diff options
Diffstat (limited to 'Documentation/technical')
45 files changed, 6439 insertions, 0 deletions
diff --git a/Documentation/technical/.gitignore b/Documentation/technical/.gitignore new file mode 100644 index 0000000000..8aa891daee --- /dev/null +++ b/Documentation/technical/.gitignore @@ -0,0 +1 @@ +api-index.txt diff --git a/Documentation/technical/api-allocation-growing.txt b/Documentation/technical/api-allocation-growing.txt new file mode 100644 index 0000000000..5a59b54844 --- /dev/null +++ b/Documentation/technical/api-allocation-growing.txt @@ -0,0 +1,39 @@ +allocation growing API +====================== + +Dynamically growing an array using realloc() is error prone and boring. + +Define your array with: + +* a pointer (`item`) that points at the array, initialized to `NULL` + (although please name the variable based on its contents, not on its + type); + +* an integer variable (`alloc`) that keeps track of how big the current + allocation is, initialized to `0`; + +* another integer variable (`nr`) to keep track of how many elements the + array currently has, initialized to `0`. + +Then before adding `n`th element to the item, call `ALLOC_GROW(item, n, +alloc)`. This ensures that the array can hold at least `n` elements by +calling `realloc(3)` and adjusting `alloc` variable. + +------------ +sometype *item; +size_t nr; +size_t alloc + +for (i = 0; i < nr; i++) + if (we like item[i] already) + return; + +/* we did not like any existing one, so add one */ +ALLOC_GROW(item, nr + 1, alloc); +item[nr++] = value you like; +------------ + +You are responsible for updating the `nr` variable. + +If you need to specify the number of elements to allocate explicitly +then use the macro `REALLOC_ARRAY(item, alloc)` instead of `ALLOC_GROW`. diff --git a/Documentation/technical/api-argv-array.txt b/Documentation/technical/api-argv-array.txt new file mode 100644 index 0000000000..8076172a08 --- /dev/null +++ b/Documentation/technical/api-argv-array.txt @@ -0,0 +1,58 @@ +argv-array API +============== + +The argv-array API allows one to dynamically build and store +NULL-terminated lists. An argv-array maintains the invariant that the +`argv` member always points to a non-NULL array, and that the array is +always NULL-terminated at the element pointed to by `argv[argc]`. This +makes the result suitable for passing to functions expecting to receive +argv from main(), or the link:api-run-command.html[run-command API]. + +The link:api-string-list.html[string-list API] is similar, but cannot be +used for these purposes; instead of storing a straight string pointer, +it contains an item structure with a `util` field that is not compatible +with the traditional argv interface. + +Each `argv_array` manages its own memory. Any strings pushed into the +array are duplicated, and all memory is freed by argv_array_clear(). + +Data Structures +--------------- + +`struct argv_array`:: + + A single array. This should be initialized by assignment from + `ARGV_ARRAY_INIT`, or by calling `argv_array_init`. The `argv` + member contains the actual array; the `argc` member contains the + number of elements in the array, not including the terminating + NULL. + +Functions +--------- + +`argv_array_init`:: + Initialize an array. This is no different than assigning from + `ARGV_ARRAY_INIT`. + +`argv_array_push`:: + Push a copy of a string onto the end of the array. + +`argv_array_pushl`:: + Push a list of strings onto the end of the array. The arguments + should be a list of `const char *` strings, terminated by a NULL + argument. + +`argv_array_pushf`:: + Format a string and push it onto the end of the array. This is a + convenience wrapper combining `strbuf_addf` and `argv_array_push`. + +`argv_array_pushv`:: + Push a null-terminated array of strings onto the end of the array. + +`argv_array_pop`:: + Remove the final element from the array. If there are no + elements in the array, do nothing. + +`argv_array_clear`:: + Free all memory associated with the array and return it to the + initial, empty state. diff --git a/Documentation/technical/api-builtin.txt b/Documentation/technical/api-builtin.txt new file mode 100644 index 0000000000..22a39b9299 --- /dev/null +++ b/Documentation/technical/api-builtin.txt @@ -0,0 +1,73 @@ +builtin API +=========== + +Adding a new built-in +--------------------- + +There are 4 things to do to add a built-in command implementation to +Git: + +. Define the implementation of the built-in command `foo` with + signature: + + int cmd_foo(int argc, const char **argv, const char *prefix); + +. Add the external declaration for the function to `builtin.h`. + +. Add the command to the `commands[]` table defined in `git.c`. + The entry should look like: + + { "foo", cmd_foo, <options> }, ++ +where options is the bitwise-or of: + +`RUN_SETUP`:: + If there is not a Git directory to work on, abort. If there + is a work tree, chdir to the top of it if the command was + invoked in a subdirectory. If there is no work tree, no + chdir() is done. + +`RUN_SETUP_GENTLY`:: + If there is a Git directory, chdir as per RUN_SETUP, otherwise, + don't chdir anywhere. + +`USE_PAGER`:: + + If the standard output is connected to a tty, spawn a pager and + feed our output to it. + +`NEED_WORK_TREE`:: + + Make sure there is a work tree, i.e. the command cannot act + on bare repositories. + This only makes sense when `RUN_SETUP` is also set. + +. Add `builtin/foo.o` to `BUILTIN_OBJS` in `Makefile`. + +Additionally, if `foo` is a new command, there are 3 more things to do: + +. Add tests to `t/` directory. + +. Write documentation in `Documentation/git-foo.txt`. + +. Add an entry for `git-foo` to `command-list.txt`. + +. Add an entry for `/git-foo` to `.gitignore`. + + +How a built-in is called +------------------------ + +The implementation `cmd_foo()` takes three parameters, `argc`, `argv, +and `prefix`. The first two are similar to what `main()` of a +standalone command would be called with. + +When `RUN_SETUP` is specified in the `commands[]` table, and when you +were started from a subdirectory of the work tree, `cmd_foo()` is called +after chdir(2) to the top of the work tree, and `prefix` gets the path +to the subdirectory the command started from. This allows you to +convert a user-supplied pathname (typically relative to that directory) +to a pathname relative to the top of the work tree. + +The return value from `cmd_foo()` becomes the exit status of the +command. diff --git a/Documentation/technical/api-config.txt b/Documentation/technical/api-config.txt new file mode 100644 index 0000000000..0d8b99b368 --- /dev/null +++ b/Documentation/technical/api-config.txt @@ -0,0 +1,324 @@ +config API +========== + +The config API gives callers a way to access Git configuration files +(and files which have the same syntax). See linkgit:git-config[1] for a +discussion of the config file syntax. + +General Usage +------------- + +Config files are parsed linearly, and each variable found is passed to a +caller-provided callback function. The callback function is responsible +for any actions to be taken on the config option, and is free to ignore +some options. It is not uncommon for the configuration to be parsed +several times during the run of a Git program, with different callbacks +picking out different variables useful to themselves. + +A config callback function takes three parameters: + +- the name of the parsed variable. This is in canonical "flat" form: the + section, subsection, and variable segments will be separated by dots, + and the section and variable segments will be all lowercase. E.g., + `core.ignorecase`, `diff.SomeType.textconv`. + +- the value of the found variable, as a string. If the variable had no + value specified, the value will be NULL (typically this means it + should be interpreted as boolean true). + +- a void pointer passed in by the caller of the config API; this can + contain callback-specific data + +A config callback should return 0 for success, or -1 if the variable +could not be parsed properly. + +Basic Config Querying +--------------------- + +Most programs will simply want to look up variables in all config files +that Git knows about, using the normal precedence rules. To do this, +call `git_config` with a callback function and void data pointer. + +`git_config` will read all config sources in order of increasing +priority. Thus a callback should typically overwrite previously-seen +entries with new ones (e.g., if both the user-wide `~/.gitconfig` and +repo-specific `.git/config` contain `color.ui`, the config machinery +will first feed the user-wide one to the callback, and then the +repo-specific one; by overwriting, the higher-priority repo-specific +value is left at the end). + +The `git_config_with_options` function lets the caller examine config +while adjusting some of the default behavior of `git_config`. It should +almost never be used by "regular" Git code that is looking up +configuration variables. It is intended for advanced callers like +`git-config`, which are intentionally tweaking the normal config-lookup +process. It takes two extra parameters: + +`filename`:: +If this parameter is non-NULL, it specifies the name of a file to +parse for configuration, rather than looking in the usual files. Regular +`git_config` defaults to `NULL`. + +`respect_includes`:: +Specify whether include directives should be followed in parsed files. +Regular `git_config` defaults to `1`. + +There is a special version of `git_config` called `git_config_early`. +This version takes an additional parameter to specify the repository +config, instead of having it looked up via `git_path`. This is useful +early in a Git program before the repository has been found. Unless +you're working with early setup code, you probably don't want to use +this. + +Reading Specific Files +---------------------- + +To read a specific file in git-config format, use +`git_config_from_file`. This takes the same callback and data parameters +as `git_config`. + +Querying For Specific Variables +------------------------------- + +For programs wanting to query for specific variables in a non-callback +manner, the config API provides two functions `git_config_get_value` +and `git_config_get_value_multi`. They both read values from an internal +cache generated previously from reading the config files. + +`int git_config_get_value(const char *key, const char **value)`:: + + Finds the highest-priority value for the configuration variable `key`, + stores the pointer to it in `value` and returns 0. When the + configuration variable `key` is not found, returns 1 without touching + `value`. The caller should not free or modify `value`, as it is owned + by the cache. + +`const struct string_list *git_config_get_value_multi(const char *key)`:: + + Finds and returns the value list, sorted in order of increasing priority + for the configuration variable `key`. When the configuration variable + `key` is not found, returns NULL. The caller should not free or modify + the returned pointer, as it is owned by the cache. + +`void git_config_clear(void)`:: + + Resets and invalidates the config cache. + +The config API also provides type specific API functions which do conversion +as well as retrieval for the queried variable, including: + +`int git_config_get_int(const char *key, int *dest)`:: + + Finds and parses the value to an integer for the configuration variable + `key`. Dies on error; otherwise, stores the value of the parsed integer in + `dest` and returns 0. When the configuration variable `key` is not found, + returns 1 without touching `dest`. + +`int git_config_get_ulong(const char *key, unsigned long *dest)`:: + + Similar to `git_config_get_int` but for unsigned longs. + +`int git_config_get_bool(const char *key, int *dest)`:: + + Finds and parses the value into a boolean value, for the configuration + variable `key` respecting keywords like "true" and "false". Integer + values are converted into true/false values (when they are non-zero or + zero, respectively). Other values cause a die(). If parsing is successful, + stores the value of the parsed result in `dest` and returns 0. When the + configuration variable `key` is not found, returns 1 without touching + `dest`. + +`int git_config_get_bool_or_int(const char *key, int *is_bool, int *dest)`:: + + Similar to `git_config_get_bool`, except that integers are copied as-is, + and `is_bool` flag is unset. + +`int git_config_get_maybe_bool(const char *key, int *dest)`:: + + Similar to `git_config_get_bool`, except that it returns -1 on error + rather than dying. + +`int git_config_get_string_const(const char *key, const char **dest)`:: + + Allocates and copies the retrieved string into the `dest` parameter for + the configuration variable `key`; if NULL string is given, prints an + error message and returns -1. When the configuration variable `key` is + not found, returns 1 without touching `dest`. + +`int git_config_get_string(const char *key, char **dest)`:: + + Similar to `git_config_get_string_const`, except that retrieved value + copied into the `dest` parameter is a mutable string. + +`int git_config_get_pathname(const char *key, const char **dest)`:: + + Similar to `git_config_get_string`, but expands `~` or `~user` into + the user's home directory when found at the beginning of the path. + +`git_die_config(const char *key, const char *err, ...)`:: + + First prints the error message specified by the caller in `err` and then + dies printing the line number and the file name of the highest priority + value for the configuration variable `key`. + +`void git_die_config_linenr(const char *key, const char *filename, int linenr)`:: + + Helper function which formats the die error message according to the + parameters entered. Used by `git_die_config()`. It can be used by callers + handling `git_config_get_value_multi()` to print the correct error message + for the desired value. + +See test-config.c for usage examples. + +Value Parsing Helpers +--------------------- + +To aid in parsing string values, the config API provides callbacks with +a number of helper functions, including: + +`git_config_int`:: +Parse the string to an integer, including unit factors. Dies on error; +otherwise, returns the parsed result. + +`git_config_ulong`:: +Identical to `git_config_int`, but for unsigned longs. + +`git_config_bool`:: +Parse a string into a boolean value, respecting keywords like "true" and +"false". Integer values are converted into true/false values (when they +are non-zero or zero, respectively). Other values cause a die(). If +parsing is successful, the return value is the result. + +`git_config_bool_or_int`:: +Same as `git_config_bool`, except that integers are returned as-is, and +an `is_bool` flag is unset. + +`git_config_maybe_bool`:: +Same as `git_config_bool`, except that it returns -1 on error rather +than dying. + +`git_config_string`:: +Allocates and copies the value string into the `dest` parameter; if no +string is given, prints an error message and returns -1. + +`git_config_pathname`:: +Similar to `git_config_string`, but expands `~` or `~user` into the +user's home directory when found at the beginning of the path. + +Include Directives +------------------ + +By default, the config parser does not respect include directives. +However, a caller can use the special `git_config_include` wrapper +callback to support them. To do so, you simply wrap your "real" callback +function and data pointer in a `struct config_include_data`, and pass +the wrapper to the regular config-reading functions. For example: + +------------------------------------------- +int read_file_with_include(const char *file, config_fn_t fn, void *data) +{ + struct config_include_data inc = CONFIG_INCLUDE_INIT; + inc.fn = fn; + inc.data = data; + return git_config_from_file(git_config_include, file, &inc); +} +------------------------------------------- + +`git_config` respects includes automatically. The lower-level +`git_config_from_file` does not. + +Custom Configsets +----------------- + +A `config_set` can be used to construct an in-memory cache for +config-like files that the caller specifies (i.e., files like `.gitmodules`, +`~/.gitconfig` etc.). For example, + +--------------------------------------- +struct config_set gm_config; +git_configset_init(&gm_config); +int b; +/* we add config files to the config_set */ +git_configset_add_file(&gm_config, ".gitmodules"); +git_configset_add_file(&gm_config, ".gitmodules_alt"); + +if (!git_configset_get_bool(gm_config, "submodule.frotz.ignore", &b)) { + /* hack hack hack */ +} + +/* when we are done with the configset */ +git_configset_clear(&gm_config); +---------------------------------------- + +Configset API provides functions for the above mentioned work flow, including: + +`void git_configset_init(struct config_set *cs)`:: + + Initializes the config_set `cs`. + +`int git_configset_add_file(struct config_set *cs, const char *filename)`:: + + Parses the file and adds the variable-value pairs to the `config_set`, + dies if there is an error in parsing the file. Returns 0 on success, or + -1 if the file does not exist or is inaccessible. The user has to decide + if he wants to free the incomplete configset or continue using it when + the function returns -1. + +`int git_configset_get_value(struct config_set *cs, const char *key, const char **value)`:: + + Finds the highest-priority value for the configuration variable `key` + and config set `cs`, stores the pointer to it in `value` and returns 0. + When the configuration variable `key` is not found, returns 1 without + touching `value`. The caller should not free or modify `value`, as it + is owned by the cache. + +`const struct string_list *git_configset_get_value_multi(struct config_set *cs, const char *key)`:: + + Finds and returns the value list, sorted in order of increasing priority + for the configuration variable `key` and config set `cs`. When the + configuration variable `key` is not found, returns NULL. The caller + should not free or modify the returned pointer, as it is owned by the cache. + +`void git_configset_clear(struct config_set *cs)`:: + + Clears `config_set` structure, removes all saved variable-value pairs. + +In addition to above functions, the `config_set` API provides type specific +functions in the vein of `git_config_get_int` and family but with an extra +parameter, pointer to struct `config_set`. +They all behave similarly to the `git_config_get*()` family described in +"Querying For Specific Variables" above. + +Writing Config Files +-------------------- + +Git gives multiple entry points in the Config API to write config values to +files namely `git_config_set_in_file` and `git_config_set`, which write to +a specific config file or to `.git/config` respectively. They both take a +key/value pair as parameter. +In the end they both call `git_config_set_multivar_in_file` which takes four +parameters: + +- the name of the file, as a string, to which key/value pairs will be written. + +- the name of key, as a string. This is in canonical "flat" form: the section, + subsection, and variable segments will be separated by dots, and the section + and variable segments will be all lowercase. + E.g., `core.ignorecase`, `diff.SomeType.textconv`. + +- the value of the variable, as a string. If value is equal to NULL, it will + remove the matching key from the config file. + +- the value regex, as a string. It will disregard key/value pairs where value + does not match. + +- a multi_replace value, as an int. If value is equal to zero, nothing or only + one matching key/value is replaced, else all matching key/values (regardless + how many) are removed, before the new pair is written. + +It returns 0 on success. + +Also, there are functions `git_config_rename_section` and +`git_config_rename_section_in_file` with parameters `old_name` and `new_name` +for renaming or removing sections in the config files. If NULL is passed +through `new_name` parameter, the section will be removed from the config file. diff --git a/Documentation/technical/api-credentials.txt b/Documentation/technical/api-credentials.txt new file mode 100644 index 0000000000..e44426dd04 --- /dev/null +++ b/Documentation/technical/api-credentials.txt @@ -0,0 +1,271 @@ +credentials API +=============== + +The credentials API provides an abstracted way of gathering username and +password credentials from the user (even though credentials in the wider +world can take many forms, in this document the word "credential" always +refers to a username and password pair). + +This document describes two interfaces: the C API that the credential +subsystem provides to the rest of Git, and the protocol that Git uses to +communicate with system-specific "credential helpers". If you are +writing Git code that wants to look up or prompt for credentials, see +the section "C API" below. If you want to write your own helper, see +the section on "Credential Helpers" below. + +Typical setup +------------- + +------------ ++-----------------------+ +| Git code (C) |--- to server requiring ---> +| | authentication +|.......................| +| C credential API |--- prompt ---> User ++-----------------------+ + ^ | + | pipe | + | v ++-----------------------+ +| Git credential helper | ++-----------------------+ +------------ + +The Git code (typically a remote-helper) will call the C API to obtain +credential data like a login/password pair (credential_fill). The +API will itself call a remote helper (e.g. "git credential-cache" or +"git credential-store") that may retrieve credential data from a +store. If the credential helper cannot find the information, the C API +will prompt the user. Then, the caller of the API takes care of +contacting the server, and does the actual authentication. + +C API +----- + +The credential C API is meant to be called by Git code which needs to +acquire or store a credential. It is centered around an object +representing a single credential and provides three basic operations: +fill (acquire credentials by calling helpers and/or prompting the user), +approve (mark a credential as successfully used so that it can be stored +for later use), and reject (mark a credential as unsuccessful so that it +can be erased from any persistent storage). + +Data Structures +~~~~~~~~~~~~~~~ + +`struct credential`:: + + This struct represents a single username/password combination + along with any associated context. All string fields should be + heap-allocated (or NULL if they are not known or not applicable). + The meaning of the individual context fields is the same as + their counterparts in the helper protocol; see the section below + for a description of each field. ++ +The `helpers` member of the struct is a `string_list` of helpers. Each +string specifies an external helper which will be run, in order, to +either acquire or store credentials. See the section on credential +helpers below. This list is filled-in by the API functions +according to the corresponding configuration variables before +consulting helpers, so there usually is no need for a caller to +modify the helpers field at all. ++ +This struct should always be initialized with `CREDENTIAL_INIT` or +`credential_init`. + + +Functions +~~~~~~~~~ + +`credential_init`:: + + Initialize a credential structure, setting all fields to empty. + +`credential_clear`:: + + Free any resources associated with the credential structure, + returning it to a pristine initialized state. + +`credential_fill`:: + + Instruct the credential subsystem to fill the username and + password fields of the passed credential struct by first + consulting helpers, then asking the user. After this function + returns, the username and password fields of the credential are + guaranteed to be non-NULL. If an error occurs, the function will + die(). + +`credential_reject`:: + + Inform the credential subsystem that the provided credentials + have been rejected. This will cause the credential subsystem to + notify any helpers of the rejection (which allows them, for + example, to purge the invalid credentials from storage). It + will also free() the username and password fields of the + credential and set them to NULL (readying the credential for + another call to `credential_fill`). Any errors from helpers are + ignored. + +`credential_approve`:: + + Inform the credential subsystem that the provided credentials + were successfully used for authentication. This will cause the + credential subsystem to notify any helpers of the approval, so + that they may store the result to be used again. Any errors + from helpers are ignored. + +`credential_from_url`:: + + Parse a URL into broken-down credential fields. + +Example +~~~~~~~ + +The example below shows how the functions of the credential API could be +used to login to a fictitious "foo" service on a remote host: + +----------------------------------------------------------------------- +int foo_login(struct foo_connection *f) +{ + int status; + /* + * Create a credential with some context; we don't yet know the + * username or password. + */ + + struct credential c = CREDENTIAL_INIT; + c.protocol = xstrdup("foo"); + c.host = xstrdup(f->hostname); + + /* + * Fill in the username and password fields by contacting + * helpers and/or asking the user. The function will die if it + * fails. + */ + credential_fill(&c); + + /* + * Otherwise, we have a username and password. Try to use it. + */ + status = send_foo_login(f, c.username, c.password); + switch (status) { + case FOO_OK: + /* It worked. Store the credential for later use. */ + credential_accept(&c); + break; + case FOO_BAD_LOGIN: + /* Erase the credential from storage so we don't try it + * again. */ + credential_reject(&c); + break; + default: + /* + * Some other error occurred. We don't know if the + * credential is good or bad, so report nothing to the + * credential subsystem. + */ + } + + /* Free any associated resources. */ + credential_clear(&c); + + return status; +} +----------------------------------------------------------------------- + + +Credential Helpers +------------------ + +Credential helpers are programs executed by Git to fetch or save +credentials from and to long-term storage (where "long-term" is simply +longer than a single Git process; e.g., credentials may be stored +in-memory for a few minutes, or indefinitely on disk). + +Each helper is specified by a single string in the configuration +variable `credential.helper` (and others, see linkgit:git-config[1]). +The string is transformed by Git into a command to be executed using +these rules: + + 1. If the helper string begins with "!", it is considered a shell + snippet, and everything after the "!" becomes the command. + + 2. Otherwise, if the helper string begins with an absolute path, the + verbatim helper string becomes the command. + + 3. Otherwise, the string "git credential-" is prepended to the helper + string, and the result becomes the command. + +The resulting command then has an "operation" argument appended to it +(see below for details), and the result is executed by the shell. + +Here are some example specifications: + +---------------------------------------------------- +# run "git credential-foo" +foo + +# same as above, but pass an argument to the helper +foo --bar=baz + +# the arguments are parsed by the shell, so use shell +# quoting if necessary +foo --bar="whitespace arg" + +# you can also use an absolute path, which will not use the git wrapper +/path/to/my/helper --with-arguments + +# or you can specify your own shell snippet +!f() { echo "password=`cat $HOME/.secret`"; }; f +---------------------------------------------------- + +Generally speaking, rule (3) above is the simplest for users to specify. +Authors of credential helpers should make an effort to assist their +users by naming their program "git-credential-$NAME", and putting it in +the $PATH or $GIT_EXEC_PATH during installation, which will allow a user +to enable it with `git config credential.helper $NAME`. + +When a helper is executed, it will have one "operation" argument +appended to its command line, which is one of: + +`get`:: + + Return a matching credential, if any exists. + +`store`:: + + Store the credential, if applicable to the helper. + +`erase`:: + + Remove a matching credential, if any, from the helper's storage. + +The details of the credential will be provided on the helper's stdin +stream. The exact format is the same as the input/output format of the +`git credential` plumbing command (see the section `INPUT/OUTPUT +FORMAT` in linkgit:git-credential[7] for a detailed specification). + +For a `get` operation, the helper should produce a list of attributes +on stdout in the same format. A helper is free to produce a subset, or +even no values at all if it has nothing useful to provide. Any provided +attributes will overwrite those already known about by Git. If a helper +outputs a `quit` attribute with a value of `true` or `1`, no further +helpers will be consulted, nor will the user be prompted (if no +credential has been provided, the operation will then fail). + +For a `store` or `erase` operation, the helper's output is ignored. +If it fails to perform the requested operation, it may complain to +stderr to inform the user. If it does not support the requested +operation (e.g., a read-only store), it should silently ignore the +request. + +If a helper receives any other operation, it should silently ignore the +request. This leaves room for future operations to be added (older +helpers will just ignore the new requests). + +See also +-------- + +linkgit:gitcredentials[7] + +linkgit:git-config[5] (See configuration variables `credential.