summaryrefslogtreecommitdiff
path: root/compat/nedmalloc
diff options
context:
space:
mode:
authorLibravatar Marius Storm-Olsen <marius@trolltech.com>2009-05-31 18:15:23 +0200
committerLibravatar Junio C Hamano <gitster@pobox.com>2009-06-01 00:27:39 -0700
commitf0ed8226c9c65f2a324610258418258229e77fbe (patch)
tree91064df5ceb0d429fc2a35bdbeccaf443ddd8133 /compat/nedmalloc
parentMinGW readdir reimplementation to support d_type (diff)
downloadtgif-f0ed8226c9c65f2a324610258418258229e77fbe.tar.xz
Add custom memory allocator to MinGW and MacOS builds
The standard allocator on Windows is pretty bad prior to Windows Vista, and nedmalloc is better than the modified dlmalloc provided with newer versions of the MinGW libc. NedMalloc stats in Git ---------------------- All results are the best result out of 3 runs. The benchmarks have been done on different hardware, so the repack times are not comparable. These benchmarks are all based on 'git repack -adf' on the Linux kernel. XP ----------------------------------------------- MinGW Threads Total Time Speed ----------------------------------------------- 3.4.2 (1T) 00:12:28.422 3.4.2 + nedmalloc (1T) 00:07:25.437 1.68x 3.4.5 (1T) 00:12:20.718 3.4.5 + nedmalloc (1T) 00:07:24.809 1.67x 4.3.3-tdm (1T) 00:12:01.843 4.3.3-tdm + nedmalloc (1T) 00:07:16.468 1.65x 4.3.3-tdm (2T) 00:07:35.062 4.3.3-tdm + nedmalloc (2T) 00:04:57.874 1.54x Vista ----------------------------------------------- MinGW Threads Total Time Speed ----------------------------------------------- 4.3.3-tdm (1T) 00:07:40.844 4.3.3-tdm + nedmalloc (1T) 00:07:17.548 1.05x 4.3.3-tdm (2T) 00:05:33.746 4.3.3-tdm + nedmalloc (2T) 00:05:27.334 1.02x Mac Mini ----------------------------------------------- GCC Threads Total Time Speed ----------------------------------------------- i686-darwin9-4.0.1 (2T) 00:09:57.346 i686-darwin9-4.0.1+ned (2T) 00:08:51.072 1.12x Signed-off-by: Marius Storm-Olsen <marius@trolltech.com> Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
Diffstat (limited to 'compat/nedmalloc')
-rw-r--r--compat/nedmalloc/License.txt23
-rw-r--r--compat/nedmalloc/Readme.txt136
-rw-r--r--compat/nedmalloc/malloc.c.h5750
-rw-r--r--compat/nedmalloc/nedmalloc.c966
-rw-r--r--compat/nedmalloc/nedmalloc.h180
5 files changed, 7055 insertions, 0 deletions
diff --git a/compat/nedmalloc/License.txt b/compat/nedmalloc/License.txt
new file mode 100644
index 0000000000..36b7cd93cd
--- /dev/null
+++ b/compat/nedmalloc/License.txt
@@ -0,0 +1,23 @@
+Boost Software License - Version 1.0 - August 17th, 2003
+
+Permission is hereby granted, free of charge, to any person or organization
+obtaining a copy of the software and accompanying documentation covered by
+this license (the "Software") to use, reproduce, display, distribute,
+execute, and transmit the Software, and to prepare derivative works of the
+Software, and to permit third-parties to whom the Software is furnished to
+do so, all subject to the following:
+
+The copyright notices in the Software and this entire statement, including
+the above license grant, this restriction and the following disclaimer,
+must be included in all copies of the Software, in whole or in part, and
+all derivative works of the Software, unless such copies or derivative
+works are solely in the form of machine-executable object code generated by
+a source language processor.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
+SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
+FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
+ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/compat/nedmalloc/Readme.txt b/compat/nedmalloc/Readme.txt
new file mode 100644
index 0000000000..876365646e
--- /dev/null
+++ b/compat/nedmalloc/Readme.txt
@@ -0,0 +1,136 @@
+nedalloc v1.05 15th June 2008:
+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+
+by Niall Douglas (http://www.nedprod.com/programs/portable/nedmalloc/)
+
+Enclosed is nedalloc, an alternative malloc implementation for multiple
+threads without lock contention based on dlmalloc v2.8.4. It is more
+or less a newer implementation of ptmalloc2, the standard allocator in
+Linux (which is based on dlmalloc v2.7.0) but also contains a per-thread
+cache for maximum CPU scalability.
