summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/Makefile1
-rw-r--r--Documentation/config.txt8
-rw-r--r--Documentation/git-bisect-lk2009.txt1358
-rw-r--r--Documentation/git-bisect.txt5
-rw-r--r--Documentation/git-commit.txt7
-rw-r--r--Documentation/git-mailinfo.txt7
-rw-r--r--Documentation/git-send-email.txt7
-rw-r--r--Documentation/pretty-formats.txt8
-rw-r--r--Makefile26
-rw-r--r--builtin-commit.c12
-rw-r--r--builtin-log.c3
-rw-r--r--builtin-mailinfo.c49
-rw-r--r--builtin-merge.c3
-rw-r--r--builtin-shortlog.c19
-rw-r--r--combine-diff.c5
-rw-r--r--diff.c56
-rw-r--r--diff.h1
-rwxr-xr-xgit-am.sh11
-rwxr-xr-xgit-instaweb.sh7
-rwxr-xr-xgit-send-email.perl23
-rw-r--r--gitweb/README4
-rw-r--r--gitweb/gitweb.css23
-rw-r--r--gitweb/gitweb.js870
-rwxr-xr-xgitweb/gitweb.perl331
-rw-r--r--merge-recursive.c41
-rw-r--r--merge-recursive.h3
-rw-r--r--pretty.c42
-rwxr-xr-xt/t4014-format-patch.sh5
-rwxr-xr-xt/t4034-diff-words.sh12
-rwxr-xr-xt/t4201-shortlog.sh28
-rwxr-xr-xt/t6006-rev-list-format.sh22
-rwxr-xr-xt/t7509-commit.sh114
-rwxr-xr-xt/t9001-send-email.sh83
33 files changed, 3021 insertions, 173 deletions
diff --git a/Documentation/Makefile b/Documentation/Makefile
index cd5b4396db..3f599524ea 100644
--- a/Documentation/Makefile
+++ b/Documentation/Makefile
@@ -17,6 +17,7 @@ DOC_HTML=$(MAN_HTML)
ARTICLES = howto-index
ARTICLES += everyday
ARTICLES += git-tools
+ARTICLES += git-bisect-lk2009
# with their own formatting rules.
SP_ARTICLES = howto/revert-branch-rebase howto/using-merge-subtree user-manual
API_DOCS = $(patsubst %.txt,%,$(filter-out technical/api-index-skel.txt technical/api-index.txt, $(wildcard technical/api-*.txt)))
diff --git a/Documentation/config.txt b/Documentation/config.txt
index a8e0876a2a..a1e36d7e42 100644
--- a/Documentation/config.txt
+++ b/Documentation/config.txt
@@ -635,10 +635,10 @@ color.diff.<slot>::
Use customized color for diff colorization. `<slot>` specifies
which part of the patch to use the specified color, and is one
of `plain` (context text), `meta` (metainformation), `frag`
- (hunk header), `old` (removed lines), `new` (added lines),
- `commit` (commit headers), or `whitespace` (highlighting
- whitespace errors). The values of these variables may be specified as
- in color.branch.<slot>.
+ (hunk header), 'func' (function in hunk header), `old` (removed lines),
+ `new` (added lines), `commit` (commit headers), or `whitespace`
+ (highlighting whitespace errors). The values of these variables may be
+ specified as in color.branch.<slot>.
color.grep::
When set to `always`, always highlight matches. When `false` (or
diff --git a/Documentation/git-bisect-lk2009.txt b/Documentation/git-bisect-lk2009.txt
new file mode 100644
index 0000000000..6b7b2e5497
--- /dev/null
+++ b/Documentation/git-bisect-lk2009.txt
@@ -0,0 +1,1358 @@
+Fighting regressions with git bisect
+====================================
+:Author: Christian Couder
+:Email: chriscool@tuxfamily.org
+:Date: 2009/11/08
+
+Abstract
+--------
+
+"git bisect" enables software users and developers to easily find the
+commit that introduced a regression. We show why it is important to
+have good tools to fight regressions. We describe how "git bisect"
+works from the outside and the algorithms it uses inside. Then we
+explain how to take advantage of "git bisect" to improve current
+practices. And we discuss how "git bisect" could improve in the
+future.