*`) diff --git a/Documentation/technical/api-decorate.txt b/Documentation/technical/api-decorate.txt new file mode 100644 index 0000000000..1d52a6ce14 --- /dev/null +++ b/Documentation/technical/api-decorate.txt @@ -0,0 +1,6 @@ +decorate API +============ + +Talk about <decorate.h> + +(Linus) diff --git a/Documentation/technical/api-diff.txt b/Documentation/technical/api-diff.txt new file mode 100644 index 0000000000..8b001de0db --- /dev/null +++ b/Documentation/technical/api-diff.txt @@ -0,0 +1,174 @@ +diff API +======== + +The diff API is for programs that compare two sets of files (e.g. two +trees, one tree and the index) and present the found difference in +various ways. The calling program is responsible for feeding the API +pairs of files, one from the "old" set and the corresponding one from +"new" set, that are different. The library called through this API is +called diffcore, and is responsible for two things. + +* finding total rewrites (`-B`), renames (`-M`) and copies (`-C`), and + changes that touch a string (`-S`), as specified by the caller. + +* outputting the differences in various formats, as specified by the + caller. + +Calling sequence +---------------- + +* Prepare `struct diff_options` to record the set of diff options, and + then call `diff_setup()` to initialize this structure. This sets up + the vanilla default. + +* Fill in the options structure to specify desired output format, rename + detection, etc. `diff_opt_parse()` can be used to parse options given + from the command line in a way consistent with existing git-diff + family of programs. + +* Call `diff_setup_done()`; this inspects the options set up so far for + internal consistency and make necessary tweaking to it (e.g. if + textual patch output was asked, recursive behaviour is turned on); + the callback set_default in diff_options can be used to tweak this more. + +* As you find different pairs of files, call `diff_change()` to feed + modified files, `diff_addremove()` to feed created or deleted files, + or `diff_unmerge()` to feed a file whose state is 'unmerged' to the + API. These are thin wrappers to a lower-level `diff_queue()` function + that is flexible enough to record any of these kinds of changes. + +* Once you finish feeding the pairs of files, call `diffcore_std()`. + This will tell the diffcore library to go ahead and do its work. + +* Calling `diff_flush()` will produce the output. + + +Data structures +--------------- + +* `struct diff_filespec` + +This is the internal representation for a single file (blob). It +records the blob object name (if known -- for a work tree file it +typically is a NUL SHA-1), filemode and pathname. This is what the +`diff_addremove()`, `diff_change()` and `diff_unmerge()` synthesize and +feed `diff_queue()` function with. + +* `struct diff_filepair` + +This records a pair of `struct diff_filespec`; the filespec for a file +in the "old" set (i.e. preimage) is called `one`, and the filespec for a +file in the "new" set (i.e. postimage) is called `two`. A change that +represents file creation has NULL in `one`, and file deletion has NULL +in `two`. + +A `filepair` starts pointing at `one` and `two` that are from the same +filename, but `diffcore_std()` can break pairs and match component +filespecs with other filespecs from a different filepair to form new +filepair. This is called 'rename detection'. + +* `struct diff_queue` + +This is a collection of filepairs. Notable members are: + +`queue`:: + + An array of pointers to `struct diff_filepair`. This + dynamically grows as you add filepairs; + +`alloc`:: + + The allocated size of the `queue` array; + +`nr`:: + + The number of elements in the `queue` array. + + +* `struct diff_options` + +This describes the set of options the calling program wants to affect +the operation of diffcore library with. + +Notable members are: + +`output_format`:: + The output format used when `diff_flush()` is run. + +`context`:: + Number of context lines to generate in patch output. + +`break_opt`, `detect_rename`, `rename-score`, `rename_limit`:: + Affects the way detection logic for complete rewrites, renames + and copies. + +`abbrev`:: + Number of hexdigits to abbreviate raw format output to. + +`pickaxe`:: + A constant string (can and typically does contain newlines to + look for a block of text, not just a single line) to filter out + the filepairs that do not change the number of strings contained + in its preimage and postimage of the diff_queue. + +`flags`:: + This is mostly a collection of boolean options that affects the + operation, but some do not have anything to do with the diffcore + library. + +`touched_flags`:: + Records whether a flag has been changed due to user request + (rather than just set/unset by default). + +`set_default`:: + Callback which allows tweaking the options in diff_setup_done(). + +BINARY, TEXT;; + Affects the way how a file that is seemingly binary is treated. + +FULL_INDEX;; + Tells the patch output format not to use abbreviated object + names on the "index" lines. + +FIND_COPIES_HARDER;; + Tells the diffcore library that the caller is feeding unchanged + filepairs to allow copies from unmodified files be detected. + +COLOR_DIFF;; + Output should be colored. + +COLOR_DIFF_WORDS;; + Output is a colored word-diff. + +NO_INDEX;; + Tells diff-files that the input is not tracked files but files + in random locations on the filesystem. + +ALLOW_EXTERNAL;; + Tells output routine that it is Ok to call user specified patch + output routine. Plumbing disables this to ensure stable output. + +QUIET;; + Do not show any output. + +REVERSE_DIFF;; + Tells the library that the calling program is feeding the + filepairs reversed; `one` is two, and `two` is one. + +EXIT_WITH_STATUS;; + For communication between the calling program and the options + parser; tell the calling program to signal the presence of + difference using program exit code. + +HAS_CHANGES;; + Internal; used for optimization to see if there is any change. + +SILENT_ON_REMOVE;; + Affects if diff-files shows removed files. + +RECURSIVE, TREE_IN_RECURSIVE;; + Tells if tree traversal done by tree-diff should recursively + descend into a tree object pair that are different in preimage + and postimage set. + +(JC) diff --git a/Documentation/technical/api-directory-listing.txt b/Documentation/technical/api-directory-listing.txt new file mode 100644 index 0000000000..7f8e78d916 --- /dev/null +++ b/Documentation/technical/api-directory-listing.txt @@ -0,0 +1,105 @@ +directory listing API +===================== + +The directory listing API is used to enumerate paths in the work tree, +optionally taking `.git/info/exclude` and `.gitignore` files per +directory into account. + +Data structure +-------------- + +`struct dir_struct` structure is used to pass directory traversal +options to the library and to record the paths discovered. A single +`struct dir_struct` is used regardless of whether or not the traversal +recursively descends into subdirectories. + +The notable options are: + +`exclude_per_dir`:: + + The name of the file to be read in each directory for excluded + files (typically `.gitignore`). + +`flags`:: + + A bit-field of options (the `*IGNORED*` flags are mutually exclusive): + +`DIR_SHOW_IGNORED`::: + + Return just ignored files in `entries[]`, not untracked files. + +`DIR_SHOW_IGNORED_TOO`::: + + Similar to `DIR_SHOW_IGNORED`, but return ignored files in `ignored[]` + in addition to untracked files in `entries[]`. + +`DIR_COLLECT_IGNORED`::: + + Special mode for git-add. Return ignored files in `ignored[]` and + untracked files in `entries[]`. Only returns ignored files that match + pathspec exactly (no wildcards). Does not recurse into ignored + directories. + +`DIR_SHOW_OTHER_DIRECTORIES`::: + + Include a directory that is not tracked. + +`DIR_HIDE_EMPTY_DIRECTORIES`::: + + Do not include a directory that is not tracked and is empty. + +`DIR_NO_GITLINKS`::: + + If set, recurse into a directory that looks like a Git + directory. Otherwise it is shown as a directory. + +The result of the enumeration is left in these fields: + +`entries[]`:: + + An array of `struct dir_entry`, each element of which describes + a path. + +`nr`:: + + The number of members in `entries[]` array. + +`alloc`:: + + Internal use; keeps track of allocation of `entries[]` array. + +`ignored[]`:: + + An array of `struct dir_entry`, used for ignored paths with the + `DIR_SHOW_IGNORED_TOO` and `DIR_COLLECT_IGNORED` flags. + +`ignored_nr`:: + + The number of members in `ignored[]` array. + +Calling sequence +---------------- + +Note: index may be looked at for .gitignore files that are CE_SKIP_WORKTREE +marked. If you to exclude files, make sure you have loaded index first. + +* Prepare `struct dir_struct dir` and clear it with `memset(&dir, 0, + sizeof(dir))`. + +* To add single exclude pattern, call `add_exclude_list()` and then + `add_exclude()`. + +* To add patterns from a file (e.g. `.git/info/exclude`), call + `add_excludes_from_file()` , and/or set `dir.exclude_per_dir`. A + short-hand function `setup_standard_excludes()` can be used to set + up the standard set of exclude settings. + +* Set options described in the Data Structure section above. + +* Call `read_directory()`. + +* Use `dir.entries[]`. + +* Call `clear_directory()` when none of the contained elements are no longer in use. + +(JC) diff --git a/Documentation/technical/api-error-handling.txt b/Documentation/technical/api-error-handling.txt new file mode 100644 index 0000000000..ceeedd485c --- /dev/null +++ b/Documentation/technical/api-error-handling.txt @@ -0,0 +1,75 @@ +Error reporting in git +====================== + +`die`, `usage`, `error`, and `warning` report errors of various +kinds. + +- `die` is for fatal application errors. It prints a message to + the user and exits with status 128. + +- `usage` is for errors in command line usage. After printing its + message, it exits with status 129. (See also `usage_with_options` + in the link:api-parse-options.html[parse-options API].) + +- `error` is for non-fatal library errors. It prints a message + to the user and returns -1 for convenience in signaling the error + to the caller. + +- `warning` is for reporting situations that probably should not + occur but which the user (and Git) can continue to work around + without running into too many problems. Like `error`, it + returns -1 after reporting the situation to the caller. + +Customizable error handlers +--------------------------- + +The default behavior of `die` and `error` is to write a message to +stderr and then exit or return as appropriate. This behavior can be +overridden using `set_die_routine` and `set_error_routine`. For +example, "git daemon" uses set_die_routine to write the reason `die` +was called to syslog before exiting. + +Library errors +-------------- + +Functions return a negative integer on error. Details beyond that +vary from function to function: + +- Some functions return -1 for all errors. Others return a more + specific value depending on how the caller might want to react + to the error. + +- Some functions report the error to stderr with `error`, + while others leave that for the caller to do. + +- errno is not meaningful on return from most functions (except + for thin wrappers for system calls). + +Check the function's API documentation to be sure. + +Caller-handled errors +--------------------- + +An increasing number of functions take a parameter 'struct strbuf *err'. +On error, such functions append a message about what went wrong to the +'err' strbuf. The message is meant to be complete enough to be passed +to `die` or `error` as-is. For example: + + if (ref_transaction_commit(transaction, &err)) + die("%s", err.buf); + +The 'err' parameter will be untouched if no error occurred, so multiple +function calls can be chained: + + t = ref_transaction_begin(&err); + if (!t || + ref_transaction_update(t, "HEAD", ..., &err) || + ret_transaction_commit(t, &err)) + die("%s", err.buf); + +The 'err' parameter must be a pointer to a valid strbuf. To silence +a message, pass a strbuf that is explicitly ignored: + + if (thing_that_can_fail_in_an_ignorable_way(..., &err)) + /* This failure is okay. */ + strbuf_reset(&err); diff --git a/Documentation/technical/api-gitattributes.txt b/Documentation/technical/api-gitattributes.txt new file mode 100644 index 0000000000..2602668677 --- /dev/null +++ b/Documentation/technical/api-gitattributes.txt @@ -0,0 +1,128 @@ +gitattributes API +================= + +gitattributes mechanism gives a uniform way to associate various +attributes to set of paths. + + +Data Structure +-------------- + +`struct git_attr`:: + + An attribute is an opaque object that is identified by its name. + Pass the name to `git_attr()` function to obtain the object of + this type. The internal representation of this structure is + of no interest to the calling programs. The name of the + attribute can be retrieved by calling `git_attr_name()`. + +`struct git_attr_check`:: + + This structure represents a set of attributes to check in a call + to `git_check_attr()` function, and receives the results. + + +Attribute Values +---------------- + +An attribute for a path can be in one of four states: Set, Unset, +Unspecified or set to a string, and `.value` member of `struct +git_attr_check` records it. There are three macros to check these: + +`ATTR_TRUE()`:: + + Returns true if the attribute is Set for the path. + +`ATTR_FALSE()`:: + + Returns true if the attribute is Unset for the path. + +`ATTR_UNSET()`:: + + Returns true if the attribute is Unspecified for the path. + +If none of the above returns true, `.value` member points at a string +value of the attribute for the path. + + +Querying Specific Attributes +---------------------------- + +* Prepare an array of `struct git_attr_check` to define the list of + attributes you would want to check. To populate this array, you would + need to define necessary attributes by calling `git_attr()` function. + +* Call `git_check_attr()` to check the attributes for the path. + +* Inspect `git_attr_check` structure to see how each of the attribute in + the array is defined for the path. + + +Example +------- + +To see how attributes "crlf" and "indent" are set for different paths. + +. Prepare an array of `struct git_attr_check` with two elements (because + we are checking two attributes). Initialize their `attr` member with + pointers to `struct git_attr` obtained by calling `git_attr()`: + +------------ +static struct git_attr_check check[2]; +static void setup_check(void) +{ + if (check[0].attr) + return; /* already done */ + check[0].attr = git_attr("crlf"); + check[1].attr = git_attr("ident"); +} +------------ + +. Call `git_check_attr()` with the prepared array of `struct git_attr_check`: + +------------ + const char *path; + + setup_check(); + git_check_attr(path, ARRAY_SIZE(check), check); +------------ + +. Act on `.value` member of the result, left in `check[]`: + +------------ + const char *value = check[0].value; + + if (ATTR_TRUE(value)) { + The attribute is Set, by listing only the name of the + attribute in the gitattributes file for the path. + } else if (ATTR_FALSE(value)) { + The attribute is Unset, by listing the name of the + attribute prefixed with a dash - for the path. + } else if (ATTR_UNSET(value)) { + The attribute is neither set nor unset for the path. + } else if (!strcmp(value, "input")) { + If none of ATTR_TRUE(), ATTR_FALSE(), or ATTR_UNSET() is + true, the value is a string set in the gitattributes + file for the path by saying "attr=value". + } else if (... other check using value as string ...) { + ... + } +------------ + + +Querying All Attributes +----------------------- + +To get the values of all attributes associated with a file: + +* Call `git_all_attrs()`, which returns an array of `git_attr_check` + structures. + +* Iterate over the `git_attr_check` array to examine the attribute + names and values. The name of the attribute described by a + `git_attr_check` object can be retrieved via + `git_attr_name(check[i].attr)`. (Please note that no items will be + returned for unset attributes, so `ATTR_UNSET()` will return false + for all returned `git_array_check` objects.) + +* Free the `git_array_check` array. diff --git a/Documentation/technical/api-grep.txt b/Documentation/technical/api-grep.txt new file mode 100644 index 0000000000..a69cc8964d --- /dev/null +++ b/Documentation/technical/api-grep.txt @@ -0,0 +1,8 @@ +grep API +======== + +Talk about <grep.h>, things like: + +* grep_buffer() + +(JC) diff --git a/Documentation/technical/api-hashmap.txt b/Documentation/technical/api-hashmap.txt new file mode 100644 index 0000000000..ad7a5bddd2 --- /dev/null +++ b/Documentation/technical/api-hashmap.txt @@ -0,0 +1,280 @@ +hashmap API +=========== + +The hashmap API is a generic implementation of hash-based key-value mappings. + +Data Structures +--------------- + +`struct hashmap`:: + + The hash table structure. Members can be used as follows, but should + not be modified directly: ++ +The `size` member keeps track of the total number of entries (0 means the +hashmap is empty). ++ +`tablesize` is the allocated size of the hash table. A non-0 value indicates +that the hashmap is initialized. It may also be useful for statistical purposes +(i.e. `size / tablesize` is the current load factor). ++ +`cmpfn` stores the comparison function specified in `hashmap_init()`. In +advanced scenarios, it may be useful to change this, e.g. to switch between +case-sensitive and case-insensitive lookup. + +`struct hashmap_entry`:: + + An opaque structure representing an entry in the hash table, which must + be used as first member of user data structures. Ideally it should be + followed by an int-sized member to prevent unused memory on 64-bit + systems due to alignment. ++ +The `hash` member is the entry's hash code and the `next` member points to the +next entry in case of collisions (i.e. if multiple entries map to the same +bucket). + +`struct hashmap_iter`:: + + An iterator structure, to be used with hashmap_iter_* functions. + +Types +----- + +`int (*hashmap_cmp_fn)(const void *entry, const void *entry_or_key, const void *keydata)`:: + + User-supplied function to test two hashmap entries for equality. Shall + return 0 if the entries are equal. ++ +This function is always called with non-NULL `entry` / `entry_or_key` +parameters that have the same hash code. When looking up an entry, the `key` +and `keydata` parameters to hashmap_get and hashmap_remove are always passed +as second and third argument, respectively. Otherwise, `keydata` is NULL. + +Functions +--------- + +`unsigned int strhash(const char *buf)`:: +`unsigned int strihash(const char *buf)`:: +`unsigned int memhash(const void *buf, size_t len)`:: +`unsigned int memihash(const void *buf, size_t len)`:: + + Ready-to-use hash functions for strings, using the FNV-1 algorithm (see + http://www.isthe.com/chongo/tech/comp/fnv). ++ +`strhash` and `strihash` take 0-terminated strings, while `memhash` and +`memihash` operate on arbitrary-length memory. ++ +`strihash` and `memihash` are case insensitive versions. + +`unsigned int sha1hash(const unsigned char *sha1)`:: + + Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code + for use in hash tables. Cryptographic hashes are supposed to have + uniform distribution, so in contrast to `memhash()`, this just copies + the first `sizeof(int)` bytes without shuffling any bits. Note that + the results will be different on big-endian and little-endian + platforms, so they should not be stored or transferred over the net. + +`void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function, size_t initial_size)`:: + + Initializes a hashmap structure. ++ +`map` is the hashmap to initialize. ++ +The `equals_function` can be specified to compare two entries for equality. +If NULL, entries are considered equal if their hash codes are equal. ++ +If the total number of entries is known in advance, the `initial_size` +parameter may be used to preallocate a sufficiently large table and thus +prevent expensive resizing. If 0, the table is dynamically resized. + +`void hashmap_free(struct hashmap *map, int free_entries)`:: + + Frees a hashmap structure and allocated memory. ++ +`map` is the hashmap to free. ++ +If `free_entries` is true, each hashmap_entry in the map is freed as well +(using stdlib's free()). + +`void hashmap_entry_init(void *entry, unsigned int hash)`:: + + Initializes a hashmap_entry structure. ++ +`entry` points to the entry to initialize. ++ +`hash` is the hash code of the entry. + +`void *hashmap_get(const struct hashmap *map, const void *key, const void *keydata)`:: + + Returns the hashmap entry for the specified key, or NULL if not found. ++ +`map` is the hashmap structure. ++ +`key` is a hashmap_entry structure (or user data structure that starts with +hashmap_entry) that has at least been initialized with the proper hash code +(via `hashmap_entry_init`). ++ +If an entry with matching hash code is found, `key` and `keydata` are passed +to `hashmap_cmp_fn` to decide whether the entry matches the key. + +`void *hashmap_get_from_hash(const struct hashmap *map, unsigned int hash, const void *keydata)`:: + + Returns the hashmap entry for the specified hash code and key data, + or NULL if not found. ++ +`map` is the hashmap structure. ++ +`hash` is the hash code of the entry to look up. ++ +If an entry with matching hash code is found, `keydata` is passed to +`hashmap_cmp_fn` to decide whether the entry matches the key. The +`entry_or_key` parameter points to a bogus hashmap_entry structure that +should not be used in the comparison. + +`void *hashmap_get_next(const struct hashmap *map, const void *entry)`:: + + Returns the next equal hashmap entry, or NULL if not found. This can be + used to iterate over duplicate entries (see `hashmap_add`). ++ +`map` is the hashmap structure. ++ +`entry` is the hashmap_entry to start the search from, obtained via a previous +call to `hashmap_get` or `hashmap_get_next`. + +`void hashmap_add(struct hashmap *map, void *entry)`:: + + Adds a hashmap entry. This allows to add duplicate entries (i.e. + separate values with the same key according to hashmap_cmp_fn). ++ +`map` is the hashmap structure. ++ +`entry` is the entry to add. + +`void *hashmap_put(struct hashmap *map, void *entry)`:: + + Adds or replaces a hashmap entry. If the hashmap contains duplicate + entries equal to the specified entry, only one of them will be replaced. ++ +`map` is the hashmap structure. ++ +`entry` is the entry to add or replace. ++ +Returns the replaced entry, or NULL if not found (i.e. the entry was added). + +`void *hashmap_remove(struct hashmap *map, const void *key, const void *keydata)`:: + + Removes a hashmap entry matching the specified key. If the hashmap + contains duplicate entries equal to the specified key, only one of + them will be removed. ++ +`map` is the hashmap structure. ++ +`key` is a hashmap_entry structure (or user data structure that starts with +hashmap_entry) that has at least been initialized with the proper hash code +(via `hashmap_entry_init`). ++ +If an entry with matching hash code is found, `key` and `keydata` are +passed to `hashmap_cmp_fn` to decide whether the entry matches the key. ++ +Returns the removed entry, or NULL if not found. + +`void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter)`:: +`void *hashmap_iter_next(struct hashmap_iter *iter)`:: +`void *hashmap_iter_first(struct hashmap *map, struct hashmap_iter *iter)`:: + + Used to iterate over all entries of a hashmap. ++ +`hashmap_iter_init` initializes a `hashmap_iter` structure. ++ +`hashmap_iter_next` returns the next hashmap_entry, or NULL if there are no +more entries. ++ +`hashmap_iter_first` is a combination of both (i.e. initializes the iterator +and returns the first entry, if any). + +`const char *strintern(const char *string)`:: +`const void *memintern(const void *data, size_t len)`:: + + Returns the unique, interned version of the specified string or data, + similar to the `String.intern` API in Java and .NET, respectively. + Interned strings remain valid for the entire lifetime of the process. ++ +Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned +strings / data must not be modified or freed. ++ +Interned strings are best used for short strings with high probability of +duplicates. ++ +Uses a hashmap to store the pool of interned strings. + +Usage example +------------- + +Here's a simple usage example that maps long keys to double values. +------------ +struct hashmap map; + +struct long2double { + struct hashmap_entry ent; /* must be the first member! */ + long key; + double value; +}; + +static int long2double_cmp(const struct long2double *e1, const struct long2double *e2, const void *unused) +{ + return !(e1->key == e2->key); +} + +void long2double_init(void) +{ + hashmap_init(&map, (hashmap_cmp_fn) long2double_cmp, 0); +} + +void long2double_free(void) +{ + hashmap_free(&map, 1); +} + +static struct long2double *find_entry(long key) +{ + struct long2double k; + hashmap_entry_init(&k, memhash(&key, sizeof(long))); + k.key = key; + return hashmap_get(&map, &k, NULL); +} + +double get_value(long key) +{ + struct long2double *e = find_entry(key); + return e ? e->value : 0; +} + +void set_value(long key, double value) +{ + struct long2double *e = find_entry(key); + if (!e) { + e = malloc(sizeof(struct long2double)); + hashmap_entry_init(e, memhash(&key, sizeof(long))); + e->key = key; + hashmap_add(&map, e); + } + e->value = value; +} +------------ + +Using variable-sized keys +------------------------- + +The `hashmap_entry_get` and `hashmap_entry_remove` functions expect an ordinary +`hashmap_entry` structure as key to find the correct entry. If the key data is +variable-sized (e.g. a FLEX_ARRAY string) or quite large, it is undesirable +to create a full-fledged entry structure on the heap and copy all the key data +into the structure. + +In this case, the `keydata` parameter can be used to pass +variable-sized key data directly to the comparison function, and the `key` +parameter can be a stripped-down, fixed size entry structure allocated on the +stack. + +See test-hashmap.c for an example using arbitrary-length strings as keys. diff --git a/Documentation/technical/api-history-graph.txt b/Documentation/technical/api-history-graph.txt new file mode 100644 index 0000000000..18142b6d29 --- /dev/null +++ b/Documentation/technical/api-history-graph.txt @@ -0,0 +1,174 @@ +history graph API +================= + +The graph API is used to draw a text-based representation of the commit +history. The API generates the graph in a line-by-line fashion. + +Functions +--------- + +Core functions: + +* `graph_init()` creates a new `struct git_graph` + +* `graph_update()` moves the graph to a new commit. + +* `graph_next_line()` outputs the next line of the graph into a strbuf. It + does not add a terminating newline. + +* `graph_padding_line()` outputs a line of vertical padding in the graph. It + is similar to `graph_next_line()`, but is guaranteed to never print the line + containing the current commit. Where `graph_next_line()` would print the + commit line next, `graph_padding_line()` prints a line that simply extends + all branch lines downwards one row, leaving their positions unchanged. + +* `graph_is_commit_finished()` determines if the graph has output all lines + necessary for the current commit. If `graph_update()` is called before all + lines for the current commit have been printed, the next call to + `graph_next_line()` will output an ellipsis, to indicate that a portion of + the graph was omitted. + +The following utility functions are wrappers around `graph_next_line()` and +`graph_is_commit_finished()`. They always print the output to stdout. +They can all be called with a NULL graph argument, in which case no graph +output will be printed. + +* `graph_show_commit()` calls `graph_next_line()` and + `graph_is_commit_finished()` until one of them return non-zero. This prints + all graph lines up to, and including, the line containing this commit. + Output is printed to stdout. The last line printed does not contain a + terminating newline. + +* `graph_show_oneline()` calls `graph_next_line()` and prints the result to + stdout. The line printed does not contain a terminating newline. + +* `graph_show_padding()` calls `graph_padding_line()` and prints the result to + stdout. The line printed does not contain a terminating newline. + +* `graph_show_remainder()` calls `graph_next_line()` until + `graph_is_commit_finished()` returns non-zero. Output is printed to stdout. + The last line printed does not contain a terminating newline. Returns 1 if + output was printed, and 0 if no output was necessary. + +* `graph_show_strbuf()` prints the specified strbuf to stdout, prefixing all + lines but the first with a graph line. The caller is responsible for + ensuring graph output for the first line has already been printed to stdout. + (This can be done with `graph_show_commit()` or `graph_show_oneline()`.) If + a NULL graph is supplied, the strbuf is printed as-is. + +* `graph_show_commit_msg()` is similar to `graph_show_strbuf()`, but it also + prints the remainder of the graph, if more lines are needed after