diff options
Diffstat (limited to 'Documentation/technical')
-rw-r--r-- | Documentation/technical/api-builtin.txt | 73 | ||||
-rw-r--r-- | Documentation/technical/api-config.txt | 2 | ||||
-rw-r--r-- | Documentation/technical/api-hashmap.txt | 309 | ||||
-rw-r--r-- | Documentation/technical/api-parse-options.txt | 8 | ||||
-rw-r--r-- | Documentation/technical/api-ref-iteration.txt | 7 | ||||
-rw-r--r-- | Documentation/technical/api-string-list.txt | 209 | ||||
-rw-r--r-- | Documentation/technical/api-tree-walking.txt | 6 | ||||
-rw-r--r-- | Documentation/technical/pack-protocol.txt | 2 | ||||
-rw-r--r-- | Documentation/technical/trivial-merge.txt | 4 |
9 files changed, 13 insertions, 607 deletions
diff --git a/Documentation/technical/api-builtin.txt b/Documentation/technical/api-builtin.txt deleted file mode 100644 index 22a39b9299..0000000000 --- a/Documentation/technical/api-builtin.txt +++ /dev/null @@ -1,73 +0,0 @@ -builtin API -=========== - -Adding a new built-in ---------------------- - -There are 4 things to do to add a built-in command implementation to -Git: - -. Define the implementation of the built-in command `foo` with - signature: - - int cmd_foo(int argc, const char **argv, const char *prefix); - -. Add the external declaration for the function to `builtin.h`. - -. Add the command to the `commands[]` table defined in `git.c`. - The entry should look like: - - { "foo", cmd_foo, <options> }, -+ -where options is the bitwise-or of: - -`RUN_SETUP`:: - If there is not a Git directory to work on, abort. If there - is a work tree, chdir to the top of it if the command was - invoked in a subdirectory. If there is no work tree, no - chdir() is done. - -`RUN_SETUP_GENTLY`:: - If there is a Git directory, chdir as per RUN_SETUP, otherwise, - don't chdir anywhere. - -`USE_PAGER`:: - - If the standard output is connected to a tty, spawn a pager and - feed our output to it. - -`NEED_WORK_TREE`:: - - Make sure there is a work tree, i.e. the command cannot act - on bare repositories. - This only makes sense when `RUN_SETUP` is also set. - -. Add `builtin/foo.o` to `BUILTIN_OBJS` in `Makefile`. - -Additionally, if `foo` is a new command, there are 3 more things to do: - -. Add tests to `t/` directory. - -. Write documentation in `Documentation/git-foo.txt`. - -. Add an entry for `git-foo` to `command-list.txt`. - -. Add an entry for `/git-foo` to `.gitignore`. - - -How a built-in is called ------------------------- - -The implementation `cmd_foo()` takes three parameters, `argc`, `argv, -and `prefix`. The first two are similar to what `main()` of a -standalone command would be called with. - -When `RUN_SETUP` is specified in the `commands[]` table, and when you -were started from a subdirectory of the work tree, `cmd_foo()` is called -after chdir(2) to the top of the work tree, and `prefix` gets the path -to the subdirectory the command started from. This allows you to -convert a user-supplied pathname (typically relative to that directory) -to a pathname relative to the top of the work tree. - -The return value from `cmd_foo()` becomes the exit status of the -command. diff --git a/Documentation/technical/api-config.txt b/Documentation/technical/api-config.txt index 20741f345e..9a778b0cad 100644 --- a/Documentation/technical/api-config.txt +++ b/Documentation/technical/api-config.txt @@ -186,7 +186,7 @@ parsing is successful, the return value is the result. Same as `git_config_bool`, except that integers are returned as-is, and an `is_bool` flag is unset. -`git_config_maybe_bool`:: +`git_parse_maybe_bool`:: Same as `git_config_bool`, except that it returns -1 on error rather than dying. diff --git a/Documentation/technical/api-hashmap.txt b/Documentation/technical/api-hashmap.txt deleted file mode 100644 index ccc634bbd7..0000000000 --- a/Documentation/technical/api-hashmap.txt +++ /dev/null @@ -1,309 +0,0 @@ -hashmap API -=========== - -The hashmap API is a generic implementation of hash-based key-value mappings. - -Data Structures ---------------- - -`struct hashmap`:: - - The hash table structure. Members can be used as follows, but should - not be modified directly: -+ -The `size` member keeps track of the total number of entries (0 means the -hashmap is empty). -+ -`tablesize` is the allocated size of the hash table. A non-0 value indicates -that the hashmap is initialized. It may also be useful for statistical purposes -(i.e. `size / tablesize` is the current load factor). -+ -`cmpfn` stores the comparison function specified in `hashmap_init()`. In -advanced scenarios, it may be useful to change this, e.g. to switch between -case-sensitive and case-insensitive lookup. -+ -When `disallow_rehash` is set, automatic rehashes are prevented during inserts -and deletes. - -`struct hashmap_entry`:: - - An opaque structure representing an entry in the hash table, which must - be used as first member of user data structures. Ideally it should be - followed by an int-sized member to prevent unused memory on 64-bit - systems due to alignment. -+ -The `hash` member is the entry's hash code and the `next` member points to the -next entry in case of collisions (i.e. if multiple entries map to the same -bucket). - -`struct hashmap_iter`:: - - An iterator structure, to be used with hashmap_iter_* functions. - -Types ------ - -`int (*hashmap_cmp_fn)(const void *entry, const void *entry_or_key, const void *keydata)`:: - - User-supplied function to test two hashmap entries for equality. Shall - return 0 if the entries are equal. -+ -This function is always called with non-NULL `entry` / `entry_or_key` -parameters that have the same hash code. When looking up an entry, the `key` -and `keydata` parameters to hashmap_get and hashmap_remove are always passed -as second and third argument, respectively. Otherwise, `keydata` is NULL. - -Functions ---------- - -`unsigned int strhash(const char *buf)`:: -`unsigned int strihash(const char *buf)`:: -`unsigned int memhash(const void *buf, size_t len)`:: -`unsigned int memihash(const void *buf, size_t len)`:: -`unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len)`:: - - Ready-to-use hash functions for strings, using the FNV-1 algorithm (see - http://www.isthe.com/chongo/tech/comp/fnv). -+ -`strhash` and `strihash` take 0-terminated strings, while `memhash` and -`memihash` operate on arbitrary-length memory. -+ -`strihash` and `memihash` are case insensitive versions. -+ -`memihash_cont` is a variant of `memihash` that allows a computation to be -continued with another chunk of data. - -`unsigned int sha1hash(const unsigned char *sha1)`:: - - Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code - for use in hash tables. Cryptographic hashes are supposed to have - uniform distribution, so in contrast to `memhash()`, this just copies - the first `sizeof(int)` bytes without shuffling any bits. Note that - the results will be different on big-endian and little-endian - platforms, so they should not be stored or transferred over the net. - -`void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function, size_t initial_size)`:: - - Initializes a hashmap structure. -+ -`map` is the hashmap to initialize. -+ -The `equals_function` can be specified to compare two entries for equality. -If NULL, entries are considered equal if their hash codes are equal. -+ -If the total number of entries is known in advance, the `initial_size` -parameter may be used to preallocate a sufficiently large table and thus -prevent expensive resizing. If 0, the table is dynamically resized. - -`void hashmap_free(struct hashmap *map, int free_entries)`:: - - Frees a hashmap structure and allocated memory. -+ -`map` is the hashmap to free. -+ -If `free_entries` is true, each hashmap_entry in the map is freed as well -(using stdlib's free()). - -`void hashmap_entry_init(void *entry, unsigned int hash)`:: - - Initializes a hashmap_entry structure. -+ -`entry` points to the entry to initialize. -+ -`hash` is the hash code of the entry. -+ -The hashmap_entry structure does not hold references to external resources, -and it is safe to just discard it once you are done with it (i.e. if -your structure was allocated with xmalloc(), you can just free(3) it, -and if it is on stack, you can just let it go out of scope). - -`void *hashmap_get(const struct hashmap *map, const void *key, const void *keydata)`:: - - Returns the hashmap entry for the specified key, or NULL if not found. -+ -`map` is the hashmap structure. -+ -`key` is a hashmap_entry structure (or user data structure that starts with -hashmap_entry) that has at least been initialized with the proper hash code -(via `hashmap_entry_init`). -+ -If an entry with matching hash code is found, `key` and `keydata` are passed -to `hashmap_cmp_fn` to decide whether the entry matches the key. - -`void *hashmap_get_from_hash(const struct hashmap *map, unsigned int hash, const void *keydata)`:: - - Returns the hashmap entry for the specified hash code and key data, - or NULL if not found. -+ -`map` is the hashmap structure. -+ -`hash` is the hash code of the entry to look up. -+ -If an entry with matching hash code is found, `keydata` is passed to -`hashmap_cmp_fn` to decide whether the entry matches the key. The -`entry_or_key` parameter points to a bogus hashmap_entry structure that -should not be used in the comparison. - -`void *hashmap_get_next(const struct hashmap *map, const void *entry)`:: - - Returns the next equal hashmap entry, or NULL if not found. This can be - used to iterate over duplicate entries (see `hashmap_add`). -+ -`map` is the hashmap structure. -+ -`entry` is the hashmap_entry to start the search from, obtained via a previous -call to `hashmap_get` or `hashmap_get_next`. - -`void hashmap_add(struct hashmap *map, void *entry)`:: - - Adds a hashmap entry. This allows to add duplicate entries (i.e. - separate values with the same key according to hashmap_cmp_fn). -+ -`map` is the hashmap structure. -+ -`entry` is the entry to add. - -`void *hashmap_put(struct hashmap *map, void *entry)`:: - - Adds or replaces a hashmap entry. If the hashmap contains duplicate - entries equal to the specified entry, only one of them will be replaced. -+ -`map` is the hashmap structure. -+ -`entry` is the entry to add or replace. -+ -Returns the replaced entry, or NULL if not found (i.e. the entry was added). - -`void *hashmap_remove(struct hashmap *map, const void *key, const void *keydata)`:: - - Removes a hashmap entry matching the specified key. If the hashmap - contains duplicate entries equal to the specified key, only one of - them will be removed. -+ -`map` is the hashmap structure. -+ -`key` is a hashmap_entry structure (or user data structure that starts with -hashmap_entry) that has at least been initialized with the proper hash code -(via `hashmap_entry_init`). -+ -If an entry with matching hash code is found, `key` and `keydata` are -passed to `hashmap_cmp_fn` to decide whether the entry matches the key. -+ -Returns the removed entry, or NULL if not found. - -`void hashmap_disallow_rehash(struct hashmap *map, unsigned value)`:: - - Disallow/allow automatic rehashing of the hashmap during inserts - and deletes. -+ -This is useful if the caller knows that the hashmap will be accessed -by multiple threads. -+ -The caller is still responsible for any necessary locking; this simply -prevents unexpected rehashing. The caller is also responsible for properly -sizing the initial hashmap to ensure good performance. -+ -A call to allow rehashing does not force a rehash; that might happen -with the next insert or delete. - -`void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter)`:: -`void *hashmap_iter_next(struct hashmap_iter *iter)`:: -`void *hashmap_iter_first(struct hashmap *map, struct hashmap_iter *iter)`:: - - Used to iterate over all entries of a hashmap. Note that it is - not safe to add or remove entries to the hashmap while - iterating. -+ -`hashmap_iter_init` initializes a `hashmap_iter` structure. -+ -`hashmap_iter_next` returns the next hashmap_entry, or NULL if there are no -more entries. -+ -`hashmap_iter_first` is a combination of both (i.e. initializes the iterator -and returns the first entry, if any). - -`const char *strintern(const char *string)`:: -`const void *memintern(const void *data, size_t len)`:: - - Returns the unique, interned version of the specified string or data, - similar to the `String.intern` API in Java and .NET, respectively. - Interned strings remain valid for the entire lifetime of the process. -+ -Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned -strings / data must not be modified or freed. -+ -Interned strings are best used for short strings with high probability of -duplicates. -+ -Uses a hashmap to store the pool of interned strings. - -Usage example -------------- - -Here's a simple usage example that maps long keys to double values. ------------- -struct hashmap map; - -struct long2double { - struct hashmap_entry ent; /* must be the first member! */ - long key; - double value; -}; - -static int long2double_cmp(const struct long2double *e1, const struct long2double *e2, const void *unused) -{ - return !