+
+
+Introduction to "git bisect"
+----------------------------
+
+Git is a Distributed Version Control system (DVCS) created by Linus
+Torvalds and maintained by Junio Hamano.
+
+In Git like in many other Version Control Systems (VCS), the different
+states of the data that is managed by the system are called
+commits. And, as VCS are mostly used to manage software source code,
+sometimes "interesting" changes of behavior in the software are
+introduced in some commits.
+
+In fact people are specially interested in commits that introduce a
+"bad" behavior, called a bug or a regression. They are interested in
+these commits because a commit (hopefully) contains a very small set
+of source code changes. And it's much easier to understand and
+properly fix a problem when you only need to check a very small set of
+changes, than when you don't know where look in the first place.
+
+So to help people find commits that introduce a "bad" behavior, the
+"git bisect" set of commands was invented. And it follows of course
+that in "git bisect" parlance, commits where the "interesting
+behavior" is present are called "bad" commits, while other commits are
+called "good" commits. And a commit that introduce the behavior we are
+interested in is called a "first bad commit". Note that there could be
+more than one "first bad commit" in the commit space we are searching.
+
+So "git bisect" is designed to help find a "first bad commit". And to
+be as efficient as possible, it tries to perform a binary search.
+
+
+Fighting regressions overview
+-----------------------------
+
+Regressions: a big problem
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Regressions are a big problem in the software industry. But it's
+difficult to put some real numbers behind that claim.
+
+There are some numbers about bugs in general, like a NIST study in
+2002 <<1>> that said:
+
+_____________
+Software bugs, or errors, are so prevalent and so detrimental that
+they cost the U.S. economy an estimated $59.5 billion annually, or
+about 0.6 percent of the gross domestic product, according to a newly
+released study commissioned by the Department of Commerce's National
+Institute of Standards and Technology (NIST). At the national level,
+over half of the costs are borne by software users and the remainder
+by software developers/vendors. The study also found that, although
+all errors cannot be removed, more than a third of these costs, or an
+estimated $22.2 billion, could be eliminated by an improved testing
+infrastructure that enables earlier and more effective identification
+and removal of software defects. These are the savings associated with
+finding an increased percentage (but not 100 percent) of errors closer
+to the development stages in which they are introduced. Currently,
+over half of all errors are not found until "downstream" in the
+development process or during post-sale software use.
+_____________
+
+And then:
+
+_____________
+Software developers already spend approximately 80 percent of
+development costs on identifying and correcting defects, and yet few
+products of any type other than software are shipped with such high
+levels of errors.
+_____________
+
+Eventually the conclusion started with:
+
+_____________
+The path to higher software quality is significantly improved software
+testing.
+_____________
+
+There are other estimates saying that 80% of the cost related to
+software is about maintenance <<2>>.
+
+Though, according to Wikipedia <<3>>:
+
+_____________
+A common perception of maintenance is that it is merely fixing
+bugs. However, studies and surveys over the years have indicated that
+the majority, over 80%, of the maintenance effort is used for
+non-corrective actions (Pigosky 1997). This perception is perpetuated
+by users submitting problem reports that in reality are functionality
+enhancements to the system.
+_____________
+
+But we can guess that improving on existing software is very costly
+because you have to watch out for regressions. At least this would
+make the above studies consistent among themselves.
+
+Of course some kind of software is developed, then used during some
+time without being improved on much, and then finally thrown away. In
+this case, of course, regressions may not be a big problem. But on the
+other hand, there is a lot of big software that is continually
+developed and maintained during years or even tens of years by a lot
+of people. And as there are often many people who depend (sometimes
+critically) on such software, regressions are a really big problem.
+
+One such software is the linux kernel. And if we look at the linux
+kernel, we can see that a lot of time and effort is spent to fight
+regressions. The release cycle start with a 2 weeks long merge
+window. Then the first release candidate (rc) version is tagged. And
+after that about 7 or 8 more rc versions will appear with around one
+week between each of them, before the final release.