the strbuf + ends. It is better than directly calling `graph_show_strbuf()` followed by + `graph_show_remainder()` since it properly handles buffers that do not end in + a terminating newline. The output printed by `graph_show_commit_msg()` will + end in a newline if and only if the strbuf ends in a newline. + +Data structure +-------------- +`struct git_graph` is an opaque data type used to store the current graph +state. + +Calling sequence +---------------- + +* Create a `struct git_graph` by calling `graph_init()`. When using the + revision walking API, this is done automatically by `setup_revisions()` if + the '--graph' option is supplied. + +* Use the revision walking API to walk through a group of contiguous commits. + The `get_revision()` function automatically calls `graph_update()` each time + it is invoked. + +* For each commit, call `graph_next_line()` repeatedly, until + `graph_is_commit_finished()` returns non-zero. Each call go + `graph_next_line()` will output a single line of the graph. The resulting + lines will not contain any newlines. `graph_next_line()` returns 1 if the + resulting line contains the current commit, or 0 if this is merely a line + needed to adjust the graph before or after the current commit. This return + value can be used to determine where to print the commit summary information + alongside the graph output. + +Limitations +----------- + +* `graph_update()` must be called with commits in topological order. It should + not be called on a commit if it has already been invoked with an ancestor of + that commit, or the graph output will be incorrect. + +* `graph_update()` must be called on a contiguous group of commits. If + `graph_update()` is called on a particular commit, it should later be called + on all parents of that commit. Parents must not be skipped, or the graph + output will appear incorrect. ++ +`graph_update()` may be used on a pruned set of commits only if the parent list +has been rewritten so as to include only ancestors from the pruned set. + +* The graph API does not currently support reverse commit ordering. In + order to implement reverse ordering, the graphing API needs an + (efficient) mechanism to find the children of a commit. + +Sample usage +------------ + +------------ +struct commit *commit; +struct git_graph *graph = graph_init(opts); + +while ((commit = get_revision(opts)) != NULL) { + graph_update(graph, commit); + while (!graph_is_commit_finished(graph)) + { + struct strbuf sb; + int is_commit_line; + + strbuf_init(&sb, 0); + is_commit_line = graph_next_line(graph, &sb); + fputs(sb.buf, stdout); + + if (is_commit_line) + log_tree_commit(opts, commit); + else + putchar(opts->diffopt.line_termination); + } +} +------------ + +Sample output +------------- + +The following is an example of the output from the graph API. This output does +not include any commit summary information--callers are responsible for +outputting that information, if desired. + +------------ +* +* +* +|\ +* | +| | * +| \ \ +| \ \ +*-. \ \ +|\ \ \ \ +| | * | | +| | | | | * +| | | | | * +| | | | | * +| | | | | |\ +| | | | | | * +| * | | | | | +| | | | | * \ +| | | | | |\ | +| | | | * | | | +| | | | * | | | +* | | | | | | | +| |/ / / / / / +|/| / / / / / +* | | | | | | +|/ / / / / / +* | | | | | +| | | | | * +| | | | |/ +| | | | * +------------ diff --git a/Documentation/technical/api-in-core-index.txt b/Documentation/technical/api-in-core-index.txt new file mode 100644 index 0000000000..adbdbf5d75 --- /dev/null +++ b/Documentation/technical/api-in-core-index.txt @@ -0,0 +1,21 @@ +in-core index API +================= + +Talk about <read-cache.c> and <cache-tree.c>, things like: + +* cache -> the_index macros +* read_index() +* write_index() +* ie_match_stat() and ie_modified(); how they are different and when to + use which. +* index_name_pos() +* remove_index_entry_at() +* remove_file_from_index() +* add_file_to_index() +* add_index_entry() +* refresh_index() +* discard_index() +* cache_tree_invalidate_path() +* cache_tree_update() + +(JC, Linus) diff --git a/Documentation/technical/api-index-skel.txt b/Documentation/technical/api-index-skel.txt new file mode 100644 index 0000000000..eda8c195c1 --- /dev/null +++ b/Documentation/technical/api-index-skel.txt @@ -0,0 +1,13 @@ +Git API Documents +================= + +Git has grown a set of internal API over time. This collection +documents them. + +//////////////////////////////////////////////////////////////// +// table of contents begin +//////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////// +// table of contents end +//////////////////////////////////////////////////////////////// diff --git a/Documentation/technical/api-index.sh b/Documentation/technical/api-index.sh new file mode 100755 index 0000000000..9c3f4131b8 --- /dev/null +++ b/Documentation/technical/api-index.sh @@ -0,0 +1,28 @@ +#!/bin/sh + +( + c=//////////////////////////////////////////////////////////////// + skel=api-index-skel.txt + sed -e '/^\/\/ table of contents begin/q' "$skel" + echo "$c" + + ls api-*.txt | + while read filename + do + case "$filename" in + api-index-skel.txt | api-index.txt) continue ;; + esac + title=$(sed -e 1q "$filename") + html=${filename%.txt}.html + echo "* link:$html[$title]" + done + echo "$c" + sed -n -e '/^\/\/ table of contents end/,$p' "$skel" +) >api-index.txt+ + +if test -f api-index.txt && cmp api-index.txt api-index.txt+ >/dev/null +then + rm -f api-index.txt+ +else + mv api-index.txt+ api-index.txt +fi diff --git a/Documentation/technical/api-merge.txt b/Documentation/technical/api-merge.txt new file mode 100644 index 0000000000..9dc1bed768 --- /dev/null +++ b/Documentation/technical/api-merge.txt @@ -0,0 +1,104 @@ +merge API +========= + +The merge API helps a program to reconcile two competing sets of +improvements to some files (e.g., unregistered changes from the work +tree versus changes involved in switching to a new branch), reporting +conflicts if found. The library called through this API is +responsible for a few things. + + * determining which trees to merge (recursive ancestor consolidation); + + * lining up corresponding files in the trees to be merged (rename + detection, subtree shifting), reporting edge cases like add/add + and rename/rename conflicts to the user; + + * performing a three-way merge of corresponding files, taking + path-specific merge drivers (specified in `.gitattributes`) + into account. + +Data structures +--------------- + +* `mmbuffer_t`, `mmfile_t` + +These store data usable for use by the xdiff backend, for writing and +for reading, respectively. See `xdiff/xdiff.h` for the definitions +and `diff.c` for examples. + +* `struct ll_merge_options` + +This describes the set of options the calling program wants to affect +the operation of a low-level (single file) merge. Some options: + +`virtual_ancestor`:: + Behave as though this were part of a merge between common + ancestors in a recursive merge. + If a helper program is specified by the + `[merge "<driver>"] recursive` configuration, it will + be used (see linkgit:gitattributes[5]). + +`variant`:: + Resolve local conflicts automatically in favor + of one side or the other (as in 'git merge-file' + `--ours`/`--theirs`/`--union`). Can be `0`, + `XDL_MERGE_FAVOR_OURS`, `XDL_MERGE_FAVOR_THEIRS`, or + `XDL_MERGE_FAVOR_UNION`. + +`renormalize`:: + Resmudge and clean the "base", "theirs" and "ours" files + before merging. Use this when the merge is likely to have + overlapped with a change in smudge/clean or end-of-line + normalization rules. + +Low-level (single file) merge +----------------------------- + +`ll_merge`:: + + Perform a three-way single-file merge in core. This is + a thin wrapper around `xdl_merge` that takes the path and + any merge backend specified in `.gitattributes` or + `.git/info/attributes` into account. Returns 0 for a + clean merge. + +Calling sequence: + +* Prepare a `struct ll_merge_options` to record options. + If you have no special requests, skip this and pass `NULL` + as the `opts` parameter to use the default options. + +* Allocate an mmbuffer_t variable for the result. + +* Allocate and fill variables with the file's original content + and two modified versions (using `read_mmfile`, for example). + +* Call `ll_merge()`. + +* Read the merged content from `result_buf.ptr` and `result_buf.size`. + +* Release buffers when finished. A simple + `free(ancestor.ptr); free(ours.ptr); free(theirs.ptr); + free(result_buf.ptr);` will do. + +If the modifications do not merge cleanly, `ll_merge` will return a +nonzero value and `result_buf` will generally include a description of +the conflict bracketed by markers such as the traditional `<<<<<<<` +and `>>>>>>>`. + +The `ancestor_label`, `our_label`, and `their_label` parameters are +used to label the different sides of a conflict if the merge driver +supports this. + +Everything else +--------------- + +Talk about <merge-recursive.h> and merge_file(): + + - merge_trees() to merge with rename detection + - merge_recursive() for ancestor consolidation + - try_merge_command() for other strategies + - conflict format + - merge options + +(Daniel, Miklos, Stephan, JC) diff --git a/Documentation/technical/api-object-access.txt b/Documentation/technical/api-object-access.txt new file mode 100644 index 0000000000..03bb0e950d --- /dev/null +++ b/Documentation/technical/api-object-access.txt @@ -0,0 +1,15 @@ +object access API +================= + +Talk about <sha1_file.c> and <object.h> family, things like + +* read_sha1_file() +* read_object_with_reference() +* has_sha1_file() +* write_sha1_file() +* pretend_sha1_file() +* lookup_{object,commit,tag,blob,tree} +* parse_{object,commit,tag,blob,tree} +* Use of object flags + +(JC, Shawn, Daniel, Dscho, Linus) diff --git a/Documentation/technical/api-parse-options.txt b/Documentation/technical/api-parse-options.txt new file mode 100644 index 0000000000..5f0757dcc9 --- /dev/null +++ b/Documentation/technical/api-parse-options.txt @@ -0,0 +1,299 @@ +parse-options API +================= + +The parse-options API is used to parse and massage options in Git +and to provide a usage help with consistent look. + +Basics +------ + +The argument vector `argv[]` may usually contain mandatory or optional +'non-option arguments', e.g. a filename or a branch, and 'options'. +Options are optional arguments that start with a dash and +that allow to change the behavior of a command. + +* There are basically three types of options: + 'boolean' options, + options with (mandatory) 'arguments' and + options with 'optional arguments' + (i.e. a boolean option that can be adjusted). + +* There are basically two forms of options: + 'Short options' consist of one dash (`-`) and one alphanumeric + character. + 'Long options' begin with two dashes (`--`) and some + alphanumeric characters. + +* Options are case-sensitive. + Please define 'lower-case long options' only. + +The parse-options API allows: + +* 'stuck' and 'separate form' of options with arguments. + `-oArg` is stuck, `-o Arg` is separate form. + `--option=Arg` is stuck, `--option Arg` is separate form. + +* Long options may be 'abbreviated', as long as the abbreviation + is unambiguous. + +* Short options may be bundled, e.g. `-a -b` can be specified as `-ab`. + +* Boolean long options can be 'negated' (or 'unset') by prepending + `no-`, e.g. `--no-abbrev` instead of `--abbrev`. Conversely, + options that begin with `no-` can be 'negated' by removing it. + Other long options can be unset (e.g., set string to NULL, set + integer to 0) by prepending `no-`. + +* Options and non-option arguments can clearly be separated using the `--` + option, e.g. `-a -b --option -- --this-is-a-file` indicates that + `--this-is-a-file` must not be processed as an option. + +Steps to parse options +---------------------- + +. `#include "parse-options.h"` + +. define a NULL-terminated + `static const char * const builtin_foo_usage[]` array + containing alternative usage strings + +. define `builtin_foo_options` array as described below + in section 'Data Structure'. + +. in `cmd_foo(int argc, const char **argv, const char *prefix)` + call + + argc = parse_options(argc, argv, prefix, builtin_foo_options, builtin_foo_usage, flags); ++ +`parse_options()` will filter out the processed options of `argv[]` and leave the +non-option arguments in `argv[]`. +`argc` is updated appropriately because of the assignment. ++ +You can also pass NULL instead of a usage array as the fifth parameter of +parse_options(), to avoid displaying a help screen with usage info and +option list. This should only be done if necessary, e.g. to implement +a limited parser for only a subset of the options that needs to be run +before the full parser, which in turn shows the full help message. ++ +Flags are the bitwise-or of: + +`PARSE_OPT_KEEP_DASHDASH`:: + Keep the `--` that usually separates options from + non-option arguments. + +`PARSE_OPT_STOP_AT_NON_OPTION`:: + Usually the whole argument vector is massaged and reordered. + Using this flag, processing is stopped at the first non-option + argument. + +`PARSE_OPT_KEEP_ARGV0`:: + Keep the first argument, which contains the program name. It's + removed from argv[] by default. + +`PARSE_OPT_KEEP_UNKNOWN`:: + Keep unknown arguments instead of erroring out. This doesn't + work for all combinations of arguments as users might expect + it to do. E.g. if the first argument in `--unknown --known` + takes a value (which we can't know), the second one is + mistakenly interpreted as a known option. Similarly, if + `PARSE_OPT_STOP_AT_NON_OPTION` is set, the second argument in + `--unknown value` will be mistakenly interpreted as a + non-option, not as a value belonging to the unknown option, + the parser early. That's why parse_options() errors out if + both options are set. + +`PARSE_OPT_NO_INTERNAL_HELP`:: + By default, parse_options() handles `-h`, `--help` and + `--help-all` internally, by showing a help screen. This option + turns it off and allows one to add custom handlers for these + options, or to just leave them unknown. + +Data Structure +-------------- + +The main data structure is an array of the `option` struct, +say `static struct option builtin_add_options[]`. +There are some macros to easily define options: + +`OPT__ABBREV(&int_var)`:: + Add `--abbrev[=<n>]`. + +`OPT__COLOR(&int_var, description)`:: + Add `--color[=<when>]` and `--no-color`. + +`OPT__DRY_RUN(&int_var, description)`:: + Add `-n, --dry-run`. + +`OPT__FORCE(&int_var, description)`:: + Add `-f, --force`. + +`OPT__QUIET(&int_var, description)`:: + Add `-q, --quiet`. + +`OPT__VERBOSE(&int_var, description)`:: + Add `-v, --verbose`. + +`OPT_GROUP(description)`:: + Start an option group. `description` is a short string that + describes the group or an empty string. + Start the description with an upper-case letter. + +`OPT_BOOL(short, long, &int_var, description)`:: + Introduce a boolean option. `int_var` is set to one with + `--option` and set to zero with `--no-option`. + +`OPT_COUNTUP(short, long, &int_var, description)`:: + Introduce a count-up option. + `int_var` is incremented on each use of `--option`, and + reset to zero with `--no-option`. + +`OPT_BIT(short, long, &int_var, description, mask)`:: + Introduce a boolean option. + If used, `int_var` is bitwise-ored with `mask`. + +`OPT_NEGBIT(short, long, &int_var, description, mask)`:: + Introduce a boolean option. + If used, `int_var` is bitwise-anded with the inverted `mask`. + +`OPT_SET_INT(short, long, &int_var, description, integer)`:: + Introduce an integer option. + `int_var` is set to `integer` with `--option`, and + reset to zero with `--no-option`. + +`OPT_STRING(short, long, &str_var, arg_str, description)`:: + Introduce an option with string argument. + The string argument is put into `str_var`. + +`OPT_INTEGER(short, long, &int_var, description)`:: + Introduce an option with integer argument. + The integer is put into `int_var`. + +`OPT_MAGNITUDE(short, long, &unsigned_long_var, description)`:: + Introduce an option with a size argument. The argument must be a + non-negative integer and may include a suffix of 'k', 'm' or 'g' to + scale the provided value by 1024, 1024^2 or 1024^3 respectively. + The scaled value is put into `unsigned_long_var`. + +`OPT_DATE(short, long, &int_var, description)`:: + Introduce an option with date argument, see `approxidate()`. + The timestamp is put into `int_var`. + +`OPT_EXPIRY_DATE(short, long, &int_var, description)`:: + Introduce an option with expiry date argument, see `parse_expiry_date()`. + The timestamp is put into `int_var`. + +`OPT_CALLBACK(short, long, &var, arg_str, description, func_ptr)`:: + Introduce an option with argument. + The argument will be fed into the function given by `func_ptr` + and the result will be put into `var`. + See 'Option Callbacks' below for a more elaborate description. + +`OPT_FILENAME(short, long, &var, description)`:: + Introduce an option with a filename argument. + The filename will be prefixed by passing the filename along with + the prefix argument of `parse_options()` to `prefix_filename()`. + +`OPT_ARGUMENT(long, description)`:: + Introduce a long-option argument that will be kept in `argv[]`. + +`OPT_NUMBER_CALLBACK(&var, description, func_ptr)`:: + Recognize numerical options like -123 and feed the integer as + if it was an argument to the function given by `func_ptr`. + The result will be put into `var`. There can be only one such + option definition. It cannot be negated and it takes no + arguments. Short options that happen to be digits take + precedence over it. + +`OPT_COLOR_FLAG(short, long, &int_var, description)`:: + Introduce an option that takes an optional argument that can + have one of three values: "always", "never", or "auto". If the + argument is not given, it defaults to "always". The `--no-` form + works like `--long=never`; it cannot take an argument. If + "always", set `int_var` to 1; if "never", set `int_var` to 0; if + "auto", set `int_var` to 1 if stdout is a tty or a pager, + 0 otherwise. + +`OPT_NOOP_NOARG(short, long)`:: + Introduce an option that has no effect and takes no arguments. + Use it to hide deprecated options that are still to be recognized + and ignored silently. + +`OPT_PASSTHRU(short, long, &char_var, arg_str, description, flags)`:: + Introduce an option that will be reconstructed into a char* string, + which must be initialized to NULL. This is useful when you need to + pass the command-line option to another command. Any previous value + will be overwritten, so this should only be used for options where + the last one specified on the command line wins. + +`OPT_PASSTHRU_ARGV(short, long, &argv_array_var, arg_str, description, flags)`:: + Introduce an option where all instances of it on the command-line will + be reconstructed into an argv_array. This is useful when you need to + pass the command-line option, which can be specified multiple times, + to another command. + + +The last element of the array must be `OPT_END()`. + +If not stated otherwise, interpret the arguments as follows: + +* `short` is a character for the short option + (e.g. `'e'` for `-e`, use `0` to omit), + +* `long` is a string for the long option + (e.g. `"example"` for `--example`, use `NULL` to omit), + +* `int_var` is an integer variable, + +* `str_var` is a string variable (`char *`), + +* `arg_str` is the string that is shown as argument + (e.g. `"branch"` will result in `<branch>`). + If set to `NULL`, three dots (`...`) will be displayed. + +* `description` is a short string to describe the effect of the option. + It shall begin with a lower-case letter and a full stop (`.`) shall be + omitted at the end. + +Option Callbacks +---------------- + +The function must be defined in this form: + + int func(const struct option *opt, const char *arg, int unset) + +The callback mechanism is as follows: + +* Inside `func`, the only interesting member of the structure + given by `opt` is the void pointer `opt->value`. + `*opt->value` will be the value that is saved into `var`, if you + use `OPT_CALLBACK()`. + For example, do `*(unsigned long *)opt->value = 42;` to get 42 + into an `unsigned long` variable. + +* Return value `0` indicates success and non-zero return + value will invoke `usage_with_options()` and, thus, die. + +* If the user negates the option, `arg` is `NULL` and `unset` is 1. + +Sophisticated option parsing +---------------------------- + +If you need, for example, option callbacks with optional arguments +or without arguments at all, or if you need other special cases, +that are not handled by the macros above, you need to specify the +members of the `option` structure manually. + +This is not covered in this document, but well documented +in `parse-options.h` itself. + +Examples +-------- + +See `test-parse-options.c` and +`builtin/add.c`, +`builtin/clone.c`, +`builtin/commit.c`, +`builtin/fetch.c`, +`builtin/fsck.c`, +`builtin/rm.c` +for real-world examples. diff --git a/Documentation/technical/api-quote.txt b/Documentation/technical/api-quote.txt new file mode 100644 index 0000000000..e8a1bce94e --- /dev/null +++ b/Documentation/technical/api-quote.txt @@ -0,0 +1,10 @@ +quote API +========= + +Talk about <quote.h>, things like + +* sq_quote and unquote +* c_style quote and unquote +* quoting for foreign languages + +(JC) diff --git a/Documentation/technical/api-ref-iteration.txt b/Documentation/technical/api-ref-iteration.txt new file mode 100644 index 0000000000..37379d8337 --- /dev/null +++ b/Documentation/technical/api-ref-iteration.txt @@ -0,0 +1,81 @@ +ref iteration API +================= + + +Iteration of refs is done by using an iterate function which will call a +callback function for every ref. The callback function has this +signature: + + int handle_one_ref(const char *refname, const struct object_id *oid, + int flags, void *cb_data); + +There are different kinds of iterate functions which all take a +callback of this type. The callback is then called for each found ref +until the callback returns nonzero. The returned value is then also +returned by the iterate function. + +Iteration functions +------------------- + +* `head_ref()` just iterates the head ref. + +* `for_each_ref()` iterates all refs. + +* `for_each_ref_in()` iterates all refs which have a defined prefix and + strips that prefix from the passed variable refname. + +* `for_each_tag_ref()`, `for_each_branch_ref()`, `for_each_remote_ref()`, + `for_each_replace_ref()` iterate refs from the respective area. + +* `for_each_glob_ref()` iterates all refs that match the specified glob + pattern. + +* `for_each_glob_ref_in()` the previous and `for_each_ref_in()` combined. + +* `head_ref_submodule()`, `for_each_ref_submodule()`, + `for_each_ref_in_submodule()`, `for_each_tag_ref_submodule()`, + `for_each_branch_ref_submodule()`, `for_each_remote_ref_submodule()` + do the same as the functions described above but for a specified + submodule. + +* `for_each_rawref()` can be used to learn about broken ref and symref. + +* `for_each_reflog()` iterates each reflog file. + +Submodules +---------- + +If you want to iterate the refs of a submodule you first need to add the +submodules object database. You can do this by a code-snippet like +this: + + const char *path = "path/to/submodule" + if (add_submodule_odb(path)) + die("Error submodule '%s' not populated.", path); + +`add_submodule_odb()` will return zero on success. If you +do not do this you will get an error for each ref that it does not point +to a valid object. + +Note: As a side-effect of this you can not safely assume that all +objects you lookup are available in superproject. All submodule objects +will be available the same way as the superprojects objects. + +Example: +-------- + +---- +static int handle_remote_ref(const char *refname, + const unsigned char *sha1, int flags, void *cb_data) +{ + struct strbuf *output = cb_data; + strbuf_addf(output, "%s\n", refname); + return 0; +} + +... + + struct strbuf output = STRBUF_INIT; + for_each_remote_ref(handle_remote_ref, &output); + printf("%s", output.buf); +---- diff --git a/Documentation/technical/api-remote.txt b/Documentation/technical/api-remote.txt new file mode 100644 index 0000000000..2cfdd224a8 --- /dev/null +++ b/Documentation/technical/api-remote.txt @@ -0,0 +1,123 @@ +Remotes configuration API +========================= + +The API in remote.h gives access to the configuration related to +remotes. It handles all three configuration mechanisms historically +and currently used by Git, and presents the information in a uniform +fashion. Note that the code also handles plain URLs without any +configuration, giving them just the default information. + +struct remote +------------- + +`name`:: + + The user's nickname for the remote + +`url`:: + + An array of all of the url_nr URLs configured for the remote + +`pushurl`:: + + An array of all of the pushurl_nr push URLs configured for the remote + +`push`:: + + An array of refspecs configured for pushing, with + push_refspec being the literal strings, and push_refspec_nr + being the quantity. + +`fetch`:: + + An array of refspecs configured for fetching, with + fetch_refspec being the literal strings, and fetch_refspec_nr + being the quantity. + +`fetch_tags`:: + + The setting for whether to fetch tags (as a separate rule from + the configured refspecs); -1 means never to fetch tags, 0 + means to auto-follow tags based on the default heuristic, 1 + means to always auto-follow tags, and 2 means to fetch all + tags. + +`receivepack`, `uploadpack`:: + + The configured helper programs to run on the remote side, for + Git-native protocols. + +`http_proxy`:: + + The proxy to use for curl (http, https, ftp, etc.) URLs. + +struct remotes can be found by name with remote_get(), and iterated +through with for_each_remote(). remote_get(NULL) will return the +default remote, given the current branch and configuration. + +struct refspec +-------------- + +A struct refspec holds the parsed interpretation of a refspec. If it +will force updates (starts with a '+'), force is true. If it is a +pattern (sides end with '*') pattern is true. src and dest are the +two sides (including '*' characters if present); if there is only one +side, it is src, and dst is NULL; if sides exist but are empty (i.e., +the refspec either starts or ends with ':'), the corresponding side is +"". + +An array of strings can be parsed into an array of struct refspecs +using parse_fetch_refspec() or parse_push_refspec(). + +remote_find_tracking(), given a remote and a struct refspec with +either src or dst filled out, will fill out the other such that the +result is in the "fetch" specification for the remote (note that this +evaluates patterns and returns a single result). + +struct branch +------------- + +Note that this may end up moving to branch.h + +struct branch holds the configuration for a branch. It can be looked +up with branch_get(name) for "refs/heads/{name}", or with +branch_get(NULL) for HEAD. + +It contains: + +`name`:: + + The short name of the branch. + +`refname`:: + + The full path for the branch ref. + +`remote_name`:: + + The name of the remote listed in the configuration. + +`merge_name`:: + + An array of the "merge" lines in the configuration. + +`merge`:: + + An array of the struct refspecs used for the merge lines. That + is, merge[i]->dst is a local tracking ref which should be + merged into this branch by default. + +`merge_nr`:: + + The number of merge configurations + +branch_has_merge_config() returns true if the given branch has merge +configuration given. + +Other stuff +----------- + +There is other stuff in remote.h that is related, in general, to the +process of interacting with remotes. + +(Daniel Barkalow) diff --git a/Documentation/technical/api-revision-walking.txt b/Documentation/technical/api-revision-walking.txt new file mode 100644 index 0000000000..55b878ade8 --- /dev/null +++ b/Documentation/technical/api-revision-walking.txt @@ -0,0 +1,72 @@ +revision walking API +==================== + +The revision walking API offers functions to build a list of revisions +and then iterate over that list. + +Calling sequence +---------------- + +The walking API has a given calling sequence: first you need to +initialize a rev_info structure, then add revisions to control what kind +of revision list do you want to get, finally you can iterate over the +revision list. + +Functions +--------- + +`init_revisions`:: + + Initialize a rev_info structure with default values. The second + parameter may be NULL or can be prefix path, and then the `.prefix` + variable will be set to it. This is typically the first function you + want to call when you want to deal with a revision list. After calling + this function, you are free to customize options, like set + `.ignore_merges` to 0 if you don't want to ignore merges, and so on. See + `revision.h` for a complete list of available options. + +`add_pending_object`:: + + This function can be used if you want to add commit objects as revision + information. You can use the `UNINTERESTING` object flag to indicate if + you want to include or exclude the given commit (and commits reachable + from the given commit) from the revision list. ++ +NOTE: If you have the commits as a string list then you probably want to +use setup_revisions(), instead of parsing each string and using this +function. + +`setup_revisions`:: + + Parse revision information, filling in the `rev_info` structure, and + removing the used