(e1->key == e2->key); -} - -void long2double_init(void) -{ - hashmap_init(&map, (hashmap_cmp_fn) long2double_cmp, 0); -} - -void long2double_free(void) -{ - hashmap_free(&map, 1); -} - -static struct long2double *find_entry(long key) -{ - struct long2double k; - hashmap_entry_init(&k, memhash(&key, sizeof(long))); - k.key = key; - return hashmap_get(&map, &k, NULL); -} - -double get_value(long key) -{ - struct long2double *e = find_entry(key); - return e ? e->value : 0; -} - -void set_value(long key, double value) -{ - struct long2double *e = find_entry(key); - if (!e) { - e = malloc(sizeof(struct long2double)); - hashmap_entry_init(e, memhash(&key, sizeof(long))); - e->key = key; - hashmap_add(&map, e); - } - e->value = value; -} ------------- - -Using variable-sized keys -------------------------- - -The `hashmap_entry_get` and `hashmap_entry_remove` functions expect an ordinary -`hashmap_entry` structure as key to find the correct entry. If the key data is -variable-sized (e.g. a FLEX_ARRAY string) or quite large, it is undesirable -to create a full-fledged entry structure on the heap and copy all the key data -into the structure. - -In this case, the `keydata` parameter can be used to pass -variable-sized key data directly to the comparison function, and the `key` -parameter can be a stripped-down, fixed size entry structure allocated on the -stack. - -See test-hashmap.c for an example using arbitrary-length strings as keys. diff --git a/Documentation/technical/api-parse-options.txt b/Documentation/technical/api-parse-options.txt index 36768b479e..829b558110 100644 --- a/Documentation/technical/api-parse-options.txt +++ b/Documentation/technical/api-parse-options.txt @@ -183,13 +183,13 @@ There are some macros to easily define options: scale the provided value by 1024, 1024^2 or 1024^3 respectively. The scaled value is put into `unsigned_long_var`. -`OPT_DATE(short, long, &int_var, description)`:: +`OPT_DATE(short, long, ×tamp_t_var, description)`:: Introduce an option with date argument, see `approxidate()`. - The timestamp is put into `int_var`. + The timestamp is put into `timestamp_t_var`. -`OPT_EXPIRY_DATE(short, long, &int_var, description)`:: +`OPT_EXPIRY_DATE(short, long, ×tamp_t_var, description)`:: Introduce an option with expiry date argument, see `parse_expiry_date()`. - The timestamp is put into `int_var`. + The timestamp is put into `timestamp_t_var`. `OPT_CALLBACK(short, long, &var, arg_str, description, func_ptr)`:: Introduce an option with argument. diff --git a/Documentation/technical/api-ref-iteration.txt b/Documentation/technical/api-ref-iteration.txt index 37379d8337..46c3d5c355 100644 --- a/Documentation/technical/api-ref-iteration.txt +++ b/Documentation/technical/api-ref-iteration.txt @@ -32,11 +32,8 @@ Iteration functions * `for_each_glob_ref_in()` the previous and `for_each_ref_in()` combined. -* `head_ref_submodule()`, `for_each_ref_submodule()`, - `for_each_ref_in_submodule()`, `for_each_tag_ref_submodule()`, - `for_each_branch_ref_submodule()`, `for_each_remote_ref_submodule()` - do the same as the functions described above but for a specified - submodule. +* Use `refs_` API for accessing submodules. The submodule ref store could + be obtained with `get_submodule_ref_store()`. * `for_each_rawref()` can be used to learn about broken ref and symref. diff --git a/Documentation/technical/api-string-list.txt b/Documentation/technical/api-string-list.txt deleted file mode 100644 index c08402b12e..0000000000 --- a/Documentation/technical/api-string-list.txt +++ /dev/null @@ -1,209 +0,0 @@ -string-list API -=============== - -The string_list API offers a data structure and functions to handle -sorted and unsorted string lists. A "sorted" list is one whose -entries are sorted by string value in `strcmp()` order. - -The 'string_list' struct used to be called 'path_list', but was renamed -because it is not specific to paths. - -The caller: - -. Allocates and clears a `struct string_list` variable. - -. Initializes the members. You might want to set the flag `strdup_strings` - if the strings should be strdup()ed. For example, this is necessary - when you add something like git_path("..."), since that function returns - a static buffer that will change with the next call to git_path(). -+ -If you need something advanced, you can manually malloc() the `items` -member (you need this if you add things later) and you should set the -`nr` and `alloc` members in that case, too. - -. Adds