+
+It is licensed under the Boost Software License which basically means
+you can do anything you like with it. This does not apply to the malloc.c.h
+file which remains copyright to others.
+
+It has been tested on win32 (x86), win64 (x64), Linux (x64), FreeBSD (x64)
+and Apple MacOS X (x86). It works very well on all of these and is very
+significantly faster than the system allocator on all of these platforms.
+
+By literally dropping in this allocator as a replacement for your system
+allocator, you can see real world improvements of up to three times in normal
+code!
+
+To use:
+-=-=-=-
+Drop in nedmalloc.h, nedmalloc.c and malloc.c.h into your project.
+Configure using the instructions in nedmalloc.h. Run and enjoy.
+
+To test, compile test.c. It will run a comparison between your system
+allocator and nedalloc and tell you how much faster nedalloc is. It also
+serves as an example of usage.
+
+Notes:
+-=-=-=
+If you want the very latest version of this allocator, get it from the
+TnFOX SVN repository at svn://svn.berlios.de/viewcvs/tnfox/trunk/src/nedmalloc
+
+Because of how nedalloc allocates an mspace per thread, it can cause
+severe bloating of memory usage under certain allocation patterns.
+You can substantially reduce this wastage by setting MAXTHREADSINPOOL
+or the threads parameter to nedcreatepool() to a fraction of the number of
+threads which would normally be in a pool at once. This will reduce
+bloating at the cost of an increase in lock contention. If allocated size
+is less than THREADCACHEMAX, locking is avoided 90-99% of the time and
+if most of your allocations are below this value, you can safely set
+MAXTHREADSINPOOL to one.
+
+You will suffer memory leakage unless you call neddisablethreadcache()
+per pool for every thread which exits. This is because nedalloc cannot
+portably know when a thread exits and thus when its thread cache can
+be returned for use by other code. Don't forget pool zero, the system pool.
+
+For C++ type allocation patterns (where the same sizes of memory are
+regularly allocated and deallocated as objects are created and destroyed),
+the threadcache always benefits performance. If however your allocation
+patterns are different, searching the threadcache may significantly slow
+down your code - as a rule of thumb, if cache utilisation is below 80%
+(see the source for neddisablethreadcache() for how to enable debug
+printing in release mode) then you should disable the thread cache for
+that thread. You can compile out the threadcache code by setting
+THREADCACHEMAX to zero.
+
+Speed comparisons:
+-=-=-=-=-=-=-=-=-=
+See Benchmarks.xls for details.
+
+The enclosed test.c can do two things: it can be a torture test or a speed
+test. The speed test is designed to be a representative synthetic
+memory allocator test. It works by randomly mixing allocations with frees
+with half of the allocation sizes being a two power multiple less than
+512 bytes (to mimic C++ stack instantiated objects) and the other half
+being a simple random value less than 16Kb.
+
+The real world code results are from Tn's TestIO benchmark. This is a
+heavily multithreaded and memory intensive benchmark with a lot of branching
+and other stuff modern processors don't like so much. As you'll note, the
+test doesn't show the benefits of the threadcache mostly due to the saturation
+of the memory bus being the limiting factor.
+
+ChangeLog:
+-=-=-=-=-=
+v1.05 15th June 2008:
+ * { 1042 } Added error check for TLSSET() and TLSFREE() macros. Thanks to
+Markus Elfring for reporting this.
+ * { 1043 } Fixed a segfault when freeing memory allocated using
+nedindependent_comalloc(). Thanks to Pavel Vozenilek for reporting this.
+
+v1.04 14th July 2007:
+ * Fixed a bug with the new optimised implementation that failed to lock
+on a realloc under certain conditions.