+
+The time between the first rc release and the final release is
+supposed to be used to test rc versions and fight bugs and especially
+regressions. And this time is more than 80% of the release cycle
+time. But this is not the end of the fight yet, as of course it
+continues after the release.
+
+And then this is what Ingo Molnar (a well known linux kernel
+developer) says about his use of git bisect:
+
+_____________
+I most actively use it during the merge window (when a lot of trees
+get merged upstream and when the influx of bugs is the highest) - and
+yes, there have been cases that i used it multiple times a day. My
+average is roughly once a day.
+_____________
+
+So regressions are fought all the time by developers, and indeed it is
+well known that bugs should be fixed as soon as possible, so as soon
+as they are found. That's why it is interesting to have good tools for
+this purpose.
+
+Other tools to fight regressions
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+So what are the tools used to fight regressions? They are nearly the
+same as those used to fight regular bugs. The only specific tools are
+test suites and tools similar as "git bisect".
+
+Test suites are very nice. But when they are used alone, they are
+supposed to be used so that all the tests are checked after each
+commit. This means that they are not very efficient, because many
+tests are run for no interesting result, and they suffer from
+combinational explosion.
+
+In fact the problem is that big software often has many different
+configuration options and that each test case should pass for each
+configuration after each commit. So if you have for each release: N
+configurations, M commits and T test cases, you should perform:
+
+-------------
+N * M * T tests
+-------------
+
+where N, M and T are all growing with the size your software.
+
+So very soon it will not be possible to completely test everything.
+
+And if some bugs slip through your test suite, then you can add a test
+to your test suite. But if you want to use your new improved test
+suite to find where the bug slipped in, then you will either have to
+emulate a bisection process or you will perhaps bluntly test each
+commit backward starting from the "bad" commit you have which may be
+very wasteful.
+
+"git bisect" overview
+---------------------
+
+Starting a bisection
+~~~~~~~~~~~~~~~~~~~~
+
+The first "git bisect" subcommand to use is "git bisect start" to
+start the search. Then bounds must be set to limit the commit
+space. This is done usually by giving one "bad" and at least one
+"good" commit. They can be passed in the initial call to "git bisect
+start" like this:
+
+-------------
+$ git bisect start [BAD [GOOD...]]
+-------------
+
+or they can be set using:
+
+-------------
+$ git bisect bad [COMMIT]
+-------------
+
+and:
+
+-------------
+$ git bisect good [COMMIT...]
+-------------
+
+where BAD, GOOD and COMMIT are all names that can be resolved to a
+commit.
+
+Then "git bisect" will checkout a commit of its choosing and ask the
+user to test it, like this:
+
+-------------
+$ git bisect start v2.6.27 v2.6.25
+Bisecting: 10928 revisions left to test after this (roughly 14 steps)
+[2ec65f8b89ea003c27ff7723525a2ee335a2b393] x86: clean up using max_low_pfn on 32-bit
+-------------
+
+Note that the example that we will use is really a toy example, we
+will be looking for the first commit that has a version like
+"2.6.26-something", that is the commit that has a "SUBLEVEL = 26" line
+in the top level Makefile. This is a toy example because there are
+better ways to find this commit with git than using "git bisect" (for
+example "git blame" or "git log -S<string>").
+
+Driving a bisection manually
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+At this point there are basically 2 ways to drive the search. It can
+be driven manually by the user or it can be driven automatically by a
+script or a command.
