ assert (mcnt >= 0);
+ /* Originally, this is how many times we HAVE to succeed. */
+ if (mcnt > 0)
+ {
+ mcnt--;
+ p += 2;
+ STORE_NUMBER_AND_INCR (p, mcnt);
+ DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
+ }
+ else if (mcnt == 0)
+ {
+ DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
+ p[2] = (unsigned char) no_op;
+ p[3] = (unsigned char) no_op;
+ goto on_failure;
+ }
+ break;
+
+ case jump_n:
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
+
+ /* Originally, this is how many times we CAN jump. */
+ if (mcnt)
+ {
+ mcnt--;
+ STORE_NUMBER (p + 2, mcnt);
+ goto unconditional_jump;
+ }
+ /* If don't have to jump any more, skip over the rest of command. */
+ else
+ p += 4;
+ break;
+
+ case set_number_at:
+ {
+ DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
+
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ p1 = p + mcnt;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
+ STORE_NUMBER (p1, mcnt);
+ break;
+ }
+
+ case wordbound:
+ DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+ if (AT_WORD_BOUNDARY (d))
+ break;
+ goto fail;
+
+ case notwordbound:
+ DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+ if (AT_WORD_BOUNDARY (d))
+ goto fail;
+ break;
+
+ case wordbeg:
+ DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
+ if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
+ break;
+ goto fail;
+
+ case wordend:
+ DEBUG_PRINT1 ("EXECUTING wordend.\n");
+ if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
+ && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
+ break;
+ goto fail;
+
+#ifdef emacs
+#ifdef emacs19
+ case before_dot:
+ DEBUG_PRINT1 ("EXECUTING before_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) >= point)
+ goto fail;
+ break;
+
+ case at_dot:
+ DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) != point)
+ goto fail;
+ break;
+
+ case after_dot:
+ DEBUG_PRINT1 ("EXECUTING after_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) <= point)
+ goto fail;
+ break;
+#else /* not emacs19 */
+ case at_dot:
+ DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
+ goto fail;
+ break;
+#endif /* not emacs19 */
+
+ case syntaxspec:
+ DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
+ mcnt = *p++;
+ goto matchsyntax;
+
+ case wordchar:
+ DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
+ mcnt = (int) Sword;
+ matchsyntax:
+ PREFETCH ();
+ if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
+ goto fail;
+ SET_REGS_MATCHED ();
+ break;
+
+ case notsyntaxspec:
+ DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
+ mcnt = *p++;
+ goto matchnotsyntax;
+
+ case notwordchar:
+ DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
+ mcnt = (int) Sword;
+ matchnotsyntax:
+ PREFETCH ();
+ if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
+ goto fail;
+ SET_REGS_MATCHED ();
+ break;
+
+#else /* not emacs */
+ case wordchar:
+ DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
+ PREFETCH ();
+ if (!WORDCHAR_P (d))
+ goto fail;
+ SET_REGS_MATCHED ();
+ d++;
+ break;
+
+ case notwordchar:
+ DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
+ PREFETCH ();
+ if (WORDCHAR_P (d))
+ goto fail;
+ SET_REGS_MATCHED ();
+ d++;
+ break;
+#endif /* not emacs */
+
+ default:
+ abort ();
+ }
+ continue; /* Successfully executed one pattern command; keep going. */
+
+
+ /* We goto here if a matching operation fails. */
+ fail:
+ if (!FAIL_STACK_EMPTY ())
+ { /* A restart point is known. Restore to that state. */
+ DEBUG_PRINT1 ("\nFAIL:\n");
+ POP_FAILURE_POINT (d, p,
+ lowest_active_reg, highest_active_reg,
+ regstart, regend, reg_info);
+
+ /* If this failure point is a dummy, try the next one. */
+ if (!p)
+ goto fail;
+
+ /* If we failed to the end of the pattern, don't examine *p. */
+ assert (p <= pend);
+ if (p < pend)
+ {
+ boolean is_a_jump_n = false;
+
+ /* If failed to a backwards jump that's part of a repetition
+ loop, need to pop this failure point and use the next one. */
+ switch ((re_opcode_t) *p)
+ {
+ case jump_n:
+ is_a_jump_n = true;
+ case maybe_pop_jump:
+ case pop_failure_jump:
+ case jump:
+ p1 = p + 1;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+
+ if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
+ || (!is_a_jump_n
+ && (re_opcode_t) *p1 == on_failure_jump))
+ goto fail;
+ break;
+ default:
+ /* do nothing */ ;
+ }
+ }
+
+ if (d >= string1 && d <= end1)
+ dend = end_match_1;
+ }
+ else
+ break; /* Matching at this starting point really fails. */
+ } /* for (;;) */
+
+ if (best_regs_set)
+ goto restore_best_regs;
+
+ FREE_VARIABLES ();
+
+ return -1; /* Failure to match. */
+} /* re_match_2 */
+
+/* Subroutine definitions for re_match_2. */
+
+
+/* We are passed P pointing to a register number after a start_memory.