+ * Fixed lack of thread synchronisation in InitPool() causing pool corruption
+ * Fixed a memory leak of thread cache contents on disabling. Thanks to Earl
+Chew for reporting this.
+ * Added a sanity check for freed blocks being valid.
+ * Reworked test.c into being a torture test.
+ * Fixed GCC assembler optimisation misspecification
+
+v1.04alpha_svn915 7th October 2006:
+ * Fixed failure to unlock thread cache list if allocating a new list failed.
+Thanks to Dmitry Chichkov for reporting this. Futher thanks to Aleksey Sanin.
+ * Fixed realloc(0, <size>) segfaulting. Thanks to Dmitry Chichkov for
+reporting this.
+ * Made config defines #ifndef so they can be overriden by the build system.
+Thanks to Aleksey Sanin for suggesting this.
+ * Fixed deadlock in nedprealloc() due to unnecessary locking of preferred
+thread mspace when mspace_realloc() always uses the original block's mspace
+anyway. Thanks to Aleksey Sanin for reporting this.
+ * Made some speed improvements by hacking mspace_malloc() to no longer lock
+its mspace, thus allowing the recursive mutex implementation to be removed
+with an associated speed increase. Thanks to Aleksey Sanin for suggesting this.
+ * Fixed a bug where allocating mspaces overran its max limit. Thanks to
+Aleksey Sanin for reporting this.
+
+v1.03 10th July 2006:
+ * Fixed memory corruption bug in threadcache code which only appeared with >4
+threads and in heavy use of the threadcache.
+
+v1.02 15th May 2006:
+ * Integrated dlmalloc v2.8.4, fixing the win32 memory release problem and
+improving performance still further. Speed is now up to twice the speed of v1.01
+(average is 67% faster).
+ * Fixed win32 critical section implementation. Thanks to Pavel Kuznetsov
+for reporting this.
+ * Wasn't locking mspace if all mspaces were locked. Thanks to Pavel Kuznetsov
+for reporting this.
+ * Added Apple Mac OS X support.
+
+v1.01 24th February 2006:
+ * Fixed multiprocessor scaling problems by removing sources of cache sloshing
+ * Earl Chew <earl_chew <at> agilent <dot> com> sent patches for the following:
+ 1. size2binidx() wasn't working for default code path (non x86)
+ 2. Fixed failure to release mspace lock under certain circumstances which
+ caused a deadlock
+
+v1.00 1st January 2006:
+ * First release
diff --git a/compat/nedmalloc/malloc.c.h b/compat/nedmalloc/malloc.c.h
new file mode 100644
index 0000000000..bb0f482d9f
--- /dev/null
+++ b/compat/nedmalloc/malloc.c.h
@@ -0,0 +1,5750 @@
+/*
+ This is a version (aka dlmalloc) of malloc/free/realloc written by
+ Doug Lea and released to the public domain, as explained at
+ http://creativecommons.org/licenses/publicdomain. Send questions,
+ comments, complaints, performance data, etc to dl@cs.oswego.edu
+
+* Version pre-2.8.4 Mon Nov 27 11:22:37 2006 (dl at gee)
+
+ Note: There may be an updated version of this malloc obtainable at
+ ftp://gee.cs.oswego.edu/pub/misc/malloc.c
+ Check before installing!
+
+* Quickstart
+
+ This library is all in one file to simplify the most common usage:
+ ftp it, compile it (-O3), and link it into another program. All of
+ the compile-time options default to reasonable values for use on
+ most platforms. You might later want to step through various
+ compile-time and dynamic tuning options.
+
+ For convenience, an include file for code using this malloc is at:
+ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h
+ You don't really need this .h file unless you call functions not
+ defined in your system include files. The .h file contains only the
+ excerpts from this file needed for using this malloc on ANSI C/C++
+ systems, so long as you haven't changed compile-time options about
+ naming and tuning parameters. If you do, then you can create your
+ own malloc.h that does include all settings by cutting at the point
+ indicated below. Note that you may already by default be using a C
+ library containing a malloc that is based on some version of this
+ malloc (for example in linux). You might still want to use the one
+ in this file to customize settings or to avoid overheads associated
+ with library versions.