+
+If the user is driving it, then at each step of the search, the user
+will have to test the current commit and say if it is "good" or "bad"
+using the "git bisect good" or "git bisect bad" commands respectively
+that have been described above. For example:
+
+-------------
+$ git bisect bad
+Bisecting: 5480 revisions left to test after this (roughly 13 steps)
+[66c0b394f08fd89236515c1c84485ea712a157be] KVM: kill file->f_count abuse in kvm
+-------------
+
+And after a few more steps like that, "git bisect" will eventually
+find a first bad commit:
+
+-------------
+$ git bisect bad
+2ddcca36c8bcfa251724fe342c8327451988be0d is the first bad commit
+commit 2ddcca36c8bcfa251724fe342c8327451988be0d
+Author: Linus Torvalds <torvalds@linux-foundation.org>
+Date: Sat May 3 11:59:44 2008 -0700
+
+ Linux 2.6.26-rc1
+
+:100644 100644 5cf8258195331a4dbdddff08b8d68642638eea57 4492984efc09ab72ff6219a7bc21fb6a957c4cd5 M Makefile
+-------------
+
+At this point we can see what the commit does, check it out (if it's
+not already checked out) or tinker with it, for example:
+
+-------------
+$ git show HEAD
+commit 2ddcca36c8bcfa251724fe342c8327451988be0d
+Author: Linus Torvalds <torvalds@linux-foundation.org>
+Date: Sat May 3 11:59:44 2008 -0700
+
+ Linux 2.6.26-rc1
+
+diff --git a/Makefile b/Makefile
+index 5cf8258..4492984 100644
+--- a/Makefile
++++ b/Makefile
+@@ -1,7 +1,7 @@
+ VERSION = 2
+ PATCHLEVEL = 6
+-SUBLEVEL = 25
+-EXTRAVERSION =
++SUBLEVEL = 26
++EXTRAVERSION = -rc1
+ NAME = Funky Weasel is Jiggy wit it
+
+ # *DOCUMENTATION*
+-------------
+
+And when we are finished we can use "git bisect reset" to go back to
+the branch we were in before we started bisecting:
+
+-------------
+$ git bisect reset
+Checking out files: 100% (21549/21549), done.
+Previous HEAD position was 2ddcca3... Linux 2.6.26-rc1
+Switched to branch 'master'
+-------------
+
+Driving a bisection automatically
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The other way to drive the bisection process is to tell "git bisect"
+to launch a script or command at each bisection step to know if the
+current commit is "good" or "bad". To do that, we use the "git bisect
+run" command. For example:
+
+-------------
+$ git bisect start v2.6.27 v2.6.25
+Bisecting: 10928 revisions left to test after this (roughly 14 steps)
+[2ec65f8b89ea003c27ff7723525a2ee335a2b393] x86: clean up using max_low_pfn on 32-bit
+$
+$ git bisect run grep '^SUBLEVEL = 25' Makefile
+running grep ^SUBLEVEL = 25 Makefile
+Bisecting: 5480 revisions left to test after this (roughly 13 steps)
+[66c0b394f08fd89236515c1c84485ea712a157be] KVM: kill file->f_count abuse in kvm
+running grep ^SUBLEVEL = 25 Makefile
+SUBLEVEL = 25
+Bisecting: 2740 revisions left to test after this (roughly 12 steps)
+[671294719628f1671faefd4882764886f8ad08cb] V4L/DVB(7879): Adding cx18 Support for mxl5005s
+...
+...
+running grep ^SUBLEVEL = 25 Makefile
+Bisecting: 0 revisions left to test after this (roughly 0 steps)
+[2ddcca36c8bcfa251724fe342c8327451988be0d] Linux 2.6.26-rc1
+running grep ^SUBLEVEL = 25 Makefile
+2ddcca36c8bcfa251724fe342c8327451988be0d is the first bad commit
+commit 2ddcca36c8bcfa251724fe342c8327451988be0d
+Author: Linus Torvalds <torvalds@linux-foundation.org>
+Date: Sat May 3 11:59:44 2008 -0700
+
+ Linux 2.6.26-rc1
+
+:100644 100644 5cf8258195331a4dbdddff08b8d68642638eea57 4492984efc09ab72ff6219a7bc21fb6a957c4cd5 M Makefile
+bisect run success
+-------------
+
+In this example, we passed "grep '^SUBLEVEL = 25' Makefile" as
+parameter to "git bisect run". This means that at each step, the grep
+command we passed will be launched. And if it exits with code 0 (that
+means success) then git bisect will mark the current state as
+"good". If it exits with code 1 (or any code between 1 and 127
+included, except the special code 125), then the current state will be
+marked as "bad".
