summaryrefslogtreecommitdiff
path: root/Documentation/technical/commit-graph-format.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/technical/commit-graph-format.txt')
-rw-r--r--Documentation/technical/commit-graph-format.txt134
1 files changed, 134 insertions, 0 deletions
diff --git a/Documentation/technical/commit-graph-format.txt b/Documentation/technical/commit-graph-format.txt
new file mode 100644
index 0000000000..1beef17182
--- /dev/null
+++ b/Documentation/technical/commit-graph-format.txt
@@ -0,0 +1,134 @@
+Git commit graph format
+=======================
+
+The Git commit graph stores a list of commit OIDs and some associated
+metadata, including:
+
+- The generation number of the commit. Commits with no parents have
+ generation number 1; commits with parents have generation number
+ one more than the maximum generation number of its parents. We
+ reserve zero as special, and can be used to mark a generation
+ number invalid or as "not computed".
+
+- The root tree OID.
+
+- The commit date.
+
+- The parents of the commit, stored using positional references within
+ the graph file.
+
+- The Bloom filter of the commit carrying the paths that were changed between
+ the commit and its first parent, if requested.
+
+These positional references are stored as unsigned 32-bit integers
+corresponding to the array position within the list of commit OIDs. Due
+to some special constants we use to track parents, we can store at most
+(1 << 30) + (1 << 29) + (1 << 28) - 1 (around 1.8 billion) commits.
+
+== Commit graph files have the following format:
+
+In order to allow extensions that add extra data to the graph, we organize
+the body into "chunks" and provide a binary lookup table at the beginning
+of the body. The header includes certain values, such as number of chunks
+and hash type.
+
+All 4-byte numbers are in network order.
+
+HEADER:
+
+ 4-byte signature:
+ The signature is: {'C', 'G', 'P', 'H'}
+
+ 1-byte version number:
+ Currently, the only valid version is 1.
+
+ 1-byte Hash Version (1 = SHA-1)
+ We infer the hash length (H) from this value.
+
+ 1-byte number (C) of "chunks"
+
+ 1-byte number (B) of base commit-graphs
+ We infer the length (H*B) of the Base Graphs chunk
+ from this value.
+
+CHUNK LOOKUP:
+
+ (C + 1) * 12 bytes listing the table of contents for the chunks:
+ First 4 bytes describe the chunk id. Value 0 is a terminating label.
+ Other 8 bytes provide the byte-offset in current file for chunk to
+ start. (Chunks are ordered contiguously in the file, so you can infer
+ the length using the next chunk position if necessary.) Each chunk
+ ID appears at most once.
+
+ The remaining data in the body is described one chunk at a time, and
+ these chunks may be given in any order. Chunks are required unless
+ otherwise specified.
+
+CHUNK DATA:
+
+ OID Fanout (ID: {'O', 'I', 'D', 'F'}) (256 * 4 bytes)
+ The ith entry, F[i], stores the number of OIDs with first
+ byte at most i. Thus F[255] stores the total
+ number of commits (N).
+
+ OID Lookup (ID: {'O', 'I', 'D', 'L'}) (N * H bytes)
+ The OIDs for all commits in the graph, sorted in ascending order.
+
+ Commit Data (ID: {'C', 'D', 'A', 'T' }) (N * (H + 16) bytes)
+ * The first H bytes are for the OID of the root tree.
+ * The next 8 bytes are for the positions of the first two parents
+ of the ith commit. Stores value 0x7000000 if no parent in that
+ position. If there are more than two parents, the second value
+ has its most-significant bit on and the other bits store an array
+ position into the Extra Edge List chunk.
+ * The next 8 bytes store the generation number of the commit and
+ the commit time in seconds since EPOCH. The generation number
+ uses the higher 30 bits of the first 4 bytes, while the commit
+ time uses the 32 bits of the second 4 bytes, along with the lowest
+ 2 bits of the lowest byte, storing the 33rd and 34th bit of the
+ commit time.
+
+ Extra Edge List (ID: {'E', 'D', 'G', 'E'}) [Optional]
+ This list of 4-byte values store the second through nth parents for
+ all octopus merges. The second parent value in the commit data stores
+ an array position within this list along with the most-significant bit
+ on. Starting at that array position, iterate through this list of commit
+ positions for the parents until reaching a value with the most-significant
+ bit on. The other bits correspond to the position of the last parent.
+
+ Bloom Filter Index (ID: {'B', 'I', 'D', 'X'}) (N * 4 bytes) [Optional]
+ * The ith entry, BIDX[i], stores the number of bytes in all Bloom filters
+ from commit 0 to commit i (inclusive) in lexicographic order. The Bloom
+ filter for the i-th commit spans from BIDX[i-1] to BIDX[i] (plus header
+ length), where BIDX[-1] is 0.
+ * The BIDX chunk is ignored if the BDAT chunk is not present.
+
+ Bloom Filter Data (ID: {'B', 'D', 'A', 'T'}) [Optional]
+ * It starts with header consisting of three unsigned 32-bit integers:
+ - Version of the hash algorithm being used. We currently only support
+ value 1 which corresponds to the 32-bit version of the murmur3 hash
+ implemented exactly as described in
+ https://en.wikipedia.org/wiki/MurmurHash#Algorithm and the double
+ hashing technique using seed values 0x293ae76f and 0x7e646e2 as
+ described in https://doi.org/10.1007/978-3-540-30494-4_26 "Bloom Filters
+ in Probabilistic Verification"
+ - The number of times a path is hashed and hence the number of bit positions
+ that cumulatively determine whether a file is present in the commit.
+ - The minimum number of bits 'b' per entry in the Bloom filter. If the filter
+ contains 'n' entries, then the filter size is the minimum number of 64-bit
+ words that contain n*b bits.
+ * The rest of the chunk is the concatenation of all the computed Bloom
+ filters for the commits in lexicographic order.
+ * Note: Commits with no changes or more than 512 changes have Bloom filters
+ of length zero.
+ * The BDAT chunk is present if and only if BIDX is present.
+
+ Base Graphs List (ID: {'B', 'A', 'S', 'E'}) [Optional]
+ This list of H-byte hashes describe a set of B commit-graph files that
+ form a commit-graph chain. The graph position for the ith commit in this
+ file's OID Lookup chunk is equal to i plus the number of commits in all
+ base graphs. If B is non-zero, this chunk must exist.
+
+TRAILER:
+
+ H-byte HASH-checksum of all of the above.