+
+* Vital statistics:
+
+ Supported pointer/size_t representation: 4 or 8 bytes
+ size_t MUST be an unsigned type of the same width as
+ pointers. (If you are using an ancient system that declares
+ size_t as a signed type, or need it to be a different width
+ than pointers, you can use a previous release of this malloc
+ (e.g. 2.7.2) supporting these.)
+
+ Alignment: 8 bytes (default)
+ This suffices for nearly all current machines and C compilers.
+ However, you can define MALLOC_ALIGNMENT to be wider than this
+ if necessary (up to 128bytes), at the expense of using more space.
+
+ Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
+ 8 or 16 bytes (if 8byte sizes)
+ Each malloced chunk has a hidden word of overhead holding size
+ and status information, and additional cross-check word
+ if FOOTERS is defined.
+
+ Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
+ 8-byte ptrs: 32 bytes (including overhead)
+
+ Even a request for zero bytes (i.e., malloc(0)) returns a
+ pointer to something of the minimum allocatable size.
+ The maximum overhead wastage (i.e., number of extra bytes
+ allocated than were requested in malloc) is less than or equal
+ to the minimum size, except for requests >= mmap_threshold that
+ are serviced via mmap(), where the worst case wastage is about
+ 32 bytes plus the remainder from a system page (the minimal
+ mmap unit); typically 4096 or 8192 bytes.
+
+ Security: static-safe; optionally more or less
+ The "security" of malloc refers to the ability of malicious
+ code to accentuate the effects of errors (for example, freeing
+ space that is not currently malloc'ed or overwriting past the
+ ends of chunks) in code that calls malloc. This malloc
+ guarantees not to modify any memory locations below the base of
+ heap, i.e., static variables, even in the presence of usage
+ errors. The routines additionally detect most improper frees
+ and reallocs. All this holds as long as the static bookkeeping
+ for malloc itself is not corrupted by some other means. This
+ is only one aspect of security -- these checks do not, and
+ cannot, detect all possible programming errors.
+
+ If FOOTERS is defined nonzero, then each allocated chunk
+ carries an additional check word to verify that it was malloced
+ from its space. These check words are the same within each
+ execution of a program using malloc, but differ across
+ executions, so externally crafted fake chunks cannot be
+ freed. This improves security by rejecting frees/reallocs that
+ could corrupt heap memory, in addition to the checks preventing
+ writes to statics that are always on. This may further improve
+ security at the expense of time and space overhead. (Note that
+ FOOTERS may also be worth using with MSPACES.)
+
+ By default detected errors cause the program to abort (calling
+ "abort()"). You can override this to instead proceed past
+ errors by defining PROCEED_ON_ERROR. In this case, a bad free
+ has no effect, and a malloc that encounters a bad address
+ caused by user overwrites will ignore the bad address by
+ dropping pointers and indices to all known memory. This may
+ be appropriate for programs that should continue if at all
+ possible in the face of programming errors, although they may
+ run out of memory because dropped memory is never reclaimed.
+
+ If you don't like either of these options, you can define
+ CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
+ else. And if if you are sure that your program using malloc has
+ no errors or vulnerabilities, you can define INSECURE to 1,
+ which might (or might not) provide a small performance improvement.
+
+ Thread-safety: NOT thread-safe unless USE_LOCKS defined
+ When USE_LOCKS is defined, each public call to malloc, free,
+ etc is surrounded with either a pthread mutex or a win32
+ spinlock (depending on WIN32). This is not especially fast, and
+ can be a major bottleneck. It is designed only to provide
+ minimal protection in concurrent environments, and to provide a
+ basis for extensions. If you are using malloc in a concurrent
+ program, consider instead using nedmalloc
+ (http://www.nedprod.com/programs/portable/nedmalloc/) or
+ ptmalloc (See http://www.malloc.de), which are derived
+ from versions of this malloc.
+
+ System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
+ This malloc can use unix sbrk or any emulation (invoked using
+ the CALL_MORECORE macro) and/or mmap/munmap or any emulation
+ (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
+ memory. On most unix systems, it tends to work best if both
+ MORECORE and MMAP are enabled. On Win32, it uses emulations
+ based on VirtualAlloc. It also uses common C library functions
+ like memset.