+
+Exit code between 128 and 255 are special to "git bisect run". They
+make it stop immediately the bisection process. This is useful for
+example if the command passed takes too long to complete, because you
+can kill it with a signal and it will stop the bisection process.
+
+It can also be useful in scripts passed to "git bisect run" to "exit
+255" if some very abnormal situation is detected.
+
+Avoiding untestable commits
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Sometimes it happens that the current state cannot be tested, for
+example if it does not compile because there was a bug preventing it
+at that time. This is what the special exit code 125 is for. It tells
+"git bisect run" that the current commit should be marked as
+untestable and that another one should be chosen and checked out.
+
+If the bisection process is driven manually, you can use "git bisect
+skip" to do the same thing. (In fact the special exit code 125 makes
+"git bisect run" use "git bisect skip" in the background.)
+
+Or if you want more control, you can inspect the current state using
+for example "git bisect visualize". It will launch gitk (or "git log"
+if the DISPLAY environment variable is not set) to help you find a
+better bisection point.
+
+Either way, if you have a string of untestable commits, it might
+happen that the regression you are looking for has been introduced by
+one of these untestable commits. In this case it's not possible to
+tell for sure which commit introduced the regression.
+
+So if you used "git bisect skip" (or the run script exited with
+special code 125) you could get a result like this:
+
+-------------
+There are only 'skip'ped commits left to test.
+The first bad commit could be any of:
+15722f2fa328eaba97022898a305ffc8172db6b1
+78e86cf3e850bd755bb71831f42e200626fbd1e0
+e15b73ad3db9b48d7d1ade32f8cd23a751fe0ace
+070eab2303024706f2924822bfec8b9847e4ac1b
+We cannot bisect more!
+-------------
+
+Saving a log and replaying it
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+If you want to show other people your bisection process, you can get a
+log using for example:
+
+-------------
+$ git bisect log > bisect_log.txt
+-------------
+
+And it is possible to replay it using:
+
+-------------
+$ git bisect replay bisect_log.txt
+-------------
+
+
+"git bisect" details
+--------------------
+
+Bisection algorithm
+~~~~~~~~~~~~~~~~~~~
+
+As the Git commits form a directed acyclic graph (DAG), finding the
+best bisection commit to test at each step is not so simple. Anyway
+Linus found and implemented a "truly stupid" algorithm, later improved
+by Junio Hamano, that works quite well.
+
+So the algorithm used by "git bisect" to find the best bisection
+commit when there are no skipped commits is the following:
+
+1) keep only the commits that:
+
+a) are ancestor of the "bad" commit (including the "bad" commit itself),
+b) are not ancestor of a "good" commit (excluding the "good" commits).
+
+This means that we get rid of the uninteresting commits in the DAG.
+
+For example if we start with a graph like this:
+
+-------------
+G-Y-G-W-W-W-X-X-X-X
+ \ /
+ W-W-B
+ /
+Y---G-W---W
+ \ / \
+Y-Y X-X-X-X
+
+-> time goes this way ->
+-------------
+
+where B is the "bad" commit, "G" are "good" commits and W, X, and Y
+are other commits, we will get the following graph after this first
+step:
+
+-------------
+W-W-W
+ \
+ W-W-B
+ /
+W---W
+-------------
+
+So only the W and B commits will be kept. Because commits X and Y will
+have been removed by rules a) and b) respectively, and because commits
+G are removed by rule b) too.
+
+Note for git users, that it is equivalent as keeping only the commit
+given by:
+
+-------------
+git rev-list BAD --not GOOD1 GOOD2...
+-------------
+
+Also note that we don't require the commits that are kept to be
+descendants of a "good" commit. So in the following example, commits W
+and Z will be kept:
+
+-------------
+G-W-W-W-B
+ /
+Z-Z
+-------------
+
+2) starting from the "good" ends of the graph, associate to each
+commit the number of ancestors it has plus one
+
+For example with the following graph where H is the "bad" commit and A
+and D are some parents of some "good" commits:
+
+-------------
+A-B-C
+ \
+ F-G-H
+ /
+D---E
+-------------
+
+this will give:
+
+-------------
+1 2 3
+A-B-C
+ \6 7 8
+ F-G-H
+1 2/
+D---E
+-------------
+
+3) associate to each commit: min(X, N - X)
+
+where X is the value associated to the commit in step 2) and N is the
+total number of commits in the graph.