+
+ Return true if the pattern up to the corresponding stop_memory can
+ match the empty string, and false otherwise.
+
+ If we find the matching stop_memory, sets P to point to one past its number.
+ Otherwise, sets P to an undefined byte less than or equal to END.
+
+ We don't handle duplicates properly (yet). */
+
+static boolean
+group_match_null_string_p (p, end, reg_info)
+ unsigned char **p, *end;
+ register_info_type *reg_info;
+{
+ int mcnt;
+ /* Point to after the args to the start_memory. */
+ unsigned char *p1 = *p + 2;
+
+ while (p1 < end)
+ {
+ /* Skip over opcodes that can match nothing, and return true or
+ false, as appropriate, when we get to one that can't, or to the
+ matching stop_memory. */
+
+ switch ((re_opcode_t) *p1)
+ {
+ /* Could be either a loop or a series of alternatives. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+ /* If the next operation is not a jump backwards in the
+ pattern. */
+
+ if (mcnt >= 0)
+ {
+ /* Go through the on_failure_jumps of the alternatives,
+ seeing if any of the alternatives cannot match nothing.
+ The last alternative starts with only a jump,
+ whereas the rest start with on_failure_jump and end
+ with a jump, e.g., here is the pattern for `a|b|c':
+
+ /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+ /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+ /exactn/1/c
+
+ So, we have to first go through the first (n-1)
+ alternatives and then deal with the last one separately. */
+
+
+ /* Deal with the first (n-1) alternatives, which start
+ with an on_failure_jump (see above) that jumps to right
+ past a jump_past_alt. */
+
+ while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
+ {
+ /* `mcnt' holds how many bytes long the alternative
+ is, including the ending `jump_past_alt' and
+ its number. */
+
+ if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
+ reg_info))
+ return false;
+
+ /* Move to right after this alternative, including the
+ jump_past_alt. */
+ p1 += mcnt;
+
+ /* Break if it's the beginning of an n-th alternative
+ that doesn't begin with an on_failure_jump. */
+ if ((re_opcode_t) *p1 != on_failure_jump)
+ break;
+
+ /* Still have to check that it's not an n-th
+ alternative that starts with an on_failure_jump. */
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
+ {
+ /* Get to the beginning of the n-th alternative. */
+ p1 -= 3;
+ break;
+ }
+ }
+
+ /* Deal with the last alternative: go back and get number
+ of the `jump_past_alt' just before it. `mcnt' contains
+ the length of the alternative. */
+ EXTRACT_NUMBER (mcnt, p1 - 2);
+
+ if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
+ return false;
+
+ p1 += mcnt; /* Get past the n-th alternative. */
+ } /* if mcnt > 0 */
+ break;
+
+
+ case stop_memory:
+ assert (p1[1] == **p);
+ *p = p1 + 2;
+ return true;
+
+
+ default:
+ if (!common_op_match_null_string_p (&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return false;
+} /* group_match_null_string_p */
+
+
+/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+ It expects P to be the first byte of a single alternative and END one
+ byte past the last. The alternative can contain groups. */
+
+static boolean
+alt_match_null_string_p (p, end, reg_info)
+ unsigned char *p, *end;
+ register_info_type *reg_info;
+{
+ int mcnt;
+ unsigned char *p1 = p;
+
+ while (p1 < end)
+ {
+ /* Skip over opcodes that can match nothing, and break when we get
+ to one that can't. */
+
+ switch ((re_opcode_t) *p1)
+ {
+ /* It's a loop. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+ break;
+
+ default:
+ if (!common_op_match_null_string_p (&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return true;
+} /* alt_match_null_string_p */
+
+
+/* Deals with the ops common to group_match_null_string_p and
+ alt_match_null_string_p.