+
+ Compliance: I believe it is compliant with the Single Unix Specification
+ (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
+ others as well.
+
+* Overview of algorithms
+
+ This is not the fastest, most space-conserving, most portable, or
+ most tunable malloc ever written. However it is among the fastest
+ while also being among the most space-conserving, portable and
+ tunable. Consistent balance across these factors results in a good
+ general-purpose allocator for malloc-intensive programs.
+
+ In most ways, this malloc is a best-fit allocator. Generally, it
+ chooses the best-fitting existing chunk for a request, with ties
+ broken in approximately least-recently-used order. (This strategy
+ normally maintains low fragmentation.) However, for requests less
+ than 256bytes, it deviates from best-fit when there is not an
+ exactly fitting available chunk by preferring to use space adjacent
+ to that used for the previous small request, as well as by breaking
+ ties in approximately most-recently-used order. (These enhance
+ locality of series of small allocations.) And for very large requests
+ (>= 256Kb by default), it relies on system memory mapping
+ facilities, if supported. (This helps avoid carrying around and
+ possibly fragmenting memory used only for large chunks.)
+
+ All operations (except malloc_stats and mallinfo) have execution
+ times that are bounded by a constant factor of the number of bits in
+ a size_t, not counting any clearing in calloc or copying in realloc,
+ or actions surrounding MORECORE and MMAP that have times
+ proportional to the number of non-contiguous regions returned by
+ system allocation routines, which is often just 1. In real-time
+ applications, you can optionally suppress segment traversals using
+ NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
+ system allocators return non-contiguous spaces, at the typical
+ expense of carrying around more memory and increased fragmentation.
+
+ The implementation is not very modular and seriously overuses
+ macros. Perhaps someday all C compilers will do as good a job
+ inlining modular code as can now be done by brute-force expansion,
+ but now, enough of them seem not to.
+
+ Some compilers issue a lot of warnings about code that is
+ dead/unreachable only on some platforms, and also about intentional
+ uses of negation on unsigned types. All known cases of each can be
+ ignored.
+
+ For a longer but out of date high-level description, see
+ http://gee.cs.oswego.edu/dl/html/malloc.html
+
+* MSPACES
+ If MSPACES is defined, then in addition to malloc, free, etc.,
+ this file also defines mspace_malloc, mspace_free, etc. These
+ are versions of malloc routines that take an "mspace" argument
+ obtained using create_mspace, to control all internal bookkeeping.
+ If ONLY_MSPACES is defined, only these versions are compiled.
+ So if you would like to use this allocator for only some allocations,
+ and your system malloc for others, you can compile with
+ ONLY_MSPACES and then do something like...
+ static mspace mymspace = create_mspace(0,0); // for example
+ #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
+
+ (Note: If you only need one instance of an mspace, you can instead
+ use "USE_DL_PREFIX" to relabel the global malloc.)
+
+ You can similarly create thread-local allocators by storing
+ mspaces as thread-locals. For example:
+ static __thread mspace tlms = 0;
+ void* tlmalloc(size_t bytes) {
+ if (tlms == 0) tlms = create_mspace(0, 0);
+ return mspace_malloc(tlms, bytes);
+ }
+ void tlfree(void* mem) { mspace_free(tlms, mem); }
+
+ Unless FOOTERS is defined, each mspace is completely independent.
+ You cannot allocate from one and free to another (although
+ conformance is only weakly checked, so usage errors are not always
+ caught). If FOOTERS is defined, then each chunk carries around a tag
+ indicating its originating mspace, and frees are directed to their
+ originating spaces.
+
+ ------------------------- Compile-time options ---------------------------
+
+Be careful in setting #define values for numerical constants of type
+size_t. On some systems, literal values are not automatically extended
+to size_t precision unless they are explicitly casted. You can also
+use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
+
+WIN32 default: defined if _WIN32 defined
+ Defining WIN32 sets up defaults for MS environment and compilers.