new items to the list, using `string_list_append`, - `string_list_append_nodup`, `string_list_insert`, - `string_list_split`, and/or `string_list_split_in_place`. - -. Can check if a string is in the list using `string_list_has_string` or - `unsorted_string_list_has_string` and get it from the list using - `string_list_lookup` for sorted lists. - -. Can sort an unsorted list using `string_list_sort`. - -. Can remove duplicate items from a sorted list using - `string_list_remove_duplicates`. - -. Can remove individual items of an unsorted list using - `unsorted_string_list_delete_item`. - -. Can remove items not matching a criterion from a sorted or unsorted - list using `filter_string_list`, or remove empty strings using - `string_list_remove_empty_items`. - -. Finally it should free the list using `string_list_clear`. - -Example: - ----- -struct string_list list = STRING_LIST_INIT_NODUP; -int i; - -string_list_append(&list, "foo"); -string_list_append(&list, "bar"); -for (i = 0; i < list.nr; i++) - printf("%s\n", list.items[i].string) ----- - -NOTE: It is more efficient to build an unsorted list and sort it -afterwards, instead of building a sorted list (`O(n log n)` instead of -`O(n^2)`). -+ -However, if you use the list to check if a certain string was added -already, you should not do that (using unsorted_string_list_has_string()), -because the complexity would be quadratic again (but with a worse factor). - -Functions ---------- - -* General ones (works with sorted and unsorted lists as well) - -`string_list_init`:: - - Initialize the members of the string_list, set `strdup_strings` - member according to the value of the second parameter. - -`filter_string_list`:: - - Apply a function to each item in a list, retaining only the - items for which the function returns true. If free_util is - true, call free() on the util members of any items that have - to be deleted. Preserve the order of the items that are - retained. - -`string_list_remove_empty_items`:: - - Remove any empty strings from the list. If free_util is true, - call free() on the util members of any items that have to be - deleted. Preserve the order of the items that are retained. - -`print_string_list`:: - - Dump a string_list to stdout, useful mainly for debugging purposes. It - can take an optional header argument and it writes out the - string-pointer pairs of the string_list, each one in its own line. - -`string_list_clear`:: - - Free a string_list. The `string` pointer of the items will be freed in - case the `strdup_strings` member of the string_list is set. The second - parameter controls if the `util` pointer of the items should be freed - or not. - -* Functions for sorted lists only - -`string_list_has_string`:: - - Determine if the string_list has a given string or not. - -`string_list_insert`:: - - Insert a new element to the string_list. The returned pointer can be - handy if you want to write something to the `util` pointer of the - string_list_item containing the just added string. If the given - string already exists the insertion will be skipped and the - pointer to the existing item returned. -+ -Since this function uses xrealloc() (which die()s if it fails) if the -list needs to grow, it is safe not to check the pointer. I.e. you may -write `string_list_insert(...)->util = ...;`. - -`string_list_lookup`:: - - Look up a given string in the string_list, returning the containing - string_list_item. If the string is not found, NULL is returned. - -`string_list_remove_duplicates`:: - - Remove all but the first of consecutive entries that have the - same string value. If free_util is true, call free() on the - util members of any items that have to be deleted. - -* Functions for unsorted lists only - -`string_list_append`:: - - Append a new string to the end of the string_list. If - `strdup_string` is set, then the string argument is copied; - otherwise the new `string_list_entry` refers to the input - string. - -`string_list_append_nodup`:: - - Append a new string to the end of the string_list. The new - `string_list_entry` always refers to the input string, even if - `strdup_string` is set. This function can be used to hand - ownership of a malloc()ed string to a `string_list` that has - `strdup_string` set. - -`string_list_sort`:: - - Sort the list's entries by string value in `strcmp()` order. - -`unsorted_string_list_has_string`:: - - It's like `string_list_has_string()` but for unsorted lists. - -`unsorted_string_list_lookup`:: - - It's like `string_list_lookup()` but for unsorted lists. -+ -The above two functions need to look through all items, as opposed to their -counterpart for sorted lists, which performs a binary search. - -`unsorted_string_list_delete_item`:: - - Remove an item from a string_list. The `string` pointer of the items - will be freed in case the `strdup_strings` member of the string_list - is set. The third parameter controls if the `util` pointer of the - items should be freed or not. - -`string_list_split`:: -`string_list_split_in_place`:: - - Split a string into substrings on a delimiter character and - append the substrings to a `string_list`. If `maxsplit` is - non-negative, then split at most `maxsplit` times. Return the - number of substrings appended to the list. -+ -`string_list_split` requires a `string_list` that has `strdup_strings` -set to true; it leaves the input string untouched and makes copies of -the substrings in newly-allocated memory. -`string_list_split_in_place` requires a `string_list` that has -`strdup_strings` set to false; it splits the input string in place, -overwriting the delimiter characters with NULs and creating new -string_list_items that point into the original string (the original -string must therefore not be modified or freed while the `string_list` -is in use). - - -Data structures ---------------- - -* `struct string_list_item` - -Represents an item of the list. The `string` member is a pointer to the -string, and you may use the `util` member for any purpose, if you want. - -* `struct string_list` - -Represents the list itself. - -. The array of items are available via the `items` member. -. The `nr` member contains the number of items stored in the list. -. The `alloc` member is used to avoid reallocating at every insertion. - You should not tamper with it. -. Setting the `strdup_strings` member to 1 will strdup() the strings - before adding them, see above. -. The `compare_strings_fn` member is used to specify a custom compare - function, otherwise `strcmp()` is used as the default function. diff --git a/Documentation/technical/api-tree-walking.txt b/Documentation/technical/api-tree-walking.txt index 14af37c3f1..bde18622a8 100644 --- a/Documentation/technical/api-tree-walking.txt +++ b/Documentation/technical/api-tree-walking.txt @@ -55,9 +55,9 @@ Initializing `fill_tree_descriptor`:: - Initialize a `tree_desc` and decode its first entry given the sha1 of - a tree. Returns the `buffer` member if the sha1 is a valid tree - identifier and NULL otherwise. + Initialize a `tree_desc` and decode its first entry given the + object ID of a tree. Returns the `buffer` member if the latter + is a valid tree identifier and NULL otherwise. `setup_traverse_info`:: diff --git a/Documentation/technical/pack-protocol.txt b/Documentation/technical/pack-protocol.txt index a34917153f..ed1eae8b83 100644 --- a/Documentation/technical/pack-protocol.txt +++ b/Documentation/technical/pack-protocol.txt @@ -199,7 +199,7 @@ After reference and capabilities discovery, the client can decide to terminate the connection by sending a flush-pkt, telling the server it can now gracefully terminate, and disconnect, when it does not need any pack data. This can happen with the ls-remote command, and also can happen when -the client already is up-to-date. +the client already is up to date. Otherwise, it enters the negotiation phase, where the client and server determine what the minimal packfile necessary for transport is, diff --git a/Documentation/technical/trivial-merge.txt b/Documentation/technical/trivial-merge.txt index c79d4a7c47..1f1c33d0da 100644 --- a/Documentation/technical/trivial-merge.txt +++ b/Documentation/technical/trivial-merge.txt @@ -32,7 +32,7 @@ or the result. If multiple cases apply, the one used is listed first. A result which changes the index is an error if the index is not empty -and not up-to-date. +and not up to date. Entries marked '+' have stat information. Spaces marked '*' don't affect the result. @@ -65,7 +65,7 @@ empty, no entry is left for that stage). Otherwise, the given entry is left in stage 0, and there are no other entries. A result of "no merge" is an error if the index is not empty and not -up-to-date. +up to date. *empty* means that the tree must not have a directory-file conflict with the entry. |