+
+ Sets P to one after the op and its arguments, if any. */
+
+static boolean
+common_op_match_null_string_p (p, end, reg_info)
+ unsigned char **p, *end;
+ register_info_type *reg_info;
+{
+ int mcnt;
+ boolean ret;
+ int reg_no;
+ unsigned char *p1 = *p;
+
+ switch ((re_opcode_t) *p1++)
+ {
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ case wordbeg:
+ case wordend:
+ case wordbound:
+ case notwordbound:
+#ifdef emacs
+ case before_dot:
+ case at_dot:
+ case after_dot:
+#endif
+ break;
+
+ case start_memory:
+ reg_no = *p1;
+ assert (reg_no > 0 && reg_no <= MAX_REGNUM);
+ ret = group_match_null_string_p (&p1, end, reg_info);
+
+ /* Have to set this here in case we're checking a group which
+ contains a group and a back reference to it. */
+
+ if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
+
+ if (!ret)
+ return false;
+ break;
+
+ /* If this is an optimized succeed_n for zero times, make the jump. */
+ case jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ if (mcnt >= 0)
+ p1 += mcnt;
+ else
+ return false;
+ break;
+
+ case succeed_n:
+ /* Get to the number of times to succeed. */
+ p1 += 2;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+ if (mcnt == 0)
+ {
+ p1 -= 4;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+ }
+ else
+ return false;
+ break;
+
+ case duplicate:
+ if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
+ return false;
+ break;
+
+ case set_number_at:
+ p1 += 4;
+
+ default:
+ /* All other opcodes mean we cannot match the empty string. */
+ return false;
+ }
+
+ *p = p1;
+ return true;
+} /* common_op_match_null_string_p */
+
+
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+ bytes; nonzero otherwise. */
+
+static int
+bcmp_translate(
+ unsigned char *s1,
+ unsigned char *s2,
+ int len,
+ char *translate
+)
+{
+ register unsigned char *p1 = s1, *p2 = s2;
+ while (len)
+ {
+ if (translate[*p1++] != translate[*p2++]) return 1;
+ len--;
+ }
+ return 0;
+}
+
+/* Entry points for GNU code. */
+
+/* re_compile_pattern is the GNU regular expression compiler: it
+ compiles PATTERN (of length SIZE) and puts the result in BUFP.
+ Returns 0 if the pattern was valid, otherwise an error string.
+
+ Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+ are set in BUFP on entry.
+
+ We call regex_compile to do the actual compilation. */
+
+const char *
+re_compile_pattern (pattern, length, bufp)
+ const char *pattern;
+ int length;
+ struct re_pattern_buffer *bufp;
+{
+ reg_errcode_t ret;
+
+ /* GNU code is written to assume at least RE_NREGS registers will be set
+ (and at least one extra will be -1). */
+ bufp->regs_allocated = REGS_UNALLOCATED;
+
+ /* And GNU code determines whether or not to get register information
+ by passing null for the REGS argument to re_match, etc., not by
+ setting no_sub. */
+ bufp->no_sub = 0;
+
+ /* Match anchors at newline. */
+ bufp->newline_anchor = 1;
+
+ ret = regex_compile (pattern, length, re_syntax_options, bufp);
+
+ return re_error_msg[(int) ret];
+}
+
+/* Entry points compatible with 4.2 BSD regex library. We don't define
+ them if this is an Emacs or POSIX compilation. */
+
+#if !defined (emacs) && !defined (_POSIX_SOURCE)
+
+/* BSD has one and only one pattern buffer. */
+static struct re_pattern_buffer re_comp_buf;
+
+char *
+re_comp (s)
+ const char *s;
+{
+ reg_errcode_t ret;
+
+ if (!s)
+ {
+ if (!re_comp_buf.buffer)
+ return "No previous regular expression";
+ return 0;
+ }
+
+ if (!re_comp_buf.buffer)
+ {
+ re_comp_buf.buffer = (unsigned char *) malloc (200);
+ if (re_comp_buf.buffer == NULL)
+ return "Memory exhausted";
+ re_comp_buf.allocated = 200;
+
+ re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
+ if (re_comp_buf.fastmap == NULL)
+ return "Memory exhausted";
+ }
+
+ /* Since `re_exec' always passes NULL for the `regs' argument, we
+ don't need to initialize the pattern buffer fields which affect it. */
+
+ /* Match anchors at newlines. */
+ re_comp_buf.newline_anchor = 1;
+
+ ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
+
+ /* Yes, we're discarding `const' here. */
+ return (char *) re_error_msg[(int) ret];
+}
+
+
+int
+re_exec (s)
+ const char *s;
+{
+ const int len = strlen (s);
+ return
+ 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
+}
+#endif /* not emacs and not _POSIX_SOURCE */
+
+/* POSIX.2 functions. Don't define these for Emacs. */
+
+#ifndef emacs
+
+/* regcomp takes a regular expression as a string and compiles it.