+
+In the above example we have N = 8, so this will give:
+
+-------------
+1 2 3
+A-B-C
+ \2 1 0
+ F-G-H
+1 2/
+D---E
+-------------
+
+4) the best bisection point is the commit with the highest associated
+number
+
+So in the above example the best bisection point is commit C.
+
+5) note that some shortcuts are implemented to speed up the algorithm
+
+As we know N from the beginning, we know that min(X, N - X) can't be
+greater than N/2. So during steps 2) and 3), if we would associate N/2
+to a commit, then we know this is the best bisection point. So in this
+case we can just stop processing any other commit and return the
+current commit.
+
+Bisection algorithm debugging
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+For any commit graph, you can see the number associated with each
+commit using "git rev-list --bisect-all".
+
+For example, for the above graph, a command like:
+
+-------------
+$ git rev-list --bisect-all BAD --not GOOD1 GOOD2
+-------------
+
+would output something like:
+
+-------------
+e15b73ad3db9b48d7d1ade32f8cd23a751fe0ace (dist=3)
+15722f2fa328eaba97022898a305ffc8172db6b1 (dist=2)
+78e86cf3e850bd755bb71831f42e200626fbd1e0 (dist=2)
+a1939d9a142de972094af4dde9a544e577ddef0e (dist=2)
+070eab2303024706f2924822bfec8b9847e4ac1b (dist=1)
+a3864d4f32a3bf5ed177ddef598490a08760b70d (dist=1)
+a41baa717dd74f1180abf55e9341bc7a0bb9d556 (dist=1)
+9e622a6dad403b71c40979743bb9d5be17b16bd6 (dist=0)
+-------------
+
+Bisection algorithm discussed
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+First let's define "best bisection point". We will say that a commit X
+is a best bisection point or a best bisection commit if knowing its
+state ("good" or "bad") gives as much information as possible whether
+the state of the commit happens to be "good" or "bad".
+
+This means that the best bisection commits are the commits where the
+following function is maximum:
+
+-------------
+f(X) = min(information_if_good(X), information_if_bad(X))
+-------------
+
+where information_if_good(X) is the information we get if X is good
+and information_if_bad(X) is the information we get if X is bad.
+
+Now we will suppose that there is only one "first bad commit". This
+means that all its descendants are "bad" and all the other commits are
+"good". And we will suppose that all commits have an equal probability
+of being good or bad, or of being the first bad commit, so knowing the
+state of c commits gives always the same amount of information
+wherever these c commits are on the graph and whatever c is. (So we
+suppose that these commits being for example on a branch or near a
+good or a bad commit does not give more or less information).
+
+Let's also suppose that we have a cleaned up graph like one after step
+1) in the bisection algorithm above. This means that we can measure
+the information we get in terms of number of commit we can remove from
+the graph..
+
+And let's take a commit X in the graph.
+
+If X is found to be "good", then we know that its ancestors are all
+"good", so we want to say that:
+
+-------------
+information_if_good(X) = number_of_ancestors(X) (TRUE)
+-------------
+
+And this is true because at step 1) b) we remove the ancestors of the
+"good" commits.
+
+If X is found to be "bad", then we know that its descendants are all
+"bad", so we want to say that:
+
+-------------
+information_if_bad(X) = number_of_descendants(X) (WRONG)
+-------------
+
+But this is wrong because at step 1) a) we keep only the ancestors of
+the bad commit. So we get more information when a commit is marked as
+"bad", because we also know that the ancestors of the previous "bad"
+commit that are not ancestors of the new "bad" commit are not the
+first bad commit. We don't know if they are good or bad, but we know
+that they are not the first bad commit because they are not ancestor
+of the new "bad" commit.