arguments from the argument list. Returns the number + of arguments left that weren't recognized, which are also moved to the + head of the argument list. The last parameter is used in case no + parameter given by the first two arguments. + +`prepare_revision_walk`:: + + Prepares the rev_info structure for a walk. You should check if it + returns any error (non-zero return code) and if it does not, you can + start using get_revision() to do the iteration. + +`get_revision`:: + + Takes a pointer to a `rev_info` structure and iterates over it, + returning a `struct commit *` each time you call it. The end of the + revision list is indicated by returning a NULL pointer. + +`reset_revision_walk`:: + + Reset the flags used by the revision walking api. You can use + this to do multiple sequential revision walks. + +Data structures +--------------- + +Talk about <revision.h>, things like: + +* two diff_options, one for path limiting, another for output; +* remaining functions; + +(Linus, JC, Dscho) diff --git a/Documentation/technical/api-run-command.txt b/Documentation/technical/api-run-command.txt new file mode 100644 index 0000000000..a9fdb45b93 --- /dev/null +++ b/Documentation/technical/api-run-command.txt @@ -0,0 +1,257 @@ +run-command API +=============== + +The run-command API offers a versatile tool to run sub-processes with +redirected input and output as well as with a modified environment +and an alternate current directory. + +A similar API offers the capability to run a function asynchronously, +which is primarily used to capture the output that the function +produces in the caller in order to process it. + + +Functions +--------- + +`child_process_init`:: + + Initialize a struct child_process variable. + +`start_command`:: + + Start a sub-process. Takes a pointer to a `struct child_process` + that specifies the details and returns pipe FDs (if requested). + See below for details. + +`finish_command`:: + + Wait for the completion of a sub-process that was started with + start_command(). + +`run_command`:: + + A convenience function that encapsulates a sequence of + start_command() followed by finish_command(). Takes a pointer + to a `struct child_process` that specifies the details. + +`run_command_v_opt`, `run_command_v_opt_cd_env`:: + + Convenience functions that encapsulate a sequence of + start_command() followed by finish_command(). The argument argv + specifies the program and its arguments. The argument opt is zero + or more of the flags `RUN_COMMAND_NO_STDIN`, `RUN_GIT_CMD`, + `RUN_COMMAND_STDOUT_TO_STDERR`, or `RUN_SILENT_EXEC_FAILURE` + that correspond to the members .no_stdin, .git_cmd, + .stdout_to_stderr, .silent_exec_failure of `struct child_process`. + The argument dir corresponds the member .dir. The argument env + corresponds to the member .env. + +The functions above do the following: + +. If a system call failed, errno is set and -1 is returned. A diagnostic + is printed. + +. If the program was not found, then -1 is returned and errno is set to + ENOENT; a diagnostic is printed only if .silent_exec_failure is 0. + +. Otherwise, the program is run. If it terminates regularly, its exit + code is returned. No diagnostic is printed, even if the exit code is + non-zero. + +. If the program terminated due to a signal, then the return value is the + signal number + 128, ie. the same value that a POSIX shell's $? would + report. A diagnostic is printed. + + +`start_async`:: + + Run a function asynchronously. Takes a pointer to a `struct + async` that specifies the details and returns a set of pipe FDs + for communication with the function. See below for details. + +`finish_async`:: + + Wait for the completion of an asynchronous function that was + started with start_async(). + +`run_hook`:: + + Run a hook. + The first argument is a pathname to an index file, or NULL + if the hook uses the default index file or no index is needed. + The second argument is the name of the hook. + The further arguments correspond to the hook arguments. + The last argument has to be NULL to terminate the arguments list. + If the hook does not exist or is not executable, the return + value will be zero. + If it is executable, the hook will be executed and the exit + status of the hook is returned. + On execution, .stdout_to_stderr and .no_stdin will be set. + (See below.) + + +Data structures +--------------- + +* `struct child_process` + +This describes the arguments, redirections, and environment of a +command to run in a sub-process. + +The caller: + +1. allocates and clears (using child_process_init() or + CHILD_PROCESS_INIT) a struct child_process variable; +2. initializes the members; +3. calls start_command(); +4. processes the data; +5. closes file descriptors (if necessary; see below); +6. calls finish_command(). + +The .argv member is set up as an array of string pointers (NULL +terminated), of which .argv[0] is the program name to run (usually +without a path). If the command to run is a git command, set argv[0] to +the command name without the 'git-' prefix and set .git_cmd = 1. + +Note that the ownership of the memory pointed to by .argv stays with the +caller, but it should survive until `finish_command` completes. If the +.argv member is NULL, `start_command` will point it at the .args +`argv_array` (so you may use one or the other, but you must use exactly +one). The memory in .args will be cleaned up automatically during +`finish_command` (or during `start_command` when it is unsuccessful). + +The members .in, .out, .err are used to redirect stdin, stdout, +stderr as follows: + +. Specify 0 to request no special redirection. No new file descriptor + is allocated. The child process simply inherits the channel from the + parent. + +. Specify -1 to have a pipe allocated; start_command() replaces -1 + by the pipe FD in the following way: + + .in: Returns the writable pipe end into which the caller writes; + the readable end of the pipe becomes the child's stdin. + + .out, .err: Returns the readable pipe end from which the caller + reads; the writable end of the pipe end becomes child's + stdout/stderr. + + The caller of start_command() must close the so returned FDs + after it has completed reading from/writing to it! + +. Specify a file descriptor > 0 to be used by the child: + + .in: The FD must be readable; it becomes child's stdin. + .out: The FD must be writable; it becomes child's stdout. + .err: The FD must be writable; it becomes child's stderr. + + The specified FD is closed by start_command(), even if it fails to + run the sub-process! + +. Special forms of redirection are available by setting these members + to 1: + + .no_stdin, .no_stdout, .no_stderr: The respective channel is + redirected to /dev/null. + + .stdout_to_stderr: stdout of the child is redirected to its + stderr. This happens after stderr is itself redirected. + So stdout will follow stderr to wherever it is + redirected. + +To modify the environment of the sub-process, specify an array of +string pointers (NULL terminated) in .env: + +. If the string is of the form "VAR=value", i.e. it contains '=' + the variable is added to the child process's environment. + +. If the string does not contain '=', it names an environment + variable that will be removed from the child process's environment. + +If the .env member is NULL, `start_command` will point it at the +.env_array `argv_array` (so you may use one or the other, but not both). +The memory in .env_array will be cleaned up automatically during +`finish_command` (or during `start_command` when it is unsuccessful). + +To specify a new initial working directory for the sub-process, +specify it in the .dir member. + +If the program cannot be found, the functions return -1 and set +errno to ENOENT. Normally, an error message is printed, but if +.silent_exec_failure is set to 1, no message is printed for this +special error condition. + + +* `struct async` + +This describes a function to run asynchronously, whose purpose is +to produce output that the caller reads. + +The caller: + +1. allocates and clears (memset(&asy, 0, sizeof(asy));) a + struct async variable; +2. initializes .proc and .data; +3. calls start_async(); +4. processes communicates with proc through .in and .out; +5. closes .in and .out; +6. calls finish_async(). + +The members .in, .out are used to provide a set of fd's for +communication between the caller and the callee as follows: + +. Specify 0 to have no file descriptor passed. The callee will + receive -1 in the corresponding argument. + +. Specify < 0 to have a pipe allocated; start_async() replaces + with the pipe FD in the following way: + + .in: Returns the writable pipe end into which the caller + writes; the readable end of the pipe becomes the function's + in argument. + + .out: Returns the readable pipe end from which the caller + reads; the writable end of the pipe becomes the function's + out argument. + + The caller of start_async() must close the returned FDs after it + has completed reading from/writing from them. + +. Specify a file descriptor > 0 to be used by the function: + + .in: The FD must be readable; it becomes the function's in. + .out: The FD must be writable; it becomes the function's out. + + The specified FD is closed by start_async(), even if it fails to + run the function. + +The function pointer in .proc has the following signature: + + int proc(int in, int out, void *data); + +. in, out specifies a set of file descriptors to which the function + must read/write the data that it needs/produces. The function + *must* close these descriptors before it returns. A descriptor + may be -1 if the caller did not configure a descriptor for that + direction. + +. data is the value that the caller has specified in the .data member + of struct async. + +. The return value of the function is 0 on success and non-zero + on failure. If the function indicates failure, finish_async() will + report failure as well. + + +There are serious restrictions on what the asynchronous function can do +because this facility is implemented by a thread in the same address +space on most platforms (when pthreads is available), but by a pipe to +a forked process otherwise: + +. It cannot change the program's state (global variables, environment, + etc.) in a way that the caller notices; in other words, .in and .out + are the only communication channels to the caller. + +. It must not change the program's state that the caller of the + facility also uses. diff --git a/Documentation/technical/api-setup.txt b/Documentation/technical/api-setup.txt new file mode 100644 index 0000000000..540e455689 --- /dev/null +++ b/Documentation/technical/api-setup.txt @@ -0,0 +1,49 @@ +setup API +========= + +Talk about + +* setup_git_directory() +* setup_git_directory_gently() +* is_inside_git_dir() +* is_inside_work_tree() +* setup_work_tree() + +(Dscho) + +Pathspec +-------- + +See glossary-context.txt for the syntax of pathspec. In memory, a +pathspec set is represented by "struct pathspec" and is prepared by +parse_pathspec(). This function takes several arguments: + +- magic_mask specifies what features that are NOT supported by the + following code. If a user attempts to use such a feature, + parse_pathspec() can reject it early. + +- flags specifies other things that the caller wants parse_pathspec to + perform. + +- prefix and args come from cmd_* functions + +get_pathspec() is obsolete and should never be used in new code. + +parse_pathspec() helps catch unsupported features and reject them +politely. At a lower level, different pathspec-related functions may +not support the same set of features. Such pathspec-sensitive +functions are guarded with GUARD_PATHSPEC(), which will die in an +unfriendly way when an unsupported feature is requested. + +The command designers are supposed to make sure that GUARD_PATHSPEC() +never dies. They have to make sure all unsupported features are caught +by parse_pathspec(), not by GUARD_PATHSPEC. grepping GUARD_PATHSPEC() +should give the designers all pathspec-sensitive codepaths and what +features they support. + +A similar process is applied when a new pathspec magic is added. The +designer lifts the GUARD_PATHSPEC restriction in the functions that +support the new magic. At the same time (s)he has to make sure this +new feature will be caught at parse_pathspec() in commands that cannot +handle the new magic in some cases. grepping parse_pathspec() should +help. diff --git a/Documentation/technical/api-sha1-array.txt b/Documentation/technical/api-sha1-array.txt new file mode 100644 index 0000000000..3e75497a37 --- /dev/null +++ b/Documentation/technical/api-sha1-array.txt @@ -0,0 +1,76 @@ +sha1-array API +============== + +The sha1-array API provides storage and manipulation of sets of SHA-1 +identifiers. The emphasis is on storage and processing efficiency, +making them suitable for large lists. Note that the ordering of items is +not preserved over some operations. + +Data Structures +--------------- + +`struct sha1_array`:: + + A single array of SHA-1 hashes. This should be initialized by + assignment from `SHA1_ARRAY_INIT`. The `sha1` member contains + the actual data. The `nr` member contains the number of items in + the set. The `alloc` and `sorted` members are used internally, + and should not be needed by API callers. + +Functions +--------- + +`sha1_array_append`:: + Add an item to the set. The sha1 will be placed at the end of + the array (but note that some operations below may lose this + ordering). + +`sha1_array_lookup`:: + Perform a binary search of the array for a specific sha1. + If found, returns the offset (in number of elements) of the + sha1. If not found, returns a negative integer. If the array is + not sorted, this function has the side effect of sorting it. + +`sha1_array_clear`:: + Free all memory associated with the array and return it to the + initial, empty state. + +`sha1_array_for_each_unique`:: + Efficiently iterate over each unique element of the list, + executing the callback function for each one. If the array is + not sorted, this function has the side effect of sorting it. + +Examples +-------- + +----------------------------------------- +void print_callback(const unsigned char sha1[20], + void *data) +{ + printf("%s\n", sha1_to_hex(sha1)); +} + +void some_func(void) +{ + struct sha1_array hashes = SHA1_ARRAY_INIT; + unsigned char sha1[20]; + + /* Read objects into our set */ + while (read_object_from_stdin(sha1)) + sha1_array_append(&hashes, sha1); + + /* Check if some objects are in our set */ + while (read_object_from_stdin(sha1)) { + if (sha1_array_lookup(&hashes, sha1) >= 0) + printf("it's in there!\n"); + + /* + * Print the unique set of objects. We could also have + * avoided adding duplicate objects in the first place, + * but we would end up re-sorting the array repeatedly. + * Instead, this will sort once and then skip duplicates + * in linear time. + */ + sha1_array_for_each_unique(&hashes, print_callback, NULL); +} +----------------------------------------- diff --git a/Documentation/technical/api-sigchain.txt b/Documentation/technical/api-sigchain.txt new file mode 100644 index 0000000000..9e1189ef01 --- /dev/null +++ b/Documentation/technical/api-sigchain.txt @@ -0,0 +1,41 @@ +sigchain API +============ + +Code often wants to set a signal handler to clean up temporary files or +other work-in-progress when we die unexpectedly. For multiple pieces of +code to do this without conflicting, each piece of code must remember +the old value of the handler and restore it either when: + + 1. The work-in-progress is finished, and the handler is no longer + necessary. The handler should revert to the original behavior + (either another handler, SIG_DFL, or SIG_IGN). + + 2. The signal is received. We should then do our cleanup, then chain + to the next handler (or die if it is SIG_DFL). + +Sigchain is a tiny library for keeping a stack of handlers. Your handler +and installation code should look something like: + +------------------------------------------ + void clean_foo_on_signal(int sig) + { + clean_foo(); + sigchain_pop(sig); + raise(sig); + } + + void other_func() + { + sigchain_push_common(clean_foo_on_signal); + mess_up_foo(); + clean_foo(); + } +------------------------------------------ + +Handlers are given the typedef of sigchain_fun. This is the same type +that is given to signal() or sigaction(). It is perfectly reasonable to +push SIG_DFL or SIG_IGN onto the stack. + +You can sigchain_push and sigchain_pop individual signals. For +convenience, sigchain_push_common will push the handler onto the stack +for many common signals. diff --git a/Documentation/technical/api-string-list.txt b/Documentation/technical/api-string-list.txt new file mode 100644 index 0000000000..c08402b12e --- /dev/null +++ b/Documentation/technical/api-string-list.txt @@ -0,0 +1,209 @@ +string-list API +=============== + +The string_list API offers a data structure and functions to handle +sorted and unsorted string lists. A "sorted" list is one whose +entries are sorted by string value in `strcmp()` order. + +The 'string_list' struct used to be called 'path_list', but was renamed +because it is not specific to paths. + +The caller: + +. Allocates and clears a `struct string_list` variable. + +. Initializes the members. You might want to set the flag `strdup_strings` + if the strings should be strdup()ed. For example, this is necessary + when you add something like git_path("..."), since that function returns + a static buffer that will change with the next call to git_path(). ++ +If you need something advanced, you can manually malloc() the `items` +member (you need this if you add things later) and you should set the +`nr` and `alloc` members in that case, too. + +. Adds new items to the list, using `string_list_append`, + `string_list_append_nodup`, `string_list_insert`, + `string_list_split`, and/or `string_list_split_in_place`. + +. Can check if a string is in the list using `string_list_has_string` or + `unsorted_string_list_has_string` and get it from the list using + `string_list_lookup` for sorted lists. + +. Can sort an unsorted list using `string_list_sort`. + +. Can remove duplicate items from a sorted list using + `string_list_remove_duplicates`. + +. Can remove individual items of an unsorted list using + `unsorted_string_list_delete_item`. + +. Can remove items not matching a criterion from a sorted or unsorted + list using `filter_string_list`, or remove empty strings using + `string_list_remove_empty_items`. + +. Finally it should free the list using `string_list_clear`. + +Example: + +---- +struct string_list list = STRING_LIST_INIT_NODUP; +int i; + +string_list_append(&list, "foo"); +string_list_append(&list, "bar"); +for (i = 0; i < list.nr; i++) + printf("%s\n", list.items[i].string) +---- + +NOTE: It is more efficient to build an unsorted list and sort it +afterwards, instead of building a sorted list (`O(n log n)` instead of +`O(n^2)`). ++ +However, if you use the list to check if a certain string was added +already, you should not do that (using unsorted_string_list_has_string()), +because the complexity would be quadratic again (but with a worse factor). + +Functions +--------- + +* General ones (works with sorted and unsorted lists as well) + +`string_list_init`:: + + Initialize the members of the string_list, set `strdup_strings` + member according to the value of the second parameter. + +`filter_string_list`:: + + Apply a function to each item in a list, retaining only the + items for which the function returns true. If free_util is + true, call free() on the util members of any items that have + to be deleted. Preserve the order of the items that are + retained. + +`string_list_remove_empty_items`:: + + Remove any empty strings from the list. If free_util is true, + call free() on the util members of any items that have to be + deleted. Preserve the order of the items that are retained. + +`print_string_list`:: + + Dump a string_list to stdout, useful mainly for debugging purposes. It + can take an optional header argument and it writes out the + string-pointer pairs of the string_list, each one in its own line. + +`string_list_clear`:: + + Free a string_list. The `string` pointer of the items will be freed in + case the `strdup_strings` member of the string_list is set. The second + parameter controls if the `util` pointer of the items should be freed + or not. + +* Functions for sorted lists only + +`string_list_has_string`:: + + Determine if the string_list has a given string or not. + +`string_list_insert`:: + + Insert a new element to the string_list. The returned pointer can be + handy if you want to write something to the `util` pointer of the + string_list_item containing the just added string. If the given + string already exists the insertion will be skipped and the + pointer to the existing item returned. ++ +Since this function uses xrealloc() (which die()s if it fails) if the +list needs to grow, it is safe not to check the pointer. I.e. you may +write `string_list_insert(...)->util = ...;`. + +`string_list_lookup`:: + + Look up a given string in the string_list, returning the containing + string_list_item. If the string is not found, NULL is returned. + +`string_list_remove_duplicates`:: + + Remove all but the first of consecutive entries that have the + same string value. If free_util is true, call free() on the + util members of any items that have to be deleted. + +* Functions for unsorted lists only + +`string_list_append`:: + + Append a new string to the end of the string_list. If + `strdup_string` is set, then the string argument is copied; + otherwise the new `string_list_entry` refers to the input + string. + +`string_list_append_nodup`:: + + Append a new string to the end of the string_list. The new + `string_list_entry` always refers to the input string, even if + `strdup_string` is set. This function can be used to hand + ownership of a malloc()ed string to a `string_list` that has + `strdup_string` set. + +`string_list_sort`:: + + Sort the list's entries by string value in `strcmp()` order. + +`unsorted_string_list_has_string`:: + + It's like `string_list_has_string()` but for unsorted lists. + +`unsorted_string_list_lookup`:: + + It's like `string_list_lookup()` but for unsorted lists. ++ +The above two functions need to look through all items, as opposed to their +counterpart for sorted lists, which performs a binary search. + +`unsorted_string_list_delete_item`:: + + Remove an item from a string_list. The `string` pointer of the items + will be freed in case the `strdup_strings` member of the string_list + is set. The third parameter controls if the `util` pointer of the + items should be freed or not. + +`string_list_split`:: +`string_list_split_in_place`:: + + Split a string into substrings on a delimiter character and + append the substrings to a `string_list`. If `maxsplit` is + non-negative, then split at most `maxsplit` times. Return the + number of substrings appended to the list. ++ +`string_list_split` requires a `string_list` that has `strdup_strings` +set to true; it leaves the input string untouched and makes copies of +the substrings in newly-allocated memory. +`string_list_split_in_place` requires a `string_list` that has +`strdup_strings` set to false; it splits the input string in place, +overwriting the delimiter characters with NULs and creating new +string_list_items that point into the original string (the original +string must therefore not be modified or freed while the `string_list` +is in use). + + +Data structures +--------------- + +* `struct string_list_item` + +Represents an item of the list. The `string` member is a pointer to the +string, and you may use the `util` member for any purpose, if you want. + +* `struct string_list` + +Represents the list itself. + +. The array of items are available via the `items` member. +. The `nr` member contains the number of items stored in the list. +. The `alloc` member is used to avoid reallocating at every insertion. + You should not tamper with it. +. Setting the `strdup_strings` member to 1 will strdup() the strings + before adding them, see above. +. The `compare_strings_fn` member is used to specify a custom compare + function, otherwise `strcmp()` is used as the default function. diff --git a/Documentation/technical/api-submodule-config.txt b/Documentation/technical/api-submodule-config.txt new file mode 100644 index 0000000000..941fa178dd --- /dev/null +++ b/Documentation/technical/api-submodule-config.txt @@ -0,0 +1,62 @@ +submodule config cache API +========================== + +The submodule config cache API allows to read submodule +configurations/information from specified revisions. Internally +information is lazily read into a cache that is used to avoid +unnecessary parsing of the same .gitmodule files. Lookups can be done by +submodule path or name. + +Usage +----- + +To initialize the cache with configurations from the worktree the caller +typically first calls `gitmodules_config()` to read values from the +worktree .gitmodules and then to overlay the local git config values +`parse_submodule_config_option()` from the config parsing +infrastructure. + +The caller can look up information about submodules by using the +`submodule_from_path()` or `submodule_from_name()` functions. They return +a `struct submodule` which contains the values. The API automatically +initializes and allocates the needed infrastructure on-demand. If the +caller does only want to lookup values from revisions the initialization +can be skipped. + +If the internal cache might grow too big or when the caller is done with +the API, all internally cached values can be freed with submodule_free(). + +Data Structures +--------------- + +`struct submodule`:: + + This structure is used to return the information about one + submodule for a certain revision. It is returned by the lookup + functions. + +Functions +--------- + +`void submodule_free()`:: + + Use these to free the internally cached values. + +`int parse_submodule_config_option(const char *var, const char *value)`:: + + Can be passed to the config parsing infrastructure to parse + local (worktree) submodule configurations. + +`const struct submodule *submodule_from_path(const unsigned char *commit_sha1, const char *path)`:: + + Lookup values for one submodule by its commit_sha1 and path. + +`const struct submodule *submodule_from_name(const unsigned char *commit_sha1, const char *name)`:: + + The same as above but lookup by name. + +If given the null_sha1 as commit_sha1 the local configuration of a +submodule will be returned (e.g. consolidated values from local git +configuration and the .gitmodules file in the worktree). + +For an example usage see test-submodule-config.c. diff --git a/Documentation/technical/api-trace.txt b/Documentation/technical/api-trace.txt new file mode 100644 index 0000000000..097a651d96 --- /dev/null +++ b/Documentation/technical/api-trace.txt @@ -0,0 +1,97 @@ +trace API +========= + +The trace API can be used to print debug messages to stderr or a file. Trace +code is inactive unless explicitly enabled by setting `GIT_TRACE*` environment +variables. + +The trace implementation automatically adds `timestamp file:line ... \n` to +all trace messages. E.g.: + +------------ +23:59:59.123456 git.c:312 trace: built-in: git 'foo' +00:00:00.000001 builtin/foo.c:99 foo: some message +------------ + +Data Structures +--------------- + +`struct trace_key`:: + + Defines a trace key (or category). The default (for API functions that + don't take a key) is `GIT_TRACE`. ++ +E.g. to define a trace key controlled by environment variable `GIT_TRACE_FOO`: ++ +------------ +static struct trace_key trace_foo = TRACE_KEY_INIT(FOO); + +static void trace_print_foo(const char *message) +{ + trace_print_key(&trace_foo, message); +} +------------ ++ +Note: don't use `const` as the trace implementation stores internal state in +the `trace_key` structure. + +Functions +--------- + +`int trace_want(struct trace_key *key)`:: + + Checks whether the trace key is enabled. Used to prevent expensive + string formatting before calling one of the printing APIs. + +`void trace_disable(struct trace_key *key)`:: + + Disables tracing for the specified key, even if the environment + variable was set. + +`void trace_printf(const char *format, ...)`:: +`void trace_printf_key(struct trace_key *key, const char *format, ...)`:: + + Prints a formatted message, similar to printf. + +`void trace_argv_printf(const char **argv, const char *format, ...)``:: + + Prints a formatted message, followed by a quoted list of arguments. + +`void trace_strbuf(struct trace_key *key, const struct strbuf *data)`:: + + Prints the strbuf, without additional formatting (i.e. doesn't + choke on `%` or even `\0`). + +`uint64_t getnanotime(void)`:: + + Returns nanoseconds since the epoch (01/01/1970), typically used + for performance measurements. ++ +Currently there are high precision timer implementations for Linux (using +`clock_gettime(CLOCK_MONOTONIC)`) and Windows (`QueryPerformanceCounter`). +Other platforms use `gettimeofday` as time source. + +`void trace_performance(uint64_t nanos, const char *format, ...)`:: +`void trace_performance_since(uint64_t start, const char *format, ...)