+
+ PREG is a regex_t *. We do not expect any fields to be initialized,
+ since POSIX says we shouldn't. Thus, we set
+
+ `buffer' to the compiled pattern;
+ `used' to the length of the compiled pattern;
+ `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+ REG_EXTENDED bit in CFLAGS is set; otherwise, to
+ RE_SYNTAX_POSIX_BASIC;
+ `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+ `fastmap' and `fastmap_accurate' to zero;
+ `re_nsub' to the number of subexpressions in PATTERN.
+
+ PATTERN is the address of the pattern string.
+
+ CFLAGS is a series of bits which affect compilation.
+
+ If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+ use POSIX basic syntax.
+
+ If REG_NEWLINE is set, then . and [^...] don't match newline.
+ Also, regexec will try a match beginning after every newline.
+
+ If REG_ICASE is set, then we considers upper- and lowercase
+ versions of letters to be equivalent when matching.
+
+ If REG_NOSUB is set, then when PREG is passed to regexec, that
+ routine will report only success or failure, and nothing about the
+ registers.
+
+ It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
+ the return codes and their meanings.) */
+
+int
+regcomp (preg, pattern, cflags)
+ regex_t *preg;
+ const char *pattern;
+ int cflags;
+{
+ reg_errcode_t ret;
+ unsigned syntax
+ = (cflags & REG_EXTENDED) ?
+ RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+
+ /* regex_compile will allocate the space for the compiled pattern. */
+ preg->buffer = 0;
+ preg->allocated = 0;
+
+ /* Don't bother to use a fastmap when searching. This simplifies the
+ REG_NEWLINE case: if we used a fastmap, we'd have to put all the
+ characters after newlines into the fastmap. This way, we just try
+ every character. */
+ preg->fastmap = 0;
+
+ if (cflags & REG_ICASE)
+ {
+ unsigned i;
+
+ preg->translate = (char *) malloc (CHAR_SET_SIZE);
+ if (preg->translate == NULL)
+ return (int) REG_ESPACE;
+
+ /* Map uppercase characters to corresponding lowercase ones. */
+ for (i = 0; i < CHAR_SET_SIZE; i++)
+ preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
+ }
+ else
+ preg->translate = NULL;
+
+ /* If REG_NEWLINE is set, newlines are treated differently. */
+ if (cflags & REG_NEWLINE)
+ { /* REG_NEWLINE implies neither . nor [^...] match newline. */
+ syntax &= ~RE_DOT_NEWLINE;
+ syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+ /* It also changes the matching behavior. */
+ preg->newline_anchor = 1;
+ }
+ else
+ preg->newline_anchor = 0;
+
+ preg->no_sub = !!(cflags & REG_NOSUB);
+
+ /* POSIX says a null character in the pattern terminates it, so we
+ can use strlen here in compiling the pattern. */
+ ret = regex_compile (pattern, strlen (pattern), syntax, preg);
+
+ /* POSIX doesn't distinguish between an unmatched open-group and an
+ unmatched close-group: both are REG_EPAREN. */
+ if (ret == REG_ERPAREN) ret = REG_EPAREN;
+
+ return (int) ret;
+}
+
+
+/* regexec searches for a given pattern, specified by PREG, in the
+ string STRING.
