summaryrefslogtreecommitdiff
path: root/sha1_file.c
diff options
context:
space:
mode:
authorLibravatar Jeff King <peff@peff.net>2013-07-11 08:16:00 -0400
committerLibravatar Junio C Hamano <gitster@pobox.com>2013-07-12 09:20:54 -0700
commit8b8dfd5132ce91f632b5303c39cda2dfe30790f1 (patch)
treee0270e3d3c98f33fe3eff438a666dd46c736f951 /sha1_file.c
parentpack-revindex: use unsigned to store number of objects (diff)
downloadtgif-8b8dfd5132ce91f632b5303c39cda2dfe30790f1.tar.xz
pack-revindex: radix-sort the revindex
The pack revindex stores the offsets of the objects in the pack in sorted order, allowing us to easily find the on-disk size of each object. To compute it, we populate an array with the offsets from the sha1-sorted idx file, and then use qsort to order it by offsets. That does O(n log n) offset comparisons, and profiling shows that we spend most of our time in cmp_offset. However, since we are sorting on a simple off_t, we can use numeric sorts that perform better. A radix sort can run in O(k*n), where k is the number of "digits" in our number. For a 64-bit off_t, using 16-bit "digits" gives us k=4. On the linux.git repo, with about 3M objects to sort, this yields a 400% speedup. Here are the best-of-five numbers for running echo HEAD | git cat-file --batch-check="%(objectsize:disk) on a fully packed repository, which is dominated by time spent building the pack revindex: before after real 0m0.834s 0m0.204s user 0m0.788s 0m0.164s sys 0m0.040s 0m0.036s This matches our algorithmic expectations. log(3M) is ~21.5, so a traditional sort is ~21.5n. Our radix sort runs in k*n, where k is the number of radix digits. In the worst case, this is k=4 for a 64-bit off_t, but we can quit early when the largest value to be sorted is smaller. For any repository under 4G, k=2. Our algorithm makes two passes over the list per radix digit, so we end up with 4n. That should yield ~5.3x speedup. We see 4x here; the difference is probably due to the extra bucket book-keeping the radix sort has to do. On a smaller repo, the difference is less impressive, as log(n) is smaller. For git.git, with 173K objects (but still k=2), we see a 2.7x improvement: before after real 0m0.046s 0m0.017s user 0m0.036s 0m0.012s sys 0m0.008s 0m0.000s On even tinier repos (e.g., a few hundred objects), the speedup goes away entirely, as the small advantage of the radix sort gets erased by the book-keeping costs (and at those sizes, the cost to generate the the rev-index gets lost in the noise anyway). Signed-off-by: Jeff King <peff@peff.net> Reviewed-by: Brandon Casey <drafnel@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
Diffstat (limited to 'sha1_file.c')
0 files changed, 0 insertions, 0 deletions