`:: + + Prints the elapsed time (in nanoseconds), or elapsed time since + `start`, followed by a formatted message. Enabled via environment + variable `GIT_TRACE_PERFORMANCE`. Used for manual profiling, e.g.: ++ +------------ +uint64_t start = getnanotime(); +/* code section to measure */ +trace_performance_since(start, "foobar"); +------------ ++ +------------ +uint64_t t = 0; +for (;;) { + /* ignore */ + t -= getnanotime(); + /* code section to measure */ + t += getnanotime(); + /* ignore */ +} +trace_performance(t, "frotz"); +------------ diff --git a/Documentation/technical/api-tree-walking.txt b/Documentation/technical/api-tree-walking.txt new file mode 100644 index 0000000000..14af37c3f1 --- /dev/null +++ b/Documentation/technical/api-tree-walking.txt @@ -0,0 +1,147 @@ +tree walking API +================ + +The tree walking API is used to traverse and inspect trees. + +Data Structures +--------------- + +`struct name_entry`:: + + An entry in a tree. Each entry has a sha1 identifier, pathname, and + mode. + +`struct tree_desc`:: + + A semi-opaque data structure used to maintain the current state of the + walk. ++ +* `buffer` is a pointer into the memory representation of the tree. It always +points at the current entry being visited. + +* `size` counts the number of bytes left in the `buffer`. + +* `entry` points to the current entry being visited. + +`struct traverse_info`:: + + A structure used to maintain the state of a traversal. ++ +* `prev` points to the traverse_info which was used to descend into the +current tree. If this is the top-level tree `prev` will point to +a dummy traverse_info. + +* `name` is the entry for the current tree (if the tree is a subtree). + +* `pathlen` is the length of the full path for the current tree. + +* `conflicts` can be used by callbacks to maintain directory-file conflicts. + +* `fn` is a callback called for each entry in the tree. See Traversing for more +information. + +* `data` can be anything the `fn` callback would want to use. + +* `show_all_errors` tells whether to stop at the first error or not. + +Initializing +------------ + +`init_tree_desc`:: + + Initialize a `tree_desc` and decode its first entry. The buffer and + size parameters are assumed to be the same as the buffer and size + members of `struct tree`. + +`fill_tree_descriptor`:: + + Initialize a `tree_desc` and decode its first entry given the sha1 of + a tree. Returns the `buffer` member if the sha1 is a valid tree + identifier and NULL otherwise. + +`setup_traverse_info`:: + + Initialize a `traverse_info` given the pathname of the tree to start + traversing from. The `base` argument is assumed to be the `path` + member of the `name_entry` being recursed into unless the tree is a + top-level tree in which case the empty string ("") is used. + +Walking +------- + +`tree_entry`:: + + Visit the next entry in a tree. Returns 1 when there are more entries + left to visit and 0 when all entries have been visited. This is + commonly used in the test of a while loop. + +`tree_entry_len`:: + + Calculate the length of a tree entry's pathname. This utilizes the + memory structure of a tree entry to avoid the overhead of using a + generic strlen(). + +`update_tree_entry`:: + + Walk to the next entry in a tree. This is commonly used in conjunction + with `tree_entry_extract` to inspect the current entry. + +`tree_entry_extract`:: + + Decode the entry currently being visited (the one pointed to by + `tree_desc's` `entry` member) and return the sha1 of the entry. The + `pathp` and `modep` arguments are set to the entry's pathname and mode + respectively. + +`get_tree_entry`:: + + Find an entry in a tree given a pathname and the sha1 of a tree to + search. Returns 0 if the entry is found and -1 otherwise. The third + and fourth parameters are set to the entry's sha1 and mode + respectively. + +Traversing +---------- + +`traverse_trees`:: + + Traverse `n` number of trees in parallel. The `fn` callback member of + `traverse_info` is called once for each tree entry. + +`traverse_callback_t`:: + The arguments passed to the traverse callback are as follows: ++ +* `n` counts the number of trees being traversed. + +* `mask` has its nth bit set if something exists in the nth entry. + +* `dirmask` has its nth bit set if the nth tree's entry is a directory. + +* `entry` is an array of size `n` where the nth entry is from the nth tree. + +* `info` maintains the state of the traversal. + ++ +Returning a negative value will terminate the traversal. Otherwise the +return value is treated as an update mask. If the nth bit is set the nth tree +will be updated and if the bit is not set the nth tree entry will be the +same in the next callback invocation. + +`make_traverse_path`:: + + Generate the full pathname of a tree entry based from the root of the + traversal. For example, if the traversal has recursed into another + tree named "bar" the pathname of an entry "baz" in the "bar" + tree would be "bar/baz". + +`traverse_path_len`:: + + Calculate the length of a pathname returned by `make_traverse_path`. + This utilizes the memory structure of a tree entry to avoid the + overhead of using a generic strlen(). + +Authors +------- + +Written by Junio C Hamano <gitster@pobox.com> and Linus Torvalds +<torvalds@linux-foundation.org> diff --git a/Documentation/technical/api-xdiff-interface.txt b/Documentation/technical/api-xdiff-interface.txt new file mode 100644 index 0000000000..6296ecad1d --- /dev/null +++ b/Documentation/technical/api-xdiff-interface.txt @@ -0,0 +1,7 @@ +xdiff interface API +=================== + +Talk about our calling convention to xdiff library, including +xdiff_emit_consume_fn. + +(Dscho, JC) diff --git a/Documentation/technical/bitmap-format.txt b/Documentation/technical/bitmap-format.txt new file mode 100644 index 0000000000..f8c18a0f7a --- /dev/null +++ b/Documentation/technical/bitmap-format.txt @@ -0,0 +1,164 @@ +GIT bitmap v1 format +==================== + + - A header appears at the beginning: + + 4-byte signature: {'B', 'I', 'T', 'M'} + + 2-byte version number (network byte order) + The current implementation only supports version 1 + of the bitmap index (the same one as JGit). + + 2-byte flags (network byte order) + + The following flags are supported: + + - BITMAP_OPT_FULL_DAG (0x1) REQUIRED + This flag must always be present. It implies that the bitmap + index has been generated for a packfile with full closure + (i.e. where every single object in the packfile can find + its parent links inside the same packfile). This is a + requirement for the bitmap index format, also present in JGit, + that greatly reduces the complexity of the implementation. + + - BITMAP_OPT_HASH_CACHE (0x4) + If present, the end of the bitmap file contains + `N` 32-bit name-hash values, one per object in the + pack. The format and meaning of the name-hash is + described below. + + 4-byte entry count (network byte order) + + The total count of entries (bitmapped commits) in this bitmap index. + + 20-byte checksum + + The SHA1 checksum of the pack this bitmap index belongs to. + + - 4 EWAH bitmaps that act as type indexes + + Type indexes are serialized after the hash cache in the shape + of four EWAH bitmaps stored consecutively (see Appendix A for + the serialization format of an EWAH bitmap). + + There is a bitmap for each Git object type, stored in the following + order: + + - Commits + - Trees + - Blobs + - Tags + + In each bitmap, the `n`th bit is set to true if the `n`th object + in the packfile is of that type. + + The obvious consequence is that the OR of all 4 bitmaps will result + in a full set (all bits set), and the AND of all 4 bitmaps will + result in an empty bitmap (no bits set). + + - N entries with compressed bitmaps, one for each indexed commit + + Where `N` is the total amount of entries in this bitmap index. + Each entry contains the following: + + - 4-byte object position (network byte order) + The position **in the index for the packfile** where the + bitmap for this commit is found. + + - 1-byte XOR-offset + The xor offset used to compress this bitmap. For an entry + in position `x`, a XOR offset of `y` means that the actual + bitmap representing this commit is composed by XORing the + bitmap for this entry with the bitmap in entry `x-y` (i.e. + the bitmap `y` entries before this one). + + Note that this compression can be recursive. In order to + XOR this entry with a previous one, the previous entry needs + to be decompressed first, and so on. + + The hard-limit for this offset is 160 (an entry can only be + xor'ed against one of the 160 entries preceding it). This + number is always positive, and hence entries are always xor'ed + with **previous** bitmaps, not bitmaps that will come afterwards + in the index. + + - 1-byte flags for this bitmap + At the moment the only available flag is `0x1`, which hints + that this bitmap can be re-used when rebuilding bitmap indexes + for the repository. + + - The compressed bitmap itself, see Appendix A. + +== Appendix A: Serialization format for an EWAH bitmap + +Ewah bitmaps are serialized in the same protocol as the JAVAEWAH +library, making them backwards compatible with the JGit +implementation: + + - 4-byte number of bits of the resulting UNCOMPRESSED bitmap + + - 4-byte number of words of the COMPRESSED bitmap, when stored + + - N x 8-byte words, as specified by the previous field + + This is the actual content of the compressed bitmap. + + - 4-byte position of the current RLW for the compressed + bitmap + +All words are stored in network byte order for their corresponding +sizes. + +The compressed bitmap is stored in a form of run-length encoding, as +follows. It consists of a concatenation of an arbitrary number of +chunks. Each chunk consists of one or more 64-bit words + + H L_1 L_2 L_3 .... L_M + +H is called RLW (run length word). It consists of (from lower to higher +order bits): + + - 1 bit: the repeated bit B + + - 32 bits: repetition count K (unsigned) + + - 31 bits: literal word count M (unsigned) + +The bitstream represented by the above chunk is then: + + - K repetitions of B + + - The bits stored in `L_1` through `L_M`. Within a word, bits at + lower order come earlier in the stream than those at higher + order. + +The next word after `L_M` (if any) must again be a RLW, for the next +chunk. For efficient appending to the bitstream, the EWAH stores a +pointer to the last RLW in the stream. + + +== Appendix B: Optional Bitmap Sections + +These sections may or may not be present in the `.bitmap` file; their +presence is indicated by the header flags section described above. + +Name-hash cache +--------------- + +If the BITMAP_OPT_HASH_CACHE flag is set, the end of the bitmap contains +a cache of 32-bit values, one per object in the pack. The value at +position `i` is the hash of the pathname at which the `i`th object +(counting in index order) in the pack can be found. This can be fed +into the delta heuristics to compare objects with similar pathnames. + +The hash algorithm used is: + + hash = 0; + while ((c = *name++)) + if (!isspace(c)) + hash = (hash >> 2) + (c << 24); + +Note that this hashing scheme is tied to the BITMAP_OPT_HASH_CACHE flag. +If implementations want to choose a different hashing scheme, they are +free to do so, but MUST allocate a new header flag (because comparing +hashes made under two different schemes would be pointless). diff --git a/Documentation/technical/http-protocol.txt b/Documentation/technical/http-protocol.txt new file mode 100644 index 0000000000..1c561bdd92 --- /dev/null +++ b/Documentation/technical/http-protocol.txt @@ -0,0 +1,507 @@ +HTTP transfer protocols +======================= + +Git supports two HTTP based transfer protocols. A "dumb" protocol +which requires only a standard HTTP server on the server end of the +connection, and a "smart" protocol which requires a Git aware CGI +(or server module). This document describes both protocols. + +As a design feature smart clients can automatically upgrade "dumb" +protocol URLs to smart URLs. This permits all users to have the +same published URL, and the peers automatically select the most +efficient transport available to them. + + +URL Format +---------- + +URLs for Git repositories accessed by HTTP use the standard HTTP +URL syntax documented by RFC 1738, so they are of the form: + + http://<host>:<port>/<path>?<searchpart> + +Within this documentation the placeholder `$GIT_URL` will stand for +the http:// repository URL entered by the end-user. + +Servers SHOULD handle all requests to locations matching `$GIT_URL`, as +both the "smart" and "dumb" HTTP protocols used by Git operate +by appending additional path components onto the end of the user +supplied `$GIT_URL` string. + +An example of a dumb client requesting for a loose object: + + $GIT_URL: http://example.com:8080/git/repo.git + URL request: http://example.com:8080/git/repo.git/objects/d0/49f6c27a2244e12041955e262a404c7faba355 + +An example of a smart request to a catch-all gateway: + + $GIT_URL: http://example.com/daemon.cgi?svc=git&q= + URL request: http://example.com/daemon.cgi?svc=git&q=/info/refs&service=git-receive-pack + +An example of a request to a submodule: + + $GIT_URL: http://example.com/git/repo.git/path/submodule.git + URL request: http://example.com/git/repo.git/path/submodule.git/info/refs + +Clients MUST strip a trailing `/`, if present, from the user supplied +`$GIT_URL` string to prevent empty path tokens (`//`) from appearing +in any URL sent to a server. Compatible clients MUST expand +`$GIT_URL/info/refs` as `foo/info/refs` and not `foo//info/refs`. + + +Authentication +-------------- + +Standard HTTP authentication is used if authentication is required +to access a repository, and MAY be configured and enforced by the +HTTP server software. + +Because Git repositories are accessed by standard path components +server administrators MAY use directory based permissions within +their HTTP server to control repository access. + +Clients SHOULD support Basic authentication as described by RFC 2617. +Servers SHOULD support Basic authentication by relying upon the +HTTP server placed in front of the Git server software. + +Servers SHOULD NOT require HTTP cookies for the purposes of +authentication or access control. + +Clients and servers MAY support other common forms of HTTP based +authentication, such as Digest authentication. + + +SSL +--- + +Clients and servers SHOULD support SSL, particularly to protect +passwords when relying on Basic HTTP authentication. + + +Session State +------------- + +The Git over HTTP protocol (much like HTTP itself) is stateless +from the perspective of the HTTP server side. All state MUST be +retained and managed by the client process. This permits simple +round-robin load-balancing on the server side, without needing to +worry about state management. + +Clients MUST NOT require state management on the server side in +order to function correctly. + +Servers MUST NOT require HTTP cookies in order to function correctly. +Clients MAY store and forward HTTP cookies during request processing +as described by RFC 2616 (HTTP/1.1). Servers SHOULD ignore any +cookies sent by a client. + + +General Request Processing +-------------------------- + +Except where noted, all standard HTTP behavior SHOULD be assumed +by both client and server. This includes (but is not necessarily +limited to): + +If there is no repository at `$GIT_URL`, or the resource pointed to by a +location matching `$GIT_URL` does not exist, the server MUST NOT respond +with `200 OK` response. A server SHOULD respond with +`404 Not Found`, `410 Gone`, or any other suitable HTTP status code +which does not imply the resource exists as requested. + +If there is a repository at `$GIT_URL`, but access is not currently +permitted, the server MUST respond with the `403 Forbidden` HTTP +status code. + +Servers SHOULD support both HTTP 1.0 and HTTP 1.1. +Servers SHOULD support chunked encoding for both request and response +bodies. + +Clients SHOULD support both HTTP 1.0 and HTTP 1.1. +Clients SHOULD support chunked encoding for both request and response +bodies. + +Servers MAY return ETag and/or Last-Modified headers. + +Clients MAY revalidate cached entities by including If-Modified-Since +and/or If-None-Match request headers. + +Servers MAY return `304 Not Modified` if the relevant headers appear +in the request and the entity has not changed. Clients MUST treat +`304 Not Modified` identical to `200 OK` by reusing the cached entity. + +Clients MAY reuse a cached entity without revalidation if the +Cache-Control and/or Expires header permits caching. Clients and +servers MUST follow RFC 2616 for cache controls. + + +Discovering References +---------------------- + +All HTTP clients MUST begin either a fetch or a push exchange by +discovering the references available on the remote repository. + +Dumb Clients +~~~~~~~~~~~~ + +HTTP clients that only support the "dumb" protocol MUST discover +references by making a request for the special info/refs file of +the repository. + +Dumb HTTP clients MUST make a `GET` request to `$GIT_URL/info/refs`, +without any search/query parameters. + + C: GET $GIT_URL/info/refs HTTP/1.0 + + S: 200 OK + S: + S: 95dcfa3633004da0049d3d0fa03f80589cbcaf31 refs/heads/maint + S: d049f6c27a2244e12041955e262a404c7faba355 refs/heads/master + S: 2cb58b79488a98d2721cea644875a8dd0026b115 refs/tags/v1.0 + S: a3c2e2402b99163d1d59756e5f207ae21cccba4c refs/tags/v1.0^{} + +The Content-Type of the returned info/refs entity SHOULD be +`text/plain; charset=utf-8`, but MAY be any content type. +Clients MUST NOT attempt to validate the returned Content-Type. +Dumb servers MUST NOT return a return type starting with +`application/x-git-`. + +Cache-Control headers MAY be returned to disable caching of the +returned entity. + +When examining the response clients SHOULD only examine the HTTP +status code. Valid responses are `200 OK`, or `304 Not Modified`. + +The returned content is a UNIX formatted text file describing +each ref and its known value. The file SHOULD be sorted by name +according to the C locale ordering. The file SHOULD NOT include +the default ref named `HEAD`. + + info_refs = *( ref_record ) + ref_record = any_ref / peeled_ref + + any_ref = obj-id HTAB refname LF + peeled_ref = obj-id HTAB refname LF + obj-id HTAB refname "^{}" LF + +Smart Clients +~~~~~~~~~~~~~ + +HTTP clients that support the "smart" protocol (or both the +"smart" and "dumb" protocols) MUST discover references by making +a parameterized request for the info/refs file of the repository. + +The request MUST contain exactly one query parameter, +`service=$servicename`, where `$servicename` MUST be the service +name the client wishes to contact to complete the operation. +The request MUST NOT contain additional query parameters. + + C: GET $GIT_URL/info/refs?service=git-upload-pack HTTP/1.0 + +dumb server reply: + + S: 200 OK + S: + S: 95dcfa3633004da0049d3d0fa03f80589cbcaf31 refs/heads/maint + S: d049f6c27a2244e12041955e262a404c7faba355 refs/heads/master + S: 2cb58b79488a98d2721cea644875a8dd0026b115 refs/tags/v1.0 + S: a3c2e2402b99163d1d59756e5f207ae21cccba4c refs/tags/v1.0^{} + +smart server reply: + + S: 200 OK + S: Content-Type: application/x-git-upload-pack-advertisement + S: Cache-Control: no-cache + S: + S: 001e# service=git-upload-pack\n + S: 004895dcfa3633004da0049d3d0fa03f80589cbcaf31 refs/heads/maint\0multi_ack\n + S: 0042d049f6c27a2244e12041955e262a404c7faba355 refs/heads/master\n + S: 003c2cb58b79488a98d2721cea644875a8dd0026b115 refs/tags/v1.0\n + S: 003fa3c2e2402b99163d1d59756e5f207ae21cccba4c refs/tags/v1.0^{}\n + +Dumb Server Response +^^^^^^^^^^^^^^^^^^^^ +Dumb servers MUST respond with the dumb server reply format. + +See the prior section under dumb clients for a more detailed +description of the dumb server response. + +Smart Server Response +^^^^^^^^^^^^^^^^^^^^^ +If the server does not recognize the requested service name, or the +requested service name has been disabled by the server administrator, +the server MUST respond with the `403 Forbidden` HTTP status code. + +Otherwise, smart servers MUST respond with the smart server reply +format for the requested service name. + +Cache-Control headers SHOULD be used to disable caching of the +returned entity. + +The Content-Type MUST be `application/x-$servicename-advertisement`. +Clients SHOULD fall back to the dumb protocol if another content +type is returned. When falling back to the dumb protocol clients +SHOULD NOT make an additional request to `$GIT_URL/info/refs`, but +instead SHOULD use the response already in hand. Clients MUST NOT +continue if they do not support the dumb protocol. + +Clients MUST validate the status code is either `200 OK` or +`304 Not Modified`. + +Clients MUST validate the first five bytes of the response entity +matches the regex `^[0-9a-f]{4}#`. If this test fails, clients +MUST NOT continue. + +Clients MUST parse the entire response as a sequence of pkt-line +records. + +Clients MUST verify the first pkt-line is `# service=$servicename`. +Servers MUST set $servicename to be the request parameter value. +Servers SHOULD include an LF at the end of this line. +Clients MUST ignore an LF at the end of the line. + +Servers MUST terminate the response with the magic `0000` end +pkt-line marker. + +The returned response is a pkt-line stream describing each ref and +its known value. The stream SHOULD be sorted by name according to +the C locale ordering. The stream SHOULD include the default ref +named `HEAD` as the first ref. The stream MUST include capability +declarations behind a NUL on the first ref. + + smart_reply = PKT-LINE("# service=$servicename" LF) + ref_list + "0000" + ref_list = empty_list / non_empty_list + + empty_list = PKT-LINE(zero-id SP "capabilities^{}" NUL cap-list LF) + + non_empty_list = PKT-LINE(obj-id SP name NUL cap_list LF) + *ref_record + + cap-list = capability *(SP capability) + capability = 1*(LC_ALPHA / DIGIT / "-" / "_") + LC_ALPHA = %x61-7A + + ref_record = any_ref / peeled_ref + any_ref = PKT-LINE(obj-id SP name LF) + peeled_ref = PKT-LINE(obj-id SP name LF) + PKT-LINE(obj-id SP name "^{}" LF + + +Smart Service git-upload-pack +------------------------------ +This service reads from the repository pointed to by `$GIT_URL`. + +Clients MUST first perform ref discovery with +`$GIT_URL/info/refs?service=git-upload-pack`. + + C: POST $GIT_URL/git-upload-pack HTTP/1.0 + C: Content-Type: application/x-git-upload-pack-request + C: + C: 0032want 0a53e9ddeaddad63ad106860237bbf53411d11a7\n + C: 0032have 441b40d833fdfa93eb2908e52742248faf0ee993\n + C: 0000 + + S: 200 OK + S: Content-Type: application/x-git-upload-pack-result + S: Cache-Control: no-cache + S: + S: ....ACK %s, continue + S: ....NAK + +Clients MUST NOT reuse or revalidate a cached response. +Servers MUST include sufficient Cache-Control headers +to prevent caching of the response. + +Servers SHOULD support all capabilities defined here. + +Clients MUST send at least one "want" command in the request body. +Clients MUST NOT reference an id in a "want" command which did not +appear in the response obtained through ref discovery unless the +server advertises capability `allow-tip-sha1-in-want` or +`allow-reachable-sha1-in-want`. + + compute_request = want_list + have_list + request_end + request_end = "0000" / "done" + + want_list = PKT-LINE(want NUL cap_list LF) + *(want_pkt) + want_pkt = PKT-LINE(want LF) + want = "want" SP id + cap_list = *(SP capability) SP + + have_list = *PKT-LINE("have" SP id LF) + +TODO: Document this further. + +The Negotiation Algorithm +~~~~~~~~~~~~~~~~~~~~~~~~~ +The computation to select the minimal pack proceeds as follows +(C = client, S = server): + +'init step:' + +C: Use ref discovery to obtain the advertised refs. + +C: Place any object seen into set `advertised`. + +C: Build an empty set, `common`, to hold the objects that are later + determined to be on both ends. + +C: Build a set, `want`, of the objects from `advertised` the client + wants to fetch, based on what it saw during ref discovery. + +C: Start a queue, `c_pending`, ordered by commit time (popping newest + first). Add all client refs. When a commit is popped from + the queue its parents SHOULD be automatically inserted back. + Commits MUST only enter the queue once. + +'one compute step:' + +C: Send one `$GIT_URL/git-upload-pack` request: + + C: 0032want <want #1>............................... + C: 0032want <want #2>............................... + .... + C: 0032have <common #1>............................. + C: 0032have <common #2>............................. + .... + C: 0032have <have #1>............................... + C: 0032have <have #2>............................... + .... + C: 0000 + +The stream is organized into "commands", with each command +appearing by itself in a pkt-line. Within a command line, +the text leading up to the first space is the command name, +and the remainder of the line to the first LF is the value. +Command lines are terminated with an LF as the last byte of +the pkt-line value. + +Commands MUST appear in the following order, if they appear +at all in the request stream: + +* "want" +* "have" + +The stream is terminated by a pkt-line flush (`0000`). + +A single "want" or "have" command MUST have one hex formatted +SHA-1 as its value. Multiple SHA-1s MUST be sent by sending +multiple commands. + +The `have` list is created by popping the first 32 commits +from `c_pending`. Less can be supplied if `c_pending` empties. + +If the client has sent 256 "have" commits and has not yet +received one of those back from `s_common`, or the client has +emptied `c_pending` it SHOULD include a "done" command to let +the server know it won't proceed: + + C: 0009done + +S: Parse the git-upload-pack request: + +Verify all objects in `want` are directly reachable from refs. + +The server MAY walk backwards through history or through +the reflog to permit slightly stale requests. + +If no "want" objects are received, send an error: +TODO: Define error if no "want" lines are requested. + +If any "want" object is not reachable, send an error: +TODO: Define error if an invalid "want" is requested. + +Create an empty list, `s_common`. + +If "have" was sent: + +Loop through the objects in the order supplied by the client. + +For each object, if the server has the object reachable from +a ref, add it to `s_common`. If a commit is added to `s_common`, +do not add any ancestors, even if they also appear in `have`. + +S: Send the git-upload-pack response: + +If the server has found a closed set of objects to pack or the +request ends with "done", it replies with the pack. +TODO: Document the pack based response + + S: PACK... + +The returned stream is the side-band-64k protocol supported +by the git-upload-pack service, and the pack is embedded into +stream 1. Progress messages from the server side MAY appear +in stream 2. + +Here a "closed set of objects" is defined to have at least +one path from every "want" to at least one "common" object. + +If the server needs more information, it replies with a +status continue response: +TODO: Document the non-pack response + +C: Parse the upload-pack response: + TODO: Document parsing response + +'Do another compute step.' + + +Smart Service git-receive-pack +------------------------------ +This service reads from the repository pointed to by `$GIT_URL`. + +Clients MUST first perform ref discovery with +`$GIT_URL/info/refs?service=git-receive-pack`. + + C: POST $GIT_URL/git-receive-pack HTTP/1.0 + C: Content-Type: application/x-git-receive-pack-request + C: + C: ....0a53e9ddeaddad63ad106860237bbf53411d11a7 441b40d833fdfa93eb2908e52742248faf0ee993 refs/heads/maint\0 report-status + C: 0000 + C: PACK.... + + S: 200 OK + S: Content-Type: application/x-git-receive-pack-result + S: Cache-Control: no-cache + S: + S: .... + +Clients MUST NOT reuse or revalidate a cached response. +Servers MUST include sufficient Cache-Control headers +to prevent caching of the response. + +Servers SHOULD support all capabilities defined here. + +Clients MUST send at least one command in the request body. +Within the command portion of the request body clients SHOULD send +the id obtained through ref discovery as old_id. + + update_request = command_list + "PACK" <binary data> + + command_list = PKT-LINE(command NUL cap_list LF) + *(command_pkt) + command_pkt = PKT-LINE(command LF) + cap_list = *(SP capability) SP + + command = create / delete / update + create = zero-id SP new_id SP name + delete = old_id SP zero-id SP name + update = old_id SP new_id SP name + +TODO: Document this further. + + +References +---------- + +http://www.ietf.org/rfc/rfc1738.txt[RFC 1738: Uniform Resource Locators (URL)] +http://www.ietf.org/rfc/rfc2616.txt[RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1] +link:technical/pack-protocol.html +link:technical/protocol-capabilities.html diff --git a/Documentation/technical/index-format.txt b/Documentation/technical/index-format.txt new file mode 100644 index 0000000000..7392ff636c --- /dev/null +++ b/Documentation/technical/index-format.txt @@ -0,0 +1,297 @@ +Git index format +================ + +== The Git index file has the following format + + All binary numbers are in network byte order. Version 2 is described + here unless stated otherwise. + + - A 12-byte header consisting of + + 4-byte signature: + The signature is { 'D', 'I', 'R', 'C' } (stands for "dircache") + + 4-byte version number: + The current supported versions are 2, 3 and 4. + + 32-bit number of index entries. + + - A number of sorted index entries (see below). + + - Extensions + + Extensions are identified by signature. Optional extensions