+
+ If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+ `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
+ least NMATCH elements, and we set them to the offsets of the
+ corresponding matched substrings.
+
+ EFLAGS specifies `execution flags' which affect matching: if
+ REG_NOTBOL is set, then ^ does not match at the beginning of the
+ string; if REG_NOTEOL is set, then $ does not match at the end.
+
+ We return 0 if we find a match and REG_NOMATCH if not. */
+
+int
+regexec (preg, string, nmatch, pmatch, eflags)
+ const regex_t *preg;
+ const char *string;
+ size_t nmatch;
+ regmatch_t pmatch[];
+ int eflags;
+{
+ int ret;
+ struct re_registers regs;
+ regex_t private_preg;
+ int len = strlen (string);
+ boolean want_reg_info = !preg->no_sub && nmatch > 0;
+
+ private_preg = *preg;
+
+ private_preg.not_bol = !!(eflags & REG_NOTBOL);
+ private_preg.not_eol = !!(eflags & REG_NOTEOL);
+
+ /* The user has told us exactly how many registers to return
+ information about, via `nmatch'. We have to pass that on to the
+ matching routines. */
+ private_preg.regs_allocated = REGS_FIXED;
+
+ if (want_reg_info)
+ {
+ regs.num_regs = nmatch;
+ regs.start = TALLOC (nmatch, regoff_t);
+ regs.end = TALLOC (nmatch, regoff_t);
+ if (regs.start == NULL || regs.end == NULL)
+ return (int) REG_NOMATCH;
+ }
+
+ /* Perform the searching operation. */
+ ret = re_search (&private_preg, string, len,
+ /* start: */ 0, /* range: */ len,
+ want_reg_info ? &regs : (struct re_registers *) 0);
+
+ /* Copy the register information to the POSIX structure. */
+ if (want_reg_info)
+ {
+ if (ret >= 0)
+ {
+ unsigned r;
+
+ for (r = 0; r < nmatch; r++)
+ {
+ pmatch[r].rm_so = regs.start[r];
+ pmatch[r].rm_eo = regs.end[r];
+ }
+ }
+
+ /* If we needed the temporary register info, free the space now. */
+ free (regs.start);
+ free (regs.end);
+ }
+
+ /* We want zero return to mean success, unlike `re_search'. */
+ return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
+}
+
+
+/* Returns a message corresponding to an error code, ERRCODE, returned
+ from either regcomp or regexec. We don't use PREG here. */
+
+size_t
+regerror(int errcode, const regex_t *preg,
+ char *errbuf, size_t errbuf_size)
+{
+ const char *msg;
+ size_t msg_size;
+
+ if (errcode < 0
+ || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
+ /* Only error codes returned by the rest of the code should be passed
+ to this routine. If we are given anything else, or if other regex
+ code generates an invalid error code, then the program has a bug.
+ Dump core so we can fix it. */
+ abort ();
+
+ msg = re_error_msg[errcode];
+
+ /* POSIX doesn't require that we do anything in this case, but why
+ not be nice. */
+ if (! msg)
+ msg = "Success";
+
+ msg_size = strlen (msg) + 1; /* Includes the null. */
+
+ if (errbuf_size != 0)
+ {
+ if (msg_size > errbuf_size)
+ {
+ strncpy (errbuf, msg, errbuf_size - 1);
+ errbuf[errbuf_size - 1] = 0;
+ }
+ else
+ strcpy (errbuf, msg);
+ }
+
+ return msg_size;
+}
+
+
+/* Free dynamically allocated space used by PREG. */
+
+void
+regfree (preg)
+ regex_t *preg;
+{
+ if (preg->buffer != NULL)
+ free (preg->buffer);
+ preg->buffer = NULL;
+
+ preg->allocated = 0;
+ preg->used = 0;
+
+ if (preg->fastmap != NULL)
+ free (preg->fastmap);
+ preg->fastmap = NULL;
+ preg->fastmap_accurate = 0;
+
+ if (preg->translate != NULL)
+ free (preg->translate);
+ preg->translate = NULL;
+}
+
+#endif /* not emacs */
+
+/*
+Local variables:
+make-backup-files: t
+version-control: t
+trim-versions-without-asking: nil
+End:
+*/