+ Otherwise defaults are for unix. Beware that there seem to be some
+ cases where this malloc might not be a pure drop-in replacement for
+ Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
+ SetDIBits()) may be due to bugs in some video driver implementations
+ when pixel buffers are malloc()ed, and the region spans more than
+ one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
+ default granularity, pixel buffers may straddle virtual allocation
+ regions more often than when using the Microsoft allocator. You can
+ avoid this by using VirtualAlloc() and VirtualFree() for all pixel
+ buffers rather than using malloc(). If this is not possible,
+ recompile this malloc with a larger DEFAULT_GRANULARITY.
+
+MALLOC_ALIGNMENT default: (size_t)8
+ Controls the minimum alignment for malloc'ed chunks. It must be a
+ power of two and at least 8, even on machines for which smaller
+ alignments would suffice. It may be defined as larger than this
+ though. Note however that code and data structures are optimized for
+ the case of 8-byte alignment.
+
+MSPACES default: 0 (false)
+ If true, compile in support for independent allocation spaces.
+ This is only supported if HAVE_MMAP is true.
+
+ONLY_MSPACES default: 0 (false)
+ If true, only compile in mspace versions, not regular versions.
+
+USE_LOCKS default: 0 (false)
+ Causes each call to each public routine to be surrounded with
+ pthread or WIN32 mutex lock/unlock. (If set true, this can be
+ overridden on a per-mspace basis for mspace versions.) If set to a
+ non-zero value other than 1, locks are used, but their
+ implementation is left out, so lock functions must be supplied manually.
+
+USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
+ If true, uses custom spin locks for locking. This is currently
+ supported only for x86 platforms using gcc or recent MS compilers.
+ Otherwise, posix locks or win32 critical sections are used.
+
+FOOTERS default: 0
+ If true, provide extra checking and dispatching by placing
+ information in the footers of allocated chunks. This adds
+ space and time overhead.
+
+INSECURE default: 0
+ If true, omit checks for usage errors and heap space overwrites.
+
+USE_DL_PREFIX default: NOT defined
+ Causes compiler to prefix all public routines with the string 'dl'.
+ This can be useful when you only want to use this malloc in one part
+ of a program, using your regular system malloc elsewhere.
+
+ABORT default: defined as abort()
+ Defines how to abort on failed checks. On most systems, a failed
+ check cannot die with an "assert" or even print an informative
+ message, because the underlying print routines in turn call malloc,
+ which will fail again. Generally, the best policy is to simply call
+ abort(). It's not very useful to do more than this because many
+ errors due to overwriting will show up as address faults (null, odd
+ addresses etc) rather than malloc-triggered checks, so will also
+ abort. Also, most compilers know that abort() does not return, so
+ can better optimize code conditionally calling it.
+
+PROCEED_ON_ERROR default: defined as 0 (false)
+ Controls whether detected bad addresses cause them to bypassed
+ rather than aborting. If set, detected bad arguments to free and
+ realloc are ignored. And all bookkeeping information is zeroed out
+ upon a detected overwrite of freed heap space, thus losing the
+ ability to ever return it from malloc again, but enabling the
+ application to proceed. If PROCEED_ON_ERROR is defined, the
+ static variable malloc_corruption_error_count is compiled in
+ and can be examined to see if errors have occurred. This option
+ generates slower code than the default abort policy.
+
+DEBUG default: NOT defined
+ The DEBUG setting is mainly intended for people trying to modify
+ this code or diagnose problems when porting to new platforms.
+ However, it may also be able to better isolate user errors than just
+ using runtime checks. The assertions in the check routines spell
+ out in more detail the assumptions and invariants underlying the
+ algorithms. The checking is fairly extensive, and will slow down
+ execution noticeably. Calling malloc_stats or mallinfo with DEBUG
+ set will attempt to check every non-mmapped allocated and free chunk
+ in the course of computing the summaries.
+
+ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
+ Debugging assertion failures can be nearly impossible if your
+ version of the assert macro causes malloc to be called, which will
+ lead to a cascade of further failures, blowing the runtime stack.
+ ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
+ which will usually make debugging easier.
+
+MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
+ The action to take before "return 0" when malloc fails to be able to
+ return memory because there is none available.
+
+HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
+ True if this system supports sbrk or an emulation of it.