can + be ignored if Git does not understand them. + + Git currently supports cached tree and resolve undo extensions. + + 4-byte extension signature. If the first byte is 'A'..'Z' the + extension is optional and can be ignored. + + 32-bit size of the extension + + Extension data + + - 160-bit SHA-1 over the content of the index file before this + checksum. + +== Index entry + + Index entries are sorted in ascending order on the name field, + interpreted as a string of unsigned bytes (i.e. memcmp() order, no + localization, no special casing of directory separator '/'). Entries + with the same name are sorted by their stage field. + + 32-bit ctime seconds, the last time a file's metadata changed + this is stat(2) data + + 32-bit ctime nanosecond fractions + this is stat(2) data + + 32-bit mtime seconds, the last time a file's data changed + this is stat(2) data + + 32-bit mtime nanosecond fractions + this is stat(2) data + + 32-bit dev + this is stat(2) data + + 32-bit ino + this is stat(2) data + + 32-bit mode, split into (high to low bits) + + 4-bit object type + valid values in binary are 1000 (regular file), 1010 (symbolic link) + and 1110 (gitlink) + + 3-bit unused + + 9-bit unix permission. Only 0755 and 0644 are valid for regular files. + Symbolic links and gitlinks have value 0 in this field. + + 32-bit uid + this is stat(2) data + + 32-bit gid + this is stat(2) data + + 32-bit file size + This is the on-disk size from stat(2), truncated to 32-bit. + + 160-bit SHA-1 for the represented object + + A 16-bit 'flags' field split into (high to low bits) + + 1-bit assume-valid flag + + 1-bit extended flag (must be zero in version 2) + + 2-bit stage (during merge) + + 12-bit name length if the length is less than 0xFFF; otherwise 0xFFF + is stored in this field. + + (Version 3 or later) A 16-bit field, only applicable if the + "extended flag" above is 1, split into (high to low bits). + + 1-bit reserved for future + + 1-bit skip-worktree flag (used by sparse checkout) + + 1-bit intent-to-add flag (used by "git add -N") + + 13-bit unused, must be zero + + Entry path name (variable length) relative to top level directory + (without leading slash). '/' is used as path separator. The special + path components ".", ".." and ".git" (without quotes) are disallowed. + Trailing slash is also disallowed. + + The exact encoding is undefined, but the '.' and '/' characters + are encoded in 7-bit ASCII and the encoding cannot contain a NUL + byte (iow, this is a UNIX pathname). + + (Version 4) In version 4, the entry path name is prefix-compressed + relative to the path name for the previous entry (the very first + entry is encoded as if the path name for the previous entry is an + empty string). At the beginning of an entry, an integer N in the + variable width encoding (the same encoding as the offset is encoded + for OFS_DELTA pack entries; see pack-format.txt) is stored, followed + by a NUL-terminated string S. Removing N bytes from the end of the + path name for the previous entry, and replacing it with the string S + yields the path name for this entry. + + 1-8 nul bytes as necessary to pad the entry to a multiple of eight bytes + while keeping the name NUL-terminated. + + (Version 4) In version 4, the padding after the pathname does not + exist. + + Interpretation of index entries in split index mode is completely + different. See below for details. + +== Extensions + +=== Cached tree + + Cached tree extension contains pre-computed hashes for trees that can + be derived from the index. It helps speed up tree object generation + from index for a new commit. + + When a path is updated in index, the path must be invalidated and + removed from tree cache. + + The signature for this extension is { 'T', 'R', 'E', 'E' }. + + A series of entries fill the entire extension; each of which + consists of: + + - NUL-terminated path component (relative to its parent directory); + + - ASCII decimal number of entries in the index that is covered by the + tree this entry represents (entry_count); + + - A space (ASCII 32); + + - ASCII decimal number that represents the number of subtrees this + tree has; + + - A newline (ASCII 10); and + + - 160-bit object name for the object that would result from writing + this span of index as a tree. + + An entry can be in an invalidated state and is represented by having + a negative number in the entry_count field. In this case, there is no + object name and the next entry starts immediately after the newline. + When writing an invalid entry, -1 should always be used as entry_count. + + The entries are written out in the top-down, depth-first order. The + first entry represents the root level of the repository, followed by the + first subtree---let's call this A---of the root level (with its name + relative to the root level), followed by the first subtree of A (with + its name relative to A), ... + +=== Resolve undo + + A conflict is represented in the index as a set of higher stage entries. + When a conflict is resolved (e.g. with "git add path"), these higher + stage entries will be removed and a stage-0 entry with proper resolution + is added. + + When these higher stage entries are removed, they are saved in the + resolve undo extension, so that conflicts can be recreated (e.g. with + "git checkout -m"), in case users want to redo a conflict resolution + from scratch. + + The signature for this extension is { 'R', 'E', 'U', 'C' }. + + A series of entries fill the entire extension; each of which + consists of: + + - NUL-terminated pathname the entry describes (relative to the root of + the repository, i.e. full pathname); + + - Three NUL-terminated ASCII octal numbers, entry mode of entries in + stage 1 to 3 (a missing stage is represented by "0" in this field); + and + + - At most three 160-bit object names of the entry in stages from 1 to 3 + (nothing is written for a missing stage). + +=== Split index + + In split index mode, the majority of index entries could be stored + in a separate file. This extension records the changes to be made on + top of that to produce the final index. + + The signature for this extension is { 'l', 'i', 'n', 'k' }. + + The extension consists of: + + - 160-bit SHA-1 of the shared index file. The shared index file path + is $GIT_DIR/sharedindex.<SHA-1>. If all 160 bits are zero, the + index does not require a shared index file. + + - An ewah-encoded delete bitmap, each bit represents an entry in the + shared index. If a bit is set, its corresponding entry in the + shared index will be removed from the final index. Note, because + a delete operation changes index entry positions, but we do need + original positions in replace phase, it's best to just mark + entries for removal, then do a mass deletion after replacement. + + - An ewah-encoded replace bitmap, each bit represents an entry in + the shared index. If a bit is set, its corresponding entry in the + shared index will be replaced with an entry in this index + file. All replaced entries are stored in sorted order in this + index. The first "1" bit in the replace bitmap corresponds to the + first index entry, the second "1" bit to the second entry and so + on. Replaced entries may have empty path names to save space. + + The remaining index entries after replaced ones will be added to the + final index. These added entries are also sorted by entry name then + stage. + +== Untracked cache + + Untracked cache saves the untracked file list and necessary data to + verify the cache. The signature for this extension is { 'U', 'N', + 'T', 'R' }. + + The extension starts with + + - A sequence of NUL-terminated strings, preceded by the size of the + sequence in variable width encoding. Each string describes the + environment where the cache can be used. + + - Stat data of $GIT_DIR/info/exclude. See "Index entry" section from + ctime field until "file size". + + - Stat data of core.excludesfile + + - 32-bit dir_flags (see struct dir_struct) + + - 160-bit SHA-1 of $GIT_DIR/info/exclude. Null SHA-1 means the file + does not exist. + + - 160-bit SHA-1 of core.excludesfile. Null SHA-1 means the file does + not exist. + + - NUL-terminated string of per-dir exclude file name. This usually + is ".gitignore". + + - The number of following directory blocks, variable width + encoding. If this number is zero, the extension ends here with a + following NUL. + + - A number of directory blocks in depth-first-search order, each + consists of + + - The number of untracked entries, variable width encoding. + + - The number of sub-directory blocks, variable width encoding. + + - The directory name terminated by NUL. + + - A number of untracked file/dir names terminated by NUL. + +The remaining data of each directory block is grouped by type: + + - An ewah bitmap, the n-th bit marks whether the n-th directory has + valid untracked cache entries. + + - An ewah bitmap, the n-th bit records "check-only" bit of + read_directory_recursive() for the n-th directory. + + - An ewah bitmap, the n-th bit indicates whether SHA-1 and stat data + is valid for the n-th directory and exists in the next data. + + - An array of stat data. The n-th data corresponds with the n-th + "one" bit in the previous ewah bitmap. + + - An array of SHA-1. The n-th SHA-1 corresponds with the n-th "one" bit + in the previous ewah bitmap. + + - One NUL. diff --git a/Documentation/technical/pack-format.txt b/Documentation/technical/pack-format.txt new file mode 100644 index 0000000000..8e5bf60be3 --- /dev/null +++ b/Documentation/technical/pack-format.txt @@ -0,0 +1,162 @@ +Git pack format +=============== + +== pack-*.pack files have the following format: + + - A header appears at the beginning and consists of the following: + + 4-byte signature: + The signature is: {'P', 'A', 'C', 'K'} + + 4-byte version number (network byte order): + Git currently accepts version number 2 or 3 but + generates version 2 only. + + 4-byte number of objects contained in the pack (network byte order) + + Observation: we cannot have more than 4G versions ;-) and + more than 4G objects in a pack. + + - The header is followed by number of object entries, each of + which looks like this: + + (undeltified representation) + n-byte type and length (3-bit type, (n-1)*7+4-bit length) + compressed data + + (deltified representation) + n-byte type and length (3-bit type, (n-1)*7+4-bit length) + 20-byte base object name if OBJ_REF_DELTA or a negative relative + offset from the delta object's position in the pack if this + is an OBJ_OFS_DELTA object + compressed delta data + + Observation: length of each object is encoded in a variable + length format and is not constrained to 32-bit or anything. + + - The trailer records 20-byte SHA-1 checksum of all of the above. + +== Original (version 1) pack-*.idx files have the following format: + + - The header consists of 256 4-byte network byte order + integers. N-th entry of this table records the number of + objects in the corresponding pack, the first byte of whose + object name is less than or equal to N. This is called the + 'first-level fan-out' table. + + - The header is followed by sorted 24-byte entries, one entry + per object in the pack. Each entry is: + + 4-byte network byte order integer, recording where the + object is stored in the packfile as the offset from the + beginning. + + 20-byte object name. + + - The file is concluded with a trailer: + + A copy of the 20-byte SHA-1 checksum at the end of + corresponding packfile. + + 20-byte SHA-1-checksum of all of the above. + +Pack Idx file: + + -- +--------------------------------+ +fanout | fanout[0] = 2 (for example) |-. +table +--------------------------------+ | + | fanout[1] | | + +--------------------------------+ | + | fanout[2] | | + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | + | fanout[255] = total objects |---. + -- +--------------------------------+ | | +main | offset | | | +index | object name 00XXXXXXXXXXXXXXXX | | | +table +--------------------------------+ | | + | offset | | | + | object name 00XXXXXXXXXXXXXXXX | | | + +--------------------------------+<+ | + .-| offset | | + | | object name 01XXXXXXXXXXXXXXXX | | + | +--------------------------------+ | + | | offset | | + | | object name 01XXXXXXXXXXXXXXXX | | + | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | + | | offset | | + | | object name FFXXXXXXXXXXXXXXXX | | + --| +--------------------------------+<--+ +trailer | | packfile checksum | + | +--------------------------------+ + | | idxfile checksum | + | +--------------------------------+ + .-------. + | +Pack file entry: <+ + + packed object header: + 1-byte size extension bit (MSB) + type (next 3 bit) + size0 (lower 4-bit) + n-byte sizeN (as long as MSB is set, each 7-bit) + size0..sizeN form 4+7+7+..+7 bit integer, size0 + is the least significant part, and sizeN is the + most significant part. + packed object data: + If it is not DELTA, then deflated bytes (the size above + is the size before compression). + If it is REF_DELTA, then + 20-byte base object name SHA-1 (the size above is the + size of the delta data that follows). + delta data, deflated. + If it is OFS_DELTA, then + n-byte offset (see below) interpreted as a negative + offset from the type-byte of the header of the + ofs-delta entry (the size above is the size of + the delta data that follows). + delta data, deflated. + + offset encoding: + n bytes with MSB set in all but the last one. + The offset is then the number constructed by + concatenating the lower 7 bit of each byte, and + for n >= 2 adding 2^7 + 2^14 + ... + 2^(7*(n-1)) + to the result. + + + +== Version 2 pack-*.idx files support packs larger than 4 GiB, and + have some other reorganizations. They have the format: + + - A 4-byte magic number '\377tOc' which is an unreasonable + fanout[0] value. + + - A 4-byte version number (= 2) + + - A 256-entry fan-out table just like v1. + + - A table of sorted 20-byte SHA-1 object names. These are + packed together without offset values to reduce the cache + footprint of the binary search for a specific object name. + + - A table of 4-byte CRC32 values of the packed object data. + This is new in v2 so compressed data can be copied directly + from pack to pack during repacking without undetected + data corruption. + + - A table of 4-byte offset values (in network byte order). + These are usually 31-bit pack file offsets, but large + offsets are encoded as an index into the next table with + the msbit set. + + - A table of 8-byte offset entries (empty for pack files less + than 2 GiB). Pack files are organized with heavily used + objects toward the front, so most object references should + not need to refer to this table. + + - The same trailer as a v1 pack file: + + A copy of the 20-byte SHA-1 checksum at the end of + corresponding packfile. + + 20-byte SHA-1-checksum of all of the above. diff --git a/Documentation/technical/pack-heuristics.txt b/Documentation/technical/pack-heuristics.txt new file mode 100644 index 0000000000..95a07db6e8 --- /dev/null +++ b/Documentation/technical/pack-heuristics.txt @@ -0,0 +1,460 @@ +Concerning Git's Packing Heuristics +=================================== + + Oh, here's a really stupid question: + + Where do I go + to learn the details + of Git's packing heuristics? + +Be careful what you ask! + +Followers of the Git, please open the Git IRC Log and turn to +February 10, 2006. + +It's a rare occasion, and we are joined by the King Git Himself, +Linus Torvalds (linus). Nathaniel Smith, (njs`), has the floor +and seeks enlightenment. Others are present, but silent. + +Let's listen in! + + <njs`> Oh, here's a really stupid question -- where do I go to + learn the details of Git's packing heuristics? google avails + me not, reading the source didn't help a lot, and wading + through the whole mailing list seems less efficient than any + of that. + +It is a bold start! A plea for help combined with a simultaneous +tri-part attack on some of the tried and true mainstays in the quest +for enlightenment. Brash accusations of google being useless. Hubris! +Maligning the source. Heresy! Disdain for the mailing list archives. +Woe. + + <pasky> yes, the packing-related delta stuff is somewhat + mysterious even for me ;) + +Ah! Modesty after all. + + <linus> njs, I don't think the docs exist. That's something where + I don't think anybody else than me even really got involved. + Most of the rest of Git others have been busy with (especially + Junio), but packing nobody touched after I did it. + +It's cryptic, yet vague. Linus in style for sure. Wise men +interpret this as an apology. A few argue it is merely a +statement of fact. + + <njs`> I guess the next step is "read the source again", but I + have to build up a certain level of gumption first :-) + +Indeed! On both points. + + <linus> The packing heuristic is actually really really simple. + +Bait... + + <linus> But strange. + +And switch. That ought to do it! + + <linus> Remember: Git really doesn't follow files. So what it does is + - generate a list of all objects + - sort the list according to magic heuristics + - walk the list, using a sliding window, seeing if an object + can be diffed against another object in the window + - write out the list in recency order + +The traditional understatement: + + <njs`> I suspect that what I'm missing is the precise definition of + the word "magic" + +The traditional insight: + + <pasky> yes + +And Babel-like confusion flowed. + + <njs`> oh, hmm, and I'm not sure what this sliding window means either + + <pasky> iirc, it appeared to me to be just the sha1 of the object + when reading the code casually ... + + ... which simply doesn't sound as a very good heuristics, though ;) + + <njs`> .....and recency order. okay, I think it's clear I didn't + even realize how much I wasn't realizing :-) + +Ah, grasshopper! And thus the enlightenment begins anew. + + <linus> The "magic" is actually in theory totally arbitrary. + ANY order will give you a working pack, but no, it's not + ordered by SHA-1. + + Before talking about the ordering for the sliding delta + window, let's talk about the recency order. That's more + important in one way. + + <njs`> Right, but if all you want is a working way to pack things + together, you could just use cat and save yourself some + trouble... + +Waaait for it.... + + <linus> The recency ordering (which is basically: put objects + _physically_ into the pack in the order that they are + "reachable" from the head) is important. + + <njs`> okay + + <linus> It's important because that's the thing that gives packs + good locality. It keeps the objects close to the head (whether + they are old or new, but they are _reachable_ from the head) + at the head of the pack. So packs actually have absolutely + _wonderful_ IO patterns. + +Read that again, because it is important. + + <linus> But recency ordering is totally useless for deciding how + to actually generate the deltas, so the delta ordering is + something else. + + The delta ordering is (wait for it): + - first sort by the "basename" of the object, as defined by + the name the object was _first_ reached through when + generating the object list + - within the same basename, sort by size of the object + - but always sort different types separately (commits first). + + That's not exactly it, but it's very close. + + <njs`> The "_first_ reached" thing is not too important, just you + need some way to break ties since the same objects may be + reachable many ways, yes? + +And as if to clarify: + + <linus> The point is that it's all really just any random + heuristic, and the ordering is totally unimportant for + correctness, but it helps a lot if the heuristic gives + "clumping" for things that are likely to delta well against + each other. + +It is an important point, so secretly, I did my own research and have +included my results below. To be fair, it has changed some over time. +And through the magic of Revisionistic History, I draw upon this entry +from The Git IRC Logs on my father's birthday, March 1: + + <gitster> The quote from the above linus should be rewritten a + bit (wait for it): + - first sort by type. Different objects never delta with + each other. + - then sort by filename/dirname. hash of the basename + occupies the top BITS_PER_INT-DIR_BITS bits, and bottom + DIR_BITS are for the hash of leading path elements. + - then if we are doing "thin" pack, the objects we are _not_ + going to pack but we know about are sorted earlier than + other objects. + - and finally sort by size, larger to smaller. + +In one swell-foop, clarification and obscurification! Nonetheless, +authoritative. Cryptic, yet concise. It even solicits notions of +quotes from The Source Code. Clearly, more study is needed. + + <gitster> That's the sort order. What this means is: + - we do not delta different object types. + - we prefer to delta the objects with the same full path, but + allow files with the same name from different directories. + - we always prefer to delta against objects we are not going + to send, if there are some. + - we prefer to delta against larger objects, so that we have + lots of removals. + + The penultimate rule is for "thin" packs. It is used when + the other side is known to have such objects. + +There it is again. "Thin" packs. I'm thinking to myself, "What +is a 'thin' pack?" So I ask: + + <jdl> What is a "thin" pack? + + <gitster> Use of --objects-edge to rev-list as the upstream of + pack-objects. The pack transfer protocol negotiates that. + +Woo hoo! Cleared that _right_ up! + + <gitster> There are two directions - push and fetch. + +There! Did you see it? It is not '"push" and "pull"'! How often the +confusion has started here. So casually mentioned, too! + + <gitster> For push, git-send-pack invokes git-receive-pack on the + other end. The receive-pack says "I have up to these commits". + send-pack looks at them, and computes what are missing from + the other end. So "thin" could be the default there. + + In the other direction, fetch, git-fetch-pack and + git-clone-pack invokes git-upload-pack on the other end + (via ssh or by talking to the daemon). + + There are two cases: fetch-pack with -k and clone-pack is one, + fetch-pack without -k is the other. clone-pack and fetch-pack + with -k will keep the downloaded packfile without expanded, so + we do not use thin pack transfer. Otherwise, the generated + pack will have delta without base object in the same pack. + + But fetch-pack without -k will explode the received pack into + individual objects, so we automatically ask upload-pack to + give us a thin pack if upload-pack supports it. + +OK then. + +Uh. + +Let's return to the previous conversation still in progress. + + <njs`> and "basename" means something like "the tail of end of + path of file objects and dir objects, as per basename(3), and + we just declare all commit and tag objects to have the same + basename" or something? + +Luckily, that too is a point that gitster clarified for us! + +If I might add, the trick is to make files that _might_ be similar be +located close to each other in the hash buckets based on their file +names. It used to be that "foo/Makefile", "bar/baz/quux/Makefile" and +"Makefile" all landed in the same bucket due to their common basename, +"Makefile". However, now they land in "close" buckets. + +The algorithm allows not just for the _same_ bucket, but for _close_ +buckets to be considered delta candidates. The rationale is +essentially that files, like Makefiles, often have very similar +content no matter what directory they live in. + + <linus> I played around with different delta algorithms, and with + making the "delta window" bigger, but having too big of a + sliding window makes it very expensive to generate the pack: + you need to compare every object with a _ton_ of other objects. + + There are a number of other trivial heuristics too, which + basically boil down to "don't bother even trying to delta this + pair" if we can tell before-hand that the delta isn't worth it + (due to size differences, where we can take a previous delta + result into account to decide that "ok, no point in trying + that one, it will be worse"). + + End result: packing is actually very size efficient. It's + somewhat CPU-wasteful, but on the other hand, since you're + really only supposed to do it maybe once a month (and you can + do it during the night), nobody really seems to care. + +Nice Engineering Touch, there. Find when it doesn't matter, and +proclaim it a non-issue. Good style too! + + <njs`> So, just to repeat to see if I'm following, we start by + getting a list of the objects we want to pack, we sort it by + this heuristic (basically lexicographically on the tuple + (type, basename, size)). + + Then we walk through this list, and calculate a delta of + each object against the last n (tunable parameter) objects, + and pick the smallest of these deltas. + +Vastly simplified, but the essence is there! + + <linus> Correct. + + <njs`> And then once we have picked a delta or fulltext to + represent each object, we re-sort by recency, and write them + out in that order. + + <linus> Yup. Some other small details: + +And of course there is the "Other Shoe" Factor too. + + <linus> - We limit the delta depth to another magic value (right + now both the window and delta depth magic values are just "10") + + <njs`> Hrm, my intuition is that you'd end up with really _bad_ IO + patterns, because the things you want are near by, but to + actually reconstruct them you may have to jump all over in + random ways. + + <linus> - When we write out a delta, and we haven't yet written + out the object it is a delta against, we write out the base + object first. And no, when we reconstruct them, we actually + get nice IO patterns, because: + - larger objects tend to be "more recent" (Linus' law: files grow) + - we actively try to generate deltas from a larger object to a + smaller one + - this means that the top-of-tree very seldom has deltas + (i.e. deltas in _practice_ are "backwards deltas") + +Again, we should reread that whole paragraph. Not just because +Linus has slipped Linus's Law in there on us, but because it is +important. Let's make sure we clarify some of the points here: + + <njs`> So the point is just that in practice, delta order and + recency order match each other quite well. + + <linus> Yes. There's another nice side to this (and yes, it was + designed that way ;): + - the reason we generate deltas against the larger object is + actually a big space saver too! + + <njs`> Hmm, but your last comment (if "we haven't yet written out + the object it is a delta against, we write out the base object + first"), seems like it would make these facts mostly + irrelevant because even if in practice you would not have to + wander around much, in fact you just brute-force say that in + the cases where you might have to wander, don't do that :-) + + <linus> Yes and no. Notice the rule: we only write out the base + object first if the delta against it was more recent. That + means that you can actually have deltas that refer to a base + object that is _not_ close to the delta object, but that only + happens when the delta is needed to generate an _old_ object. + + <linus> See? + +Yeah, no. I missed that on the first two or three readings myself. + + <linus> This keeps the front of the pack dense. The front of the + pack never contains data that isn't relevant to a "recent" + object. The size optimization comes from our use of xdelta + (but is true for many other delta algorithms): removing data + is cheaper (in size) than adding data. + + When you remove data, you only need to say "copy bytes n--m". + In contrast, in a delta that _adds_ data, you have to say "add + these bytes: 'actual data goes here'" + + *** njs` has quit: Read error: 104 (Connection reset by peer) + + <linus> Uhhuh. I hope I didn't blow njs` mind. + + *** njs` has joined channel #git + + <pasky> :) + +The silent observers are amused. Of course. + +And as if njs` was expected to be omniscient: + + <linus> njs - did you miss anything? + +OK, I'll spell it out. That's Geek Humor. If njs` was not actually +connected for a little bit there, how would he know if missed anything +while he was disconnected? He's a benevolent dictator with a sense of +humor! Well noted! + + <njs`> Stupid router. Or gremlins, or whatever. + +It's a cheap shot at Cisco. Take 'em when you can. + + <njs`> Yes and no. Notice the rule: we only write out the base + object first if the delta against it was more recent. + + I'm getting lost in all these orders, let me re-read :-) + So the write-out order is from most recent to least recent? + (Conceivably it could be the opposite way too, I'm not sure if + we've said) though my connection back at home is logging, so I + can just read what you said there :-) + +And for those of you paying attention, the Omniscient Trick has just +been detailed! + + <linus> Yes, we always write out most recent first + + <njs`> And, yeah, I got the part about deeper-in-history stuff + having worse IO characteristics, one sort of doesn't care. + + <linus> With the caveat that if the "most recent" needs an older + object to delta against (hey, shrinking sometimes does + happen), we write out the old object with the delta. + + <njs`> (if only it happened more...) + + <linus> Anyway, the pack-file could easily be denser still, but + because it's used both for streaming (the Git protocol) and + for on-disk, it has a few pessimizations. + +Actually, it is a made-up word. But it is a made-up word being +used as setup for a later optimization, which is a real word: + + <linus> In particular, while the pack-file is then compressed, + it's compressed just one object at a time, so the actual + compression factor is less than it could be in theory. But it + means that it's all nice random-access with a simple index to + do "object name->location in packfile" translation. + + <njs`> I'm assuming the real win for delta-ing large->small is + more homogeneous statistics for gzip to run over? + + (You have to put the bytes in one place or another, but + putting them in a larger blob wins on compression) + + Actually, what is the compression strategy -- each delta + individually gzipped, the whole file gzipped, somewhere in + between, no compression at all, ....? + + Right. + +Reality IRC sets in. For example: + + <pasky> I'll read the rest in the morning, I really have to go + sleep or there's no hope whatsoever for me at the today's + exam... g'nite all. + +Heh. + + <linus> pasky: g'nite + + <njs`> pasky: 'luck + + <linus> Right: large->small matters exactly because of compression + behaviour. If it was non-compressed, it probably wouldn't make + any difference. + + <njs`> yeah + + <linus> Anyway: I'm not even trying to claim that the pack-files + are perfect, but they do tend to have a nice balance of + density vs ease-of use. + +Gasp! OK, saved. That's a fair Engineering trade off. Close call! +In fact, Linus reflects on some Basic Engineering Fundamentals, +design options, etc. + + <linus> More importantly, they allow Git to still _conceptually_ + never deal with deltas at all, and be a "whole object" store. + + Which has some problems (we discussed bad huge-file + behaviour on the Git lists the other day), but it does mean + that the basic Git concepts are really really simple and + straightforward. + + It's all been quite stable. + + Which I think is very much a result of having very simple + basic ideas, so that there's never any confusion about what's + going on. + + Bugs happen, but they are "simple" bugs. And bugs that + actually get some object store detail wrong are almost always + so obvious that they never go anywhere. + + <njs`> Yeah. + +Nuff said. + + <linus> Anyway. I'm off for bed. It's not 6AM here, but I've got + three kids, and have to get up early in the morning to send + them off. I need my beauty sleep. + + <njs`> :-) + + <njs`> appreciate the infodump, I really was failing to find the + details on Git packs :-) + +And now you know the rest of the story. diff --git a/Documentation/technical/pack-protocol.txt b/Documentation/technical/pack-protocol.txt new file mode 100644 index 0000000000..c6977bbc5a --- /dev/null +++ b/Documentation/technical/pack-protocol.txt @@ -0,0 +1,603 @@ +Packfile transfer protocols +=========================== + +Git supports transferring data in packfiles over the ssh://, git://, http:// and +file:// transports. There exist two sets of protocols, one for pushing +data from a client to a server and another for fetching data from a +server to a client. The three transports (ssh, git, file) use the same +protocol to transfer data. http is documented in http-protocol.txt. + +The processes invoked in the canonical Git implementation are 'upload-pack' +on the server side and 'fetch-pack' on the client side for fetching data; +then 'receive-pack' on the server and 'send-pack' on the client for pushing +data. The protocol functions to have a server tell a client what is +currently on the server, then for the two to negotiate the smallest amount +of data to send in order to fully update one or the other. + +pkt-line Format +--------------- + +The descriptions below build on the pkt-line format described in +protocol-common.txt. When the grammar indicate `PKT-LINE(...)