+
+So when a commit is marked as "bad" we know we can remove all the
+commits in the graph except those that are ancestors of the new "bad"
+commit. This means that:
+
+-------------
+information_if_bad(X) = N - number_of_ancestors(X) (TRUE)
+-------------
+
+where N is the number of commits in the (cleaned up) graph.
+
+So in the end this means that to find the best bisection commits we
+should maximize the function:
+
+-------------
+f(X) = min(number_of_ancestors(X), N - number_of_ancestors(X))
+-------------
+
+And this is nice because at step 2) we compute number_of_ancestors(X)
+and so at step 3) we compute f(X).
+
+Let's take the following graph as an example:
+
+-------------
+ G-H-I-J
+ / \
+A-B-C-D-E-F O
+ \ /
+ K-L-M-N
+-------------
+
+If we compute the following non optimal function on it:
+
+-------------
+g(X) = min(number_of_ancestors(X), number_of_descendants(X))
+-------------
+
+we get:
+
+-------------
+ 4 3 2 1
+ G-H-I-J
+1 2 3 4 5 6/ \0
+A-B-C-D-E-F O
+ \ /
+ K-L-M-N
+ 4 3 2 1
+-------------
+
+but with the algorithm used by git bisect we get:
+
+-------------
+ 7 7 6 5
+ G-H-I-J
+1 2 3 4 5 6/ \0
+A-B-C-D-E-F O
+ \ /
+ K-L-M-N
+ 7 7 6 5
+-------------
+
+So we chose G, H, K or L as the best bisection point, which is better
+than F. Because if for example L is bad, then we will know not only
+that L, M and N are bad but also that G, H, I and J are not the first
+bad commit (since we suppose that there is only one first bad commit
+and it must be an ancestor of L).
+
+So the current algorithm seems to be the best possible given what we
+initially supposed.
+
+Skip algorithm
+~~~~~~~~~~~~~~
+
+When some commits have been skipped (using "git bisect skip"), then
+the bisection algorithm is the same for step 1) to 3). But then we use
+roughly the following steps:
+
+6) sort the commit by decreasing associated value
+
+7) if the first commit has not been skipped, we can return it and stop
+here
+
+8) otherwise filter out all the skipped commits in the sorted list
+
+9) use a pseudo random number generator (PRNG) to generate a random
+number between 0 and 1
+
+10) multiply this random number with its square root to bias it toward
+0
+
+11) multiply the result by the number of commits in the filtered list
+to get an index into this list
+
+12) return the commit at the computed index
+
+Skip algorithm discussed
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+After step 7) (in the skip algorithm), we could check if the second
+commit has been skipped and return it if it is not the case. And in
+fact that was the algorithm we used from when "git bisect skip" was
+developed in git version 1.5.4 (released on February 1st 2008) until
+git version 1.6.4 (released July 29th 2009).
+
+But Ingo Molnar and H. Peter Anvin (another well known linux kernel
+developer) both complained that sometimes the best bisection points
+all happened to be in an area where all the commits are
+untestable. And in this case the user was asked to test many
+untestable commits, which could be very inefficient.
+
+Indeed untestable commits are often untestable because a breakage was
+introduced at one time, and that breakage was fixed only after many
+other commits were introduced.
+
+This breakage is of course most of the time unrelated to the breakage
+we are trying to locate in the commit graph. But it prevents us to
+know if the interesting "bad behavior" is present or not.
+
+So it is a fact that commits near an untestable commit have a high
+probability of being untestable themselves. And the best bisection
+commits are often found together too (due to the bisection algorithm).
+
+This is why it is a bad idea to just chose the next best unskipped
+bisection commit when the first one has been skipped.
+
+We found that most commits on the graph may give quite a lot of
+information when they are tested. And the commits that will not on
+average give a lot of information are the one near the good and bad
+commits.
+
+So using a PRNG with a bias to favor commits away from the good and
+bad commits looked like a good choice.
+
+One obvious improvement to this algorithm would be to look for a
+commit that has an associated value near the one of the best bisection
+commit, and that is on another branch, before using the PRNG. Because
+if such a commit exists, then it is not very likely to be untestable
+too, so it will probably give more information than a nearly randomly
+chosen one.
+</