summaryrefslogtreecommitdiff
path: root/bisect.c
diff options
context:
space:
mode:
Diffstat (limited to 'bisect.c')
-rw-r--r--bisect.c49
1 files changed, 44 insertions, 5 deletions
diff --git a/bisect.c b/bisect.c
index 48acf73391..71c19581da 100644
--- a/bisect.c
+++ b/bisect.c
@@ -15,7 +15,7 @@
static struct sha1_array good_revs;
static struct sha1_array skipped_revs;
-static const unsigned char *current_bad_sha1;
+static unsigned char *current_bad_sha1;
static const char *argv_checkout[] = {"checkout", "-q", NULL, "--", NULL};
static const char *argv_show_branch[] = {"show-branch", NULL, NULL};
@@ -404,7 +404,8 @@ static int register_ref(const char *refname, const unsigned char *sha1,
int flags, void *cb_data)
{
if (!strcmp(refname, "bad")) {
- current_bad_sha1 = sha1;
+ current_bad_sha1 = xmalloc(20);
+ hashcpy(current_bad_sha1, sha1);
} else if (!prefixcmp(refname, "good-")) {
sha1_array_append(&good_revs, sha1);
} else if (!prefixcmp(refname, "skip-")) {
@@ -525,9 +526,9 @@ struct commit_list *filter_skipped(struct commit_list *list,
* is increased by one between each call, but that should not matter
* for this application.
*/
-static int get_prn(int count) {
+static unsigned get_prn(unsigned count) {
count = count * 1103515245 + 12345;
- return ((unsigned)(count/65536) % PRN_MODULO);
+ return (count/65536) % PRN_MODULO;
}
/*
@@ -833,7 +834,7 @@ static int check_ancestors(const char *prefix)
*/
static void check_good_are_ancestors_of_bad(const char *prefix, int no_checkout)
{
- char *filename = xstrdup(git_path("BISECT_ANCESTORS_OK"));
+ char *filename = git_pathdup("BISECT_ANCESTORS_OK");
struct stat st;
int fd;
@@ -956,3 +957,41 @@ int bisect_next_all(const char *prefix, int no_checkout)
return bisect_checkout(bisect_rev_hex, no_checkout);
}
+static inline int log2i(int n)
+{
+ int log2 = 0;
+
+ for (; n > 1; n >>= 1)
+ log2++;
+
+ return log2;
+}
+
+static inline int exp2i(int n)
+{
+ return 1 << n;
+}
+
+/*
+ * Estimate the number of bisect steps left (after the current step)
+ *
+ * For any x between 0 included and 2^n excluded, the probability for
+ * n - 1 steps left looks like:
+ *
+ * P(2^n + x) == (2^n - x) / (2^n + x)
+ *
+ * and P(2^n + x) < 0.5 means 2^n < 3x
+ */
+int estimate_bisect_steps(int all)
+{
+ int n, x, e;
+
+ if (all < 3)
+ return 0;
+
+ n = log2i(all);
+ e = exp2i(n);
+ x = all - e;
+
+ return (e < 3 * x) ? n : n - 1;
+}