`, unless +otherwise noted the usual pkt-line LF rules apply: the sender SHOULD +include a LF, but the receiver MUST NOT complain if it is not present. + +Transports +---------- +There are three transports over which the packfile protocol is +initiated. The Git transport is a simple, unauthenticated server that +takes the command (almost always 'upload-pack', though Git +servers can be configured to be globally writable, in which 'receive- +pack' initiation is also allowed) with which the client wishes to +communicate and executes it and connects it to the requesting +process. + +In the SSH transport, the client just runs the 'upload-pack' +or 'receive-pack' process on the server over the SSH protocol and then +communicates with that invoked process over the SSH connection. + +The file:// transport runs the 'upload-pack' or 'receive-pack' +process locally and communicates with it over a pipe. + +Git Transport +------------- + +The Git transport starts off by sending the command and repository +on the wire using the pkt-line format, followed by a NUL byte and a +hostname parameter, terminated by a NUL byte. + + 0032git-upload-pack /project.git\0host=myserver.com\0 + +-- + git-proto-request = request-command SP pathname NUL [ host-parameter NUL ] + request-command = "git-upload-pack" / "git-receive-pack" / + "git-upload-archive" ; case sensitive + pathname = *( %x01-ff ) ; exclude NUL + host-parameter = "host=" hostname [ ":" port ] +-- + +Only host-parameter is allowed in the git-proto-request. Clients +MUST NOT attempt to send additional parameters. It is used for the +git-daemon name based virtual hosting. See --interpolated-path +option to git daemon, with the %H/%CH format characters. + +Basically what the Git client is doing to connect to an 'upload-pack' +process on the server side over the Git protocol is this: + + $ echo -e -n \ + "0039git-upload-pack /schacon/gitbook.git\0host=example.com\0" | + nc -v example.com 9418 + +If the server refuses the request for some reasons, it could abort +gracefully with an error message. + +---- + error-line = PKT-LINE("ERR" SP explanation-text) +---- + + +SSH Transport +------------- + +Initiating the upload-pack or receive-pack processes over SSH is +executing the binary on the server via SSH remote execution. +It is basically equivalent to running this: + + $ ssh git.example.com "git-upload-pack '/project.git'" + +For a server to support Git pushing and pulling for a given user over +SSH, that user needs to be able to execute one or both of those +commands via the SSH shell that they are provided on login. On some +systems, that shell access is limited to only being able to run those +two commands, or even just one of them. + +In an ssh:// format URI, it's absolute in the URI, so the '/' after +the host name (or port number) is sent as an argument, which is then +read by the remote git-upload-pack exactly as is, so it's effectively +an absolute path in the remote filesystem. + + git clone ssh://user@example.com/project.git + | + v + ssh user@example.com "git-upload-pack '/project.git'" + +In a "user@host:path" format URI, its relative to the user's home +directory, because the Git client will run: + + git clone user@example.com:project.git + | + v + ssh user@example.com "git-upload-pack 'project.git'" + +The exception is if a '~' is used, in which case +we execute it without the leading '/'. + + ssh://user@example.com/~alice/project.git, + | + v + ssh user@example.com "git-upload-pack '~alice/project.git'" + +A few things to remember here: + +- The "command name" is spelled with dash (e.g. git-upload-pack), but + this can be overridden by the client; + +- The repository path is always quoted with single quotes. + +Fetching Data From a Server +--------------------------- + +When one Git repository wants to get data that a second repository +has, the first can 'fetch' from the second. This operation determines +what data the server has that the client does not then streams that +data down to the client in packfile format. + + +Reference Discovery +------------------- + +When the client initially connects the server will immediately respond +with a listing of each reference it has (all branches and tags) along +with the object name that each reference currently points to. + + $ echo -e -n "0039git-upload-pack /schacon/gitbook.git\0host=example.com\0" | + nc -v example.com 9418 + 00887217a7c7e582c46cec22a130adf4b9d7d950fba0 HEAD\0multi_ack thin-pack + side-band side-band-64k ofs-delta shallow no-progress include-tag + 00441d3fcd5ced445d1abc402225c0b8a1299641f497 refs/heads/integration + 003f7217a7c7e582c46cec22a130adf4b9d7d950fba0 refs/heads/master + 003cb88d2441cac0977faf98efc80305012112238d9d refs/tags/v0.9 + 003c525128480b96c89e6418b1e40909bf6c5b2d580f refs/tags/v1.0 + 003fe92df48743b7bc7d26bcaabfddde0a1e20cae47c refs/tags/v1.0^{} + 0000 + +The returned response is a pkt-line stream describing each ref and +its current value. The stream MUST be sorted by name according to +the C locale ordering. + +If HEAD is a valid ref, HEAD MUST appear as the first advertised +ref. If HEAD is not a valid ref, HEAD MUST NOT appear in the +advertisement list at all, but other refs may still appear. + +The stream MUST include capability declarations behind a NUL on the +first ref. The peeled value of a ref (that is "ref^{}") MUST be +immediately after the ref itself, if presented. A conforming server +MUST peel the ref if it's an annotated tag. + +---- + advertised-refs = (no-refs / list-of-refs) + *shallow + flush-pkt + + no-refs = PKT-LINE(zero-id SP "capabilities^{}" + NUL capability-list) + + list-of-refs = first-ref *other-ref + first-ref = PKT-LINE(obj-id SP refname + NUL capability-list) + + other-ref = PKT-LINE(other-tip / other-peeled) + other-tip = obj-id SP refname + other-peeled = obj-id SP refname "^{}" + + shallow = PKT-LINE("shallow" SP obj-id) + + capability-list = capability *(SP capability) + capability = 1*(LC_ALPHA / DIGIT / "-" / "_") + LC_ALPHA = %x61-7A +---- + +Server and client MUST use lowercase for obj-id, both MUST treat obj-id +as case-insensitive. + +See protocol-capabilities.txt for a list of allowed server capabilities +and descriptions. + +Packfile Negotiation +-------------------- +After reference and capabilities discovery, the client can decide to +terminate the connection by sending a flush-pkt, telling the server it can +now gracefully terminate, and disconnect, when it does not need any pack +data. This can happen with the ls-remote command, and also can happen when +the client already is up-to-date. + +Otherwise, it enters the negotiation phase, where the client and +server determine what the minimal packfile necessary for transport is, +by telling the server what objects it wants, its shallow objects +(if any), and the maximum commit depth it wants (if any). The client +will also send a list of the capabilities it wants to be in effect, +out of what the server said it could do with the first 'want' line. + +---- + upload-request = want-list + *shallow-line + *1depth-request + flush-pkt + + want-list = first-want + *additional-want + + shallow-line = PKT-LINE("shallow" SP obj-id) + + depth-request = PKT-LINE("deepen" SP depth) + + first-want = PKT-LINE("want" SP obj-id SP capability-list) + additional-want = PKT-LINE("want" SP obj-id) + + depth = 1*DIGIT +---- + +Clients MUST send all the obj-ids it wants from the reference +discovery phase as 'want' lines. Clients MUST send at least one +'want' command in the request body. Clients MUST NOT mention an +obj-id in a 'want' command which did not appear in the response +obtained through ref discovery. + +The client MUST write all obj-ids which it only has shallow copies +of (meaning that it does not have the parents of a commit) as +'shallow' lines so that the server is aware of the limitations of +the client's history. + +The client now sends the maximum commit history depth it wants for +this transaction, which is the number of commits it wants from the +tip of the history, if any, as a 'deepen' line. A depth of 0 is the +same as not making a depth request. The client does not want to receive +any commits beyond this depth, nor does it want objects needed only to +complete those commits. Commits whose parents are not received as a +result are defined as shallow and marked as such in the server. This +information is sent back to the client in the next step. + +Once all the 'want's and 'shallow's (and optional 'deepen') are +transferred, clients MUST send a flush-pkt, to tell the server side +that it is done sending the list. + +Otherwise, if the client sent a positive depth request, the server +will determine which commits will and will not be shallow and +send this information to the client. If the client did not request +a positive depth, this step is skipped. + +---- + shallow-update = *shallow-line + *unshallow-line + flush-pkt + + shallow-line = PKT-LINE("shallow" SP obj-id) + + unshallow-line = PKT-LINE("unshallow" SP obj-id) +---- + +If the client has requested a positive depth, the server will compute +the set of commits which are no deeper than the desired depth. The set +of commits start at the client's wants. + +The server writes 'shallow' lines for each +commit whose parents will not be sent as a result. The server writes +an 'unshallow' line for each commit which the client has indicated is +shallow, but is no longer shallow at the currently requested depth +(that is, its parents will now be sent). The server MUST NOT mark +as unshallow anything which the client has not indicated was shallow. + +Now the client will send a list of the obj-ids it has using 'have' +lines, so the server can make a packfile that only contains the objects +that the client needs. In multi_ack mode, the canonical implementation +will send up to 32 of these at a time, then will send a flush-pkt. The +canonical implementation will skip ahead and send the next 32 immediately, +so that there is always a block of 32 "in-flight on the wire" at a time. + +---- + upload-haves = have-list + compute-end + + have-list = *have-line + have-line = PKT-LINE("have" SP obj-id) + compute-end = flush-pkt / PKT-LINE("done") +---- + +If the server reads 'have' lines, it then will respond by ACKing any +of the obj-ids the client said it had that the server also has. The +server will ACK obj-ids differently depending on which ack mode is +chosen by the client. + +In multi_ack mode: + + * the server will respond with 'ACK obj-id continue' for any common + commits. + + * once the server has found an acceptable common base commit and is + ready to make a packfile, it will blindly ACK all 'have' obj-ids + back to the client. + + * the server will then send a 'NACK' and then wait for another response + from the client - either a 'done' or another list of 'have' lines. + +In multi_ack_detailed mode: + + * the server will differentiate the ACKs where it is signaling + that it is ready to send data with 'ACK obj-id ready' lines, and + signals the identified common commits with 'ACK obj-id common' lines. + +Without either multi_ack or multi_ack_detailed: + + * upload-pack sends "ACK obj-id" on the first common object it finds. + After that it says nothing until the client gives it a "done". + + * upload-pack sends "NAK" on a flush-pkt if no common object + has been found yet. If one has been found, and thus an ACK + was already sent, it's silent on the flush-pkt. + +After the client has gotten enough ACK responses that it can determine +that the server has enough information to send an efficient packfile +(in the canonical implementation, this is determined when it has received +enough ACKs that it can color everything left in the --date-order queue +as common with the server, or the --date-order queue is empty), or the +client determines that it wants to give up (in the canonical implementation, +this is determined when the client sends 256 'have' lines without getting +any of them ACKed by the server - meaning there is nothing in common and +the server should just send all of its objects), then the client will send +a 'done' command. The 'done' command signals to the server that the client +is ready to receive its packfile data. + +However, the 256 limit *only* turns on in the canonical client +implementation if we have received at least one "ACK %s continue" +during a prior round. This helps to ensure that at least one common +ancestor is found before we give up entirely. + +Once the 'done' line is read from the client, the server will either +send a final 'ACK obj-id' or it will send a 'NAK'. 'obj-id' is the object +name of the last commit determined to be common. The server only sends +ACK after 'done' if there is at least one common base and multi_ack or +multi_ack_detailed is enabled. The server always sends NAK after 'done' +if there is no common base found. + +Then the server will start sending its packfile data. + +---- + server-response = *ack_multi ack / nak + ack_multi = PKT-LINE("ACK" SP obj-id ack_status) + ack_status = "continue" / "common" / "ready" + ack = PKT-LINE("ACK" SP obj-id) + nak = PKT-LINE("NAK") +---- + +A simple clone may look like this (with no 'have' lines): + +---- + C: 0054want 74730d410fcb6603ace96f1dc55ea6196122532d multi_ack \ + side-band-64k ofs-delta\n + C: 0032want 7d1665144a3a975c05f1f43902ddaf084e784dbe\n + C: 0032want 5a3f6be755bbb7deae50065988cbfa1ffa9ab68a\n + C: 0032want 7e47fe2bd8d01d481f44d7af0531bd93d3b21c01\n + C: 0032want 74730d410fcb6603ace96f1dc55ea6196122532d\n + C: 0000 + C: 0009done\n + + S: 0008NAK\n + S: [PACKFILE] +---- + +An incremental update (fetch) response might look like this: + +---- + C: 0054want 74730d410fcb6603ace96f1dc55ea6196122532d multi_ack \ + side-band-64k ofs-delta\n + C: 0032want 7d1665144a3a975c05f1f43902ddaf084e784dbe\n + C: 0032want 5a3f6be755bbb7deae50065988cbfa1ffa9ab68a\n + C: 0000 + C: 0032have 7e47fe2bd8d01d481f44d7af0531bd93d3b21c01\n + C: [30 more have lines] + C: 0032have 74730d410fcb6603ace96f1dc55ea6196122532d\n + C: 0000 + + S: 003aACK 7e47fe2bd8d01d481f44d7af0531bd93d3b21c01 continue\n + S: 003aACK 74730d410fcb6603ace96f1dc55ea6196122532d continue\n + S: 0008NAK\n + + C: 0009done\n + + S: 0031ACK 74730d410fcb6603ace96f1dc55ea6196122532d\n + S: [PACKFILE] +---- + + +Packfile Data +------------- + +Now that the client and server have finished negotiation about what +the minimal amount of data that needs to be sent to the client is, the server +will construct and send the required data in packfile format. + +See pack-format.txt for what the packfile itself actually looks like. + +If 'side-band' or 'side-band-64k' capabilities have been specified by +the client, the server will send the packfile data multiplexed. + +Each packet starting with the packet-line length of the amount of data +that follows, followed by a single byte specifying the sideband the +following data is coming in on. + +In 'side-band' mode, it will send up to 999 data bytes plus 1 control +code, for a total of up to 1000 bytes in a pkt-line. In 'side-band-64k' +mode it will send up to 65519 data bytes plus 1 control code, for a +total of up to 65520 bytes in a pkt-line. + +The sideband byte will be a '1', '2' or a '3'. Sideband '1' will contain +packfile data, sideband '2' will be used for progress information that the +client will generally print to stderr and sideband '3' is used for error +information. + +If no 'side-band' capability was specified, the server will stream the +entire packfile without multiplexing. + + +Pushing Data To a Server +------------------------ + +Pushing data to a server will invoke the 'receive-pack' process on the +server, which will allow the client to tell it which references it should +update and then send all the data the server will need for those new +references to be complete. Once all the data is received and validated, +the server will then update its references to what the client specified. + +Authentication +-------------- + +The protocol itself contains no authentication mechanisms. That is to be +handled by the transport, such as SSH, before the 'receive-pack' process is +invoked. If 'receive-pack' is configured over the Git transport, those +repositories will be writable by anyone who can access that port (9418) as +that transport is unauthenticated. + +Reference Discovery +------------------- + +The reference discovery phase is done nearly the same way as it is in the +fetching protocol. Each reference obj-id and name on the server is sent +in packet-line format to the client, followed by a flush-pkt. The only +real difference is that the capability listing is different - the only +possible values are 'report-status', 'delete-refs' and 'ofs-delta'. + +Reference Update Request and Packfile Transfer +---------------------------------------------- + +Once the client knows what references the server is at, it can send a +list of reference update requests. For each reference on the server +that it wants to update, it sends a line listing the obj-id currently on +the server, the obj-id the client would like to update it to and the name +of the reference. + +This list is followed by a flush-pkt and then the packfile that should +contain all the objects that the server will need to complete the new +references. + +---- + update-request = *shallow ( command-list | push-cert ) [packfile] + + shallow = PKT-LINE("shallow" SP obj-id) + + command-list = PKT-LINE(command NUL capability-list) + *PKT-LINE(command) + flush-pkt + + command = create / delete / update + create = zero-id SP new-id SP name + delete = old-id SP zero-id SP name + update = old-id SP new-id SP name + + old-id = obj-id + new-id = obj-id + + push-cert = PKT-LINE("push-cert" NUL capability-list LF) + PKT-LINE("certificate version 0.1" LF) + PKT-LINE("pusher" SP ident LF) + PKT-LINE("pushee" SP url LF) + PKT-LINE("nonce" SP nonce LF) + PKT-LINE(LF) + *PKT-LINE(command LF) + *PKT-LINE(gpg-signature-lines LF) + PKT-LINE("push-cert-end" LF) + + packfile = "PACK" 28*(OCTET) +---- + +If the receiving end does not support delete-refs, the sending end MUST +NOT ask for delete command. + +If the receiving end does not support push-cert, the sending end +MUST NOT send a push-cert command. When a push-cert command is +sent, command-list MUST NOT be sent; the commands recorded in the +push certificate is used instead. + +The packfile MUST NOT be sent if the only command used is 'delete'. + +A packfile MUST be sent if either create or update command is used, +even if the server already has all the necessary objects. In this +case the client MUST send an empty packfile. The only time this +is likely to happen is if the client is creating +a new branch or a tag that points to an existing obj-id. + +The server will receive the packfile, unpack it, then validate each +reference that is being updated that it hasn't changed while the request +was being processed (the obj-id is still the same as the old-id), and +it will run any update hooks to make sure that the update is acceptable. +If all of that is fine, the server will then update the references. + +Push Certificate +---------------- + +A push certificate begins with a set of header lines. After the +header and an empty line, the protocol commands follow, one per +line. Note that the the trailing LF in push-cert PKT-LINEs is _not_ +optional; it must be present. + +Currently, the following header fields are defined: + +`pusher` ident:: + Identify the GPG key in "Human Readable Name <email@address>" + format. + +`pushee` url:: + The repository URL (anonymized, if the URL contains + authentication material) the user who ran `git push` + intended to push into. + +`nonce` nonce:: + The 'nonce' string the receiving repository asked the + pushing user to include in the certificate, to prevent + replay attacks. + +The GPG signature lines are a detached signature for the contents +recorded in the push certificate before the signature block begins. +The detached signature is used to certify that the commands were +given by the pusher, who must be the signer. + +Report Status +------------- + +After receiving the pack data from the sender, the receiver sends a +report if 'report-status' capability is in effect. +It is a short listing of what happened in that update. It will first +list the status of the packfile unpacking as either 'unpack ok' or +'unpack [error]'. Then it will list the status for each of the references +that it tried to update. Each line is either 'ok [refname]' if the +update was successful, or 'ng [refname] [error]' if the update was not. + +---- + report-status = unpack-status + 1*(command-status) + flush-pkt + + unpack-status = PKT-LINE("unpack" SP unpack-result) + unpack-result = "ok" / error-msg + + command-status = command-ok / command-fail + command-ok = PKT-LINE("ok" SP refname) + command-fail = PKT-LINE("ng" SP refname SP error-msg) + + error-msg = 1*(OCTECT) ; where not "ok" +---- + +Updates can be unsuccessful for a number of reasons. The reference can have +changed since the reference discovery phase was originally sent, meaning +someone pushed in the meantime. The reference being pushed could be a +non-fast-forward reference and the update hooks or configuration could be +set to not allow that, etc. Also, some references can be updated while others +can be rejected. + +An example client/server communication might look like this: + +---- + S: 007c74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/local\0report-status delete-refs ofs-delta\n + S: 003e7d1665144a3a975c05f1f43902ddaf084e784dbe refs/heads/debug\n + S: 003f74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/master\n + S: 003f74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/team\n + S: 0000 + + C: 003e7d1665144a3a975c05f1f43902ddaf084e784dbe 74730d410fcb6603ace96f1dc55ea6196122532d refs/heads/debug\n + C: 003e74730d410fcb6603ace96f1dc55ea6196122532d 5a3f6be755bbb7deae50065988cbfa1ffa9ab68a refs/heads/master\n + C: 0000 + C: [PACKDATA] + + S: 000eunpack ok\n + S: 0018ok refs/heads/debug\n + S: 002ang refs/heads/master non-fast-forward\n +---- diff --git a/Documentation/technical/protocol-capabilities.txt b/Documentation/technical/protocol-capabilities.txt new file mode 100644 index 0000000000..eaab6b4ac7 --- /dev/null +++ b/Documentation/technical/protocol-capabilities.txt @@ -0,0 +1,277 @@ +Git Protocol Capabilities +========================= + +Servers SHOULD support all capabilities defined in this document. + +On the very first line of the initial server response of either +receive-pack and upload-pack the first reference is followed by +a NUL byte and then a list of space delimited server capabilities. +These allow the server to declare what it can and cannot support +to the client. + +Client will then send a space separated list of capabilities it wants +to be in effect. The client MUST NOT ask for capabilities the server +did not say it supports. + +Server MUST diagnose and abort if capabilities it does not understand +was sent. Server MUST NOT ignore capabilities that client requested +and server advertised. As a consequence of these rules, server MUST +NOT advertise capabilities it does not understand. + +The 'atomic', 'report-status', 'delete-refs', 'quiet', and 'push-cert' +capabilities are sent and recognized by the receive-pack (push to server) +process. + +The 'ofs-delta' and 'side-band-64k' capabilities are sent and recognized +by both upload-pack and receive-pack protocols. The 'agent' capability +may optionally be sent in both protocols. + +All other capabilities are only recognized by the upload-pack (fetch +from server) process. + +multi_ack +--------- + +The 'multi_ack' capability allows the server to return "ACK obj-id +continue" as soon as it finds a commit that it can use as a common +base, between the client's wants and the client's have set. + +By sending this early, the server can potentially head off the client +from walking any further down that particular branch of the client's +repository history. The client may still need to walk down other +branches, sending have lines for those, until the server has a +complete cut across the DAG, or the client has said "done". + +Without multi_ack, a client sends have lines in --date-order until +the server has found a common base. That means the client will send +have lines that are already known by the server to be common, because +they overlap in time with another branch that the server hasn't found +a common base on yet. + +For example suppose the client has commits in caps that the server +doesn't and the server has commits in lower case that the client +doesn't, as in the following diagram: + + +---- u ---------------------- x + / +----- y + / / + a -- b -- c -- d -- E -- F + \ + +--- Q -- R -- S + +If the client wants x,y and starts out by saying have F,S, the server +doesn't know what F,S is. Eventually the client says "have d" and +the server sends "ACK d continue" to let the client know to stop +walking down that line (so don't send c-b-a), but it's not done yet, +it needs a base for x. The client keeps going with S-R-Q, until a +gets reached, at which point the server has a clear base and it all +ends. + +Without multi_ack the client would have sent that c-b-a chain anyway, +interleaved with S-R-Q. + +multi_ack_detailed +------------------ +This is an extension of multi_ack that permits client to better +understand the server's in-memory state. See pack-protocol.txt, +section "Packfile Negotiation" for more information. + +no-done +------- +This capability should only be used with the smart HTTP protocol. If +multi_ack_detailed and no-done are both present, then the sender is +free to immediately send a pack following its first "ACK obj-id ready" +message. + +Without no-done in the smart HTTP protocol, the server session would +end and the client has to make another trip to send "done" before +the server can send the pack. no-done removes the last round and +thus slightly reduces latency. + +thin-pack +--------- + +A thin pack is one with deltas which reference base objects not +contained within the pack (but are known to exist at the receiving +end). This can reduce the network traffic significantly, but it +requires the receiving end to know how to "thicken" these packs by +adding the missing bases to the pack. + +The upload-pack server advertises 'thin-pack' when it can generate +and send a thin pack. A client requests the 'thin-pack' capability +when it understands how to "thicken" it, notifying the server that +it can receive such a pack. A client MUST NOT request the +'thin-pack' capability if it cannot turn a thin pack into a +self-contained pack. + +Receive-pack, on the other hand, is assumed by default to be able to +handle thin packs, but can ask the client not to use the feature by +advertising the 'no-thin' capability. A client MUST NOT send a thin +pack if the server advertises the 'no-thin' capability. + +The reasons for this asymmetry are historical. The receive-pack +program did not exist until after the invention of thin packs, so +historically the reference implementation of receive-pack always +understood thin packs. Adding 'no-thin' later allowed receive-pack +to disable the feature in a backwards-compatible manner. + + +side-band, side-band-64k +------------------------ + +This capability means that server can send, and client understand multiplexed +progress reports and error info interleaved with the packfile itself. + +These two options are mutually exclusive. A modern client always +favors 'side-band-64k'. + +Either mode indicates that the packfile data will be streamed broken +up into packets of up to either 1000 bytes in the case of 'side_band', +or 65520 bytes in the case of 'side_band_64k'. Each packet is made up +of a leading 4-byte pkt-line length of how much data is in the packet, +followed by a 1-byte stream code, followed by the actual data. + +The stream code can be one of: + + 1 - pack data + 2 - progress messages + 3 - fatal error message just before stream aborts + +The "side-band-64k" capability came about as a way for newer clients +that can handle much larger packets to request packets that are +actually crammed nearly full, while maintaining backward compatibility +for the older clients. + +Further, with side-band and its up to 1000-byte messages, it's actually +999 bytes of payload and 1 byte for the stream code. With side-band-64k, +same deal, you have up to 65519 bytes of data and 1 byte for the stream +code. + +The client MUST send only maximum of one of "side-band" and "side- +band-64k". Server MUST diagnose it as an error if client requests +both. + +ofs-delta +--------- + +Server can send, and client understand PACKv2 with delta referring to +its base by position in pack rather than by an obj-id. That is, they can +send/read OBJ_OFS_DELTA (aka type 6) in a packfile. + +agent +----- + +The server may optionally send a capability of the form `agent=X` to +notify the client that the server is running version `X`. The client may +optionally return its own agent string by responding with an `agent=Y` +capability (but it MUST NOT do so if the server did not mention the +agent capability). The `X` and `Y` strings may contain any printable +ASCII characters except space (i.e., the byte range 32 < x < 127), and +are typically of the form "package/version" (e.g., "git/1.8.3.1"). The +agent strings are purely informative for statistics and debugging +purposes, and MUST NOT be used to programmatically assume the presence +or absence of particular features. + +shallow +------- + +This capability adds "deepen", "shallow" and "unshallow" commands to +the fetch-pack/upload-pack protocol so clients can request shallow +clones. + +no-progress +----------- + +The client was started with "git clone -q" or something, and doesn't +want that side band 2. Basically the client just says "I do not +wish to receive stream 2 on sideband, so do not send it to me, and if +you did, I will drop it on the floor anyway". However, the sideband +channel 3 is still used for error responses. + +include-tag +----------- + +The 'include-tag' capability is about sending annotated tags if we are +sending objects they point to. If we pack an object to the client, and +a tag object points exactly at that object, we pack the tag object too. +In general this allows a client to get all new annotated tags when it +fetches a branch, in a single network connection. + +Clients MAY always send include-tag, hardcoding it into a request when +the server advertises this capability. The decision for a client to +request include-tag only has to do with the client's desires for tag +data, whether or not a server had advertised objects in the +refs/tags/* namespace. + +Servers MUST pack the tags if their referrant is packed and the client +has requested include-tags. + +Clients MUST be prepared for the case where a server has ignored +include-tag and has not actually sent tags in the pack. In such +cases the client SHOULD issue a subsequent fetch to acquire the tags +that include-tag would have otherwise given the client. + +The server SHOULD send include-tag, if it supports it, regardless +of whether or not there are tags available. + +report-status +------------- + +The receive-pack process can receive a 'report-status' capability, +which tells it that the client wants a report of what happened after +a packfile upload and reference update. If the pushing client requests +this capability, after unpacking and updating references the server +will respond with whether the packfile unpacked successfully and if +each reference was updated successfully. If any of those were not +successful, it will send back an error message. See pack-protocol.txt +for example messages. + +delete-refs +----------- + +If the server sends back the 'delete-refs' capability, it means that +it is capable of accepting a zero-id value as the target +value of a reference update. It is not sent back by the client, it +simply informs the client that it can be sent zero-id values +to delete references. + +quiet +----- + +If the receive-pack server advertises the 'quiet' capability, it is +capable of silencing human-readable progress output which otherwise may +be shown when processing the received pack. A send-pack client should +respond with the 'quiet' capability to suppress server-side progress +reporting if the local progress reporting is also being suppressed +(e.g., via `push -q`, or if stderr does not go to a tty). + +atomic +------ + +If the server sends the 'atomic' capability it is capable of accepting +atomic pushes. If the pushing client requests this capability, the server +will update the refs in one atomic transaction. Either all refs are +updated or none. + +allow-tip-sha1-in-want +---------------------- + +If the upload-pack server advertises this capability, fetch-pack may +send "want" lines with SHA-1s that exist at the server but are not +advertised by upload-pack. + +allow-reachable-sha1-in-want +---------------------------- + +If the upload-pack server advertises this capability, fetch-pack may +send "want" lines with SHA-1s that exist at the server but are not +advertised by upload-pack. + +push-cert=<nonce> +----------------- + +The receive-pack server that advertises this capability is willing +to accept a signed push certificate, and asks the <nonce> to be +included in the push certificate. A send-pack client MUST NOT +send a push-cert packet unless the receive-pack server advertises +this capability. diff --git a/Documentation/technical/protocol-common.txt b/Documentation/technical/protocol-common.txt new file mode 100644 index 0000000000..bf30167ae3 --- /dev/null +++ b/Documentation/technical/protocol-common.txt @@ -0,0 +1,99 @@ +Documentation Common to Pack and Http Protocols +=============================================== + +ABNF Notation +------------- + +ABNF notation as described by RFC 5234 is used within the protocol documents, +except the following replacement core rules are used: +---- + HEXDIG = DIGIT / "a" / "b" / "c" / "d" / "e" / "f" +---- + +We also define the following common rules: +---- + NUL = %x00 + zero-id = 40*"0" + obj-id = 40*(HEXDIGIT) + + refname = "HEAD" + refname /= "refs/" <see discussion below> +---- + +A refname is a hierarchical octet string beginning with "refs/" and +not violating the 'git-check-ref-format' command's validation rules. +More specifically, they: + +. They can include slash `/` for hierarchical (directory) + grouping, but no slash-separated component can begin with a + dot `.`. + +. They must contain at least one `/`. This enforces the presence of a + category like `heads/`, `tags/` etc. but the actual names are not + restricted. + +. They cannot have two consecutive dots `..` anywhere. + +. They cannot have ASCII control characters (i.e. bytes whose + values are lower than \040, or \177 `DEL`), space, tilde `~`, + caret `^`, colon `:`, question-mark `?`, asterisk `*`, + or open bracket `[` anywhere. + +. They cannot end with a slash `/` or a dot `.`. + +. They cannot end with the sequence `.lock`. + +. They cannot contain a sequence `@{`. + +. They cannot contain a `\\`. + + +pkt-line Format +--------------- + +Much (but not all) of the payload is described around pkt-lines. + +A pkt-line is a variable length binary string. The first four bytes +of the line, the pkt-len, indicates the total length of the line, +in hexadecimal. The pkt-len includes the 4 bytes used to contain +the length's hexadecimal representation. + +A pkt-line MAY contain binary data, so implementors MUST ensure +pkt-line parsing/formatting routines are 8-bit clean. + +A non-binary line SHOULD BE terminated by an LF, which if present +MUST be included in the total length. Receivers MUST treat pkt-lines +with non-binary data the same whether or not they contain the trailing +LF (stripping the LF if present, and not complaining when it is +missing). + +The maximum length of a pkt-line's data component is 65520 bytes. +Implementations MUST NOT send pkt-line whose length exceeds 65524 +(65520 bytes of payload + 4 bytes of length data). + +Implementations SHOULD NOT send an empty pkt-line ("0004"). + +A pkt-line with a length field of 0 ("0000"), called a flush-pkt, +is a special case and MUST be handled differently than an empty +pkt-line ("0004"). + +---- + pkt-line = data-pkt / flush-pkt + + data-pkt = pkt-len pkt-payload + pkt-len = 4*(HEXDIG) + pkt-payload = (pkt-len - 4)*(OCTET) + + flush-pkt = "0000" +---- + +Examples (as C-style strings): + +---- + pkt-line actual value + --------------------------------- + "0006a\n" "a\n" + "0005a" "a" + "000bfoobar\n" "foobar\n" + "0004" "" +---- diff --git a/Documentation/technical/racy-git.txt b/Documentation/technical/racy-git.txt new file mode 100644 index 0000000000..4a8be4d144 --- /dev/null +++ b/Documentation/technical/racy-git.txt @@ -0,0 +1,201 @@ +Use of index and Racy Git problem +================================= + +Background +---------- + +The index is one of the most important data structures in Git. +It represents a virtual working tree state by recording list of +paths and their object names and serves as a staging area to +write out the next tree object to be committed. The state is +"virtual" in the sense that it does not necessarily have to, and +often does not, match the files in the working tree. + +There are cases Git needs to examine the differences between the +virtual working tree state in the index and the files in the +working tree. The most obvious case is when the user asks `git +diff` (or its low level implementation, `git diff-files`) or +`git-ls-files --modified`. In addition, Git internally checks +if the files in the working tree are different from what are +recorded in the index to avoid stomping on local changes in them +during patch application, switching branches, and merging. + +In order to speed up this comparison between the files in the +working tree and the index entries, the index entries record the +information obtained from the filesystem via `lstat(2)` system +call when they were last updated. When checking if they differ, +Git first runs `lstat(2)` on the files and compares the result +with this information (this is what was originally done by the +`ce_match_stat()` function, but the current code does it in +`ce_match_stat_basic()` function). If some of these "cached +stat information" fields do not match, Git can tell that the +files are modified without even looking at their contents. + +Note: not all members in `struct stat` obtained via `lstat(2)` +are used for this comparison. For example, `st_atime` obviously +is not useful. Currently, Git compares the file type (regular +files vs symbolic links) and executable bits (only for regular +files) from `st_mode` member, `st_mtime` and `st_ctime` +timestamps, `st_uid`, `st_gid`, `st_ino`, and `st_size` members. +With a `USE_STDEV` compile-time option, `st_dev` is also +compared, but this is not enabled by default because this member +is not stable on network filesystems. With `USE_NSEC` +compile-time option, `st_mtim.tv_nsec` and `st_ctim.tv_nsec` +members are also compared. On Linux, this is not enabled by default +because in-core timestamps can have finer granularity than +on-disk timestamps, resulting in meaningless changes when an +inode is evicted from the inode cache. See commit 8ce13b0 +of git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git +([PATCH] Sync in core time granularity with filesystems, +2005-01-04). This patch is included in kernel 2.6.11 and newer, but +only fixes the issue for file systems with exactly 1 ns or 1 s +resolution. Other file systems are still broken in current Linux +kernels (e.g. CEPH, CIFS, NTFS, UDF), see +https://lkml.org/lkml/2015/6/9/714 + +Racy Git +-------- + +There is one slight problem with the optimization based on the +cached stat information. Consider this sequence: + + : modify 'foo' + $ git update-index 'foo' + : modify 'foo' again, in-place, without changing its size + +The first `update-index` computes the object name of the +contents of file `foo` and updates the index entry for `foo` +along with the `struct stat` information. If the modification +that follows it happens very fast so that the file's `st_mtime` +timestamp does not change, after this sequence, the cached stat +information the index entry records still exactly match what you +would see in the filesystem, even though the file `foo` is now +different. +This way, Git can incorrectly think files in the working tree +are unmodified even though they actually are. This is called +the "racy Git" problem (discovered by Pasky), and the entries +that appear clean when they may not be because of this problem +are called "racily clean". + +To avoid this problem, Git does two things: + +. When the cached stat information says the file has not been + modified, and the `st_mtime` is the same as (or newer than) + the timestamp of the index file itself (which is the time `git + update-index foo` finished running in the above example), it + also compares the contents with the object registered in the + index entry to make sure they match. + +. When the index file is updated that contains racily clean + entries, cached `st_size` information is truncated to zero + before writing a new version of the index file. + +Because the index file itself is written after collecting all +the stat information from updated paths, `st_mtime` timestamp of +it is usually the same as or newer than any of the paths the +index contains. And no matter how quick the modification that +follows `git update-index foo` finishes, the resulting +`st_mtime` timestamp on `foo` cannot get a value earlier +than the index file. Therefore, index entries that can be +racily clean are limited to the ones that have the same +timestamp as the index file itself. + +The callers that want to check if an index entry matches the +corresponding file in the working tree continue to call +`ce_match_stat()`, but with this change, `ce_match_stat()` uses +`ce_modified_check_fs()` to see if racily clean ones are +actually clean after comparing the cached stat information using +`ce_match_stat_basic()`. + +The problem the latter solves is this sequence: + + $ git update-index 'foo' + : modify 'foo' in-place without changing its size + : wait for enough time + $ git update-index 'bar' + +Without the latter, the timestamp of the index file gets a newer +value, and falsely clean entry `foo` would not be caught by the +timestamp comparison check done with the former logic anymore. +The latter makes sure that the cached stat information for `foo` +would never match with the file in the working tree, so later +checks by `ce_match_stat_basic()` would report that the index entry +does not match the file and Git does not have to fall back on more +expensive `ce_modified_check_fs()`. + + +Runtime penalty +--------------- + +The runtime penalty of falling back to `ce_modified_check_fs()` +from `ce_match_stat()` can be very expensive when there are many +racily clean entries. An obvious way to artificially create +this situation is to give the same timestamp to all the files in +the working tree in a large project, run `git update-index` on +them, and give the same timestamp to the index file: + + $ date >.datestamp + $ git ls-files | xargs touch -r .datestamp + $ git ls-files | git update-index --stdin + $ touch -r .datestamp .git/index + +This will make all index entries racily clean. The linux project, for +example, there are over 20,000 files in the working tree. On my +Athlon 64 X2 3800+, after the above: + + $ /usr/bin/time git diff-files + 1.68user 0.54system 0:02.22elapsed 100%CPU (0avgtext+0avgdata 0maxresident)k + 0inputs+0outputs (0major+67111minor)pagefaults 0swaps + $ git update-index MAINTAINERS + $ /usr/bin/time git diff-files + 0.02user 0.12system 0:00.14elapsed 100%CPU (0avgtext+0avgdata 0maxresident)k + 0inputs+0outputs (0major+935minor)pagefaults 0swaps + +Running `git update-index` in the middle checked the racily +clean entries, and left the cached `st_mtime` for all the paths +intact because they were actually clean (so this step took about +the same amount of time as the first `git diff-files`). After +that, they are not racily clean anymore but are truly clean, so +the second invocation of `git diff-files` fully took advantage +of the cached stat information. + + +Avoiding runtime penalty +------------------------ + +In order to avoid the above runtime penalty, post 1.4.2 Git used +to have a code that made sure the index file +got timestamp newer than the youngest files in the index when +there are many young files with the same timestamp as the +resulting index file would otherwise would have by waiting +before finishing writing the index file out. + +I suspected that in practice the situation where many paths in the +index are all racily clean was quite rare. The only code paths +that can record recent timestamp for large number of paths are: + +. Initial `git add .` of a large project. + +. `git checkout` of a large project from an empty index into an + unpopulated working tree. + +Note: switching branches with `git checkout` keeps the cached +stat information of existing working tree files that are the +same between the current branch and the new branch, which are +all older than the resulting index file, and they will not +become racily clean. Only the files that are actually checked +out can become racily clean. + +In a large project where raciness avoidance cost really matters, +however, the initial computation of all object names in the +index takes more than one second, and the index file is written +out after all that happens. Therefore the timestamp of the +index file will be more than one seconds later than the +youngest file in the working tree. This means that in these +cases there actually will not be any racily clean entry in +the resulting index. + +Based on this discussion, the current code does not use the +"workaround" to avoid the runtime penalty that does not exist in +practice anymore. This was done with commit 0fc82cff on Aug 15, +2006. diff --git a/Documentation/technical/send-pack-pipeline.txt b/Documentation/technical/send-pack-pipeline.txt new file mode 100644 index 0000000000..9b5a0bc186 --- /dev/null +++ b/Documentation/technical/send-pack-pipeline.txt @@ -0,0 +1,63 @@ +Git-send-pack internals +======================= + +Overall operation +----------------- + +. Connects to the remote side and invokes git-receive-pack. + +. Learns what refs the remote has and what commit they point at. + Matches them to the refspecs we are pushing. + +. Checks if there are non-fast-forwards. Unlike fetch-pack, + the repository send-pack runs in is supposed to be a superset + of the recipient in fast-forward cases, so there is no need + for want/have exchanges, and fast-forward check can be done + locally. Tell the result to the other end. + +. Calls pack_objects() which generates a packfile and sends it + over to the other end. + +. If the remote side is new enough (v1.1.0 or later), wait for + the unpack and hook status from the other end. + +. Exit with appropriate error codes. + + +Pack_objects pipeline +--------------------- + +This function gets one file descriptor (`fd`) which is either a +socket (over the network) or a pipe (local). What's written to +this fd goes to git-receive-pack to be unpacked. + + send-pack ---> fd ---> receive-pack + +The function pack_objects creates a pipe and then forks. The +forked child execs pack-objects with --revs to receive revision +parameters from its standard input. This process will write the +packfile to the other end. + + send-pack + | + pack_objects() ---> fd ---> receive-pack + | ^ (pipe) + v | + (child) + +The child dup2's to arrange its standard output to go back to +the other end, and read its standard input to come from the +pipe. After that it exec's pack-objects. On the other hand, +the parent process, before starting to feed the child pipeline, +closes the reading side of the pipe and fd to receive-pack. + + send-pack + | + pack_objects(parent) + | + v [0] + pack-objects [0] ---> receive-pack + + +[jc: the pipeline was much more complex and needed documentation before + I understood an earlier bug, but now it is trivial and straightforward.] diff --git a/Documentation/technical/shallow.txt b/Documentation/technical/shallow.txt new file mode 100644 index 0000000000..5183b15422 --- /dev/null +++ b/Documentation/technical/shallow.txt @@ -0,0 +1,58 @@ +Shallow commits +=============== + +.Definition +********************************************************* +Shallow commits do have parents, but not in the shallow +repo, and therefore grafts are introduced pretending that +these commits have no parents. +********************************************************* + +The basic idea is to write the SHA-1s of shallow commits into +$GIT_DIR/shallow, and handle its contents like the contents +of $GIT_DIR/info/grafts (with the difference that shallow +cannot contain parent information). + +This information is stored in a new file instead of grafts, or +even the config, since the user should not touch that file +at all (even throughout development of the shallow clone, it +was never manually edited!). + +Each line contains exactly one SHA-1. When read, a commit_graft +will be constructed, which has nr_parent < 0 to make it easier +to discern from user provided grafts. + +Since fsck-objects relies on the library to read the objects, +it honours shallow commits automatically. + +There are some unfinished ends of the whole shallow business: + +- maybe we have to force non-thin packs when fetching into a + shallow repo (ATM they are forced non-thin). + +- A special handling of a shallow upstream is needed. At some + stage, upload-pack has to check if it sends a shallow commit, + and it should send that information early (or fail, if the + client does not support shallow repositories). There is no + support at all for this in this patch series. + +- Instead of locking $GIT_DIR/shallow at the start, just + the timestamp of it is noted, and when it comes to writing it, + a check is performed if the mtime is still the same, dying if + it is not. + +- It is unclear how "push into/from a shallow repo" should behave. + +- If you deepen a history, you'd want to get the tags of the + newly stored (but older!) commits. This does not work right now. + +To make a shallow clone, you can call "git-clone --depth 20 repo". +The result contains only commit chains with a length of at most 20. +It also writes an appropriate $GIT_DIR/shallow. + +You can deepen a shallow repository with "git-fetch --depth 20 +repo branch", which will fetch branch from repo, but stop at depth +20, updating $GIT_DIR/shallow. + +The special depth 2147483647 (or 0x7fffffff, the largest positive +number a signed 32-bit integer can contain) means infinite depth. diff --git a/Documentation/technical/trivial-merge.txt b/Documentation/technical/trivial-merge.txt new file mode 100644 index 0000000000..c79d4a7c47 --- /dev/null +++ b/Documentation/technical/trivial-merge.txt @@ -0,0 +1,121 @@ +Trivial merge rules +=================== + +This document describes the outcomes of the trivial merge logic in read-tree. + +One-way merge +------------- + +This replaces the index with a different tree, keeping the stat info +for entries that don't change, and allowing -u to make the minimum +required changes to the working tree to have it match. + +Entries marked '+' have stat information. Spaces marked '*' don't +affect the result. + + index tree result + ----------------------- + * (empty) (empty) + (empty) tree tree + index+ tree tree + index+ index index+ + +Two-way merge +------------- + +It is permitted for the index to lack an entry; this does not prevent +any case from applying. + +If the index exists, it is an error for it not to match either the old +or the result. + +If multiple cases apply, the one used is listed first. + +A result which changes the index is an error if the index is not empty +and not up-to-date. + +Entries marked '+' have stat information. Spaces marked '*' don't +affect the result. + + case index old new result + ------------------------------------- + 0/2 (empty) * (empty) (empty) + 1/3 (empty) * new new + 4/5 index+ (empty) (empty) index+ + 6/7 index+ (empty) index index+ + 10 index+ index (empty) (empty) + 14/15 index+ old old index+ + 18/19 index+ old index index+ + 20 index+ index new new + +Three-way merge +--------------- + +It is permitted for the index to lack an entry; this does not prevent +any case from applying. + +If the index exists, it is an error for it not to match either the +head or (if the merge is trivial) the result. + +If multiple cases apply, the one used is listed first. + +A result of "no merge" means that index is left in stage 0, ancest in +stage 1, head in stage 2, and remote in stage 3 (if any of these are +empty, no entry is left for that stage). Otherwise, the given entry is +left in stage 0, and there are no other entries. + +A result of "no merge" is an error if the index is not empty and not +up-to-date. + +*empty* means that the tree must not have a directory-file conflict + with the entry. + +For multiple ancestors, a '+' means that this case applies even if +only one ancestor or remote fits; a '^' means all of the ancestors +must be the same. + + case ancest head remote result + ---------------------------------------- + 1 (empty)+ (empty) (empty) (empty) + 2ALT (empty)+ *empty* remote remote + 2 (empty)^ (empty) remote no merge + 3ALT (empty)+ head *empty* head + 3 (empty)^ head (empty) no merge + 4 (empty)^ head remote no merge + 5ALT * head head head + 6 ancest+ (empty) (empty) no merge + 8 ancest^ (empty) ancest no merge + 7 ancest+ (empty) remote no merge + 10 ancest^ ancest (empty) no merge + 9 ancest+ head (empty) no merge + 16 anc1/anc2 anc1 anc2 no merge + 13 ancest+ head ancest head + 14 ancest+ ancest remote remote + 11 ancest+ head remote no merge + +Only #2ALT and #3ALT use *empty*, because these are the only cases +where there can be conflicts that didn't exist before. Note that we +allow directory-file conflicts between things in different stages +after the trivial merge. + +A possible alternative for #6 is (empty), which would make it like +#1. This is not used, due to the likelihood that it arises due to +moving the file to multiple different locations or moving and deleting +it in different branches. + +Case #1 is included for completeness, and also in case we decide to +put on '+' markings; any path that is never mentioned at all isn't +handled. + +Note that #16 is when both #13 and #14 apply; in this case, we refuse +the trivial merge, because we can't tell from this data which is +right. This is a case of a reverted patch (in some direction, maybe +multiple times), and the right answer depends on looking at crossings +of history or common ancestors of the ancestors. + +Note that, between #6, #7, #9, and #11, all cases not otherwise +covered are handled in this table. + +For #8 and #10, there is alternative behavior, not currently +implemented, where the result is (empty). As currently implemented, +the automatic merge will generally give this effect. |