+
+MORECORE default: sbrk
+ The name of the sbrk-style system routine to call to obtain more
+ memory. See below for guidance on writing custom MORECORE
+ functions. The type of the argument to sbrk/MORECORE varies across
+ systems. It cannot be size_t, because it supports negative
+ arguments, so it is normally the signed type of the same width as
+ size_t (sometimes declared as "intptr_t"). It doesn't much matter
+ though. Internally, we only call it with arguments less than half
+ the max value of a size_t, which should work across all reasonable
+ possibilities, although sometimes generating compiler warnings.
+
+MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
+ If true, take advantage of fact that consecutive calls to MORECORE
+ with positive arguments always return contiguous increasing
+ addresses. This is true of unix sbrk. It does not hurt too much to
+ set it true anyway, since malloc copes with non-contiguities.
+ Setting it false when definitely non-contiguous saves time
+ and possibly wasted space it would take to discover this though.
+
+MORECORE_CANNOT_TRIM default: NOT defined
+ True if MORECORE cannot release space back to the system when given
+ negative arguments. This is generally necessary only if you are
+ using a hand-crafted MORECORE function that cannot handle negative
+ arguments.
+
+NO_SEGMENT_TRAVERSAL default: 0
+ If non-zero, suppresses traversals of memory segments
+ returned by either MORECORE or CALL_MMAP. This disables
+ merging of segments that are contiguous, and selectively
+ releasing them to the OS if unused, but bounds execution times.
+
+HAVE_MMAP default: 1 (true)
+ True if this system supports mmap or an emulation of it. If so, and
+ HAVE_MORECORE is not true, MMAP is used for all system
+ allocation. If set and HAVE_MORECORE is true as well, MMAP is
+ primarily used to directly allocate very large blocks. It is also
+ used as a backup strategy in cases where MORECORE fails to provide
+ space from system. Note: A single call to MUNMAP is assumed to be
+ able to unmap memory that may have be allocated using multiple calls
+ to MMAP, so long as they are adjacent.
+
+HAVE_MREMAP default: 1 on linux, else 0
+ If true realloc() uses mremap() to re-allocate large blocks and
+ extend or shrink allocation spaces.
+
+MMAP_CLEARS default: 1 except on WINCE.
+ True if mmap clears memory so calloc doesn't need to. This is true
+ for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
+
+USE_BUILTIN_FFS default: 0 (i.e., not used)
+ Causes malloc to use the builtin ffs() function to compute indices.
+ Some compilers may recognize and intrinsify ffs to be faster than the
+ supplied C version. Also, the case of x86 using gcc is special-cased
+ to an asm instruction, so is already as fast as it can be, and so
+ this setting has no effect. Similarly for Win32 under recent MS compilers.
+ (On most x86s, the asm version is only slightly faster than the C version.)
+
+malloc_getpagesize default: derive from system includes, or 4096.
+ The system page size. To the extent possible, this malloc manages
+ memory from the system in page-size units. This may be (and
+ usually is) a function rather than a constant. This is ignored
+ if WIN32, where page size is determined using getSystemInfo during
+ initialization.
+
+USE_DEV_RANDOM default: 0 (i.e., not used)
+ Causes malloc to use /dev/random to initialize secure magic seed for
+ stamping footers. Otherwise, the current time is used.
+
+NO_MALLINFO default: 0
+ If defined, don't compile "mallinfo". This can be a simple way
+ of dealing with mismatches between system declarations and
+ those in this file.
+
+MALLINFO_FIELD_TYPE default: size_t
+ The type of the fields in the mallinfo struct. This was originally
+ defined as "int" in SVID etc, but is more usefully defined as
+ size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
+
+REALLOC_ZERO_BYTES_FREES default: not defined
+ This should be set if a call to realloc with zero bytes should
+ be the same as a call to free. Some people think it should. Otherwise,
+ since this malloc returns a unique pointer for malloc(0), so does
+ realloc(p, 0).
+
+LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
+LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
+LACKS_STDLIB_H default: NOT defined unless on WIN32
+ Define these if your system does not have these header files.
+ You might need to manually insert some of the declarations they provide.
+
+DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
+ system_info.dwAllocationGranularity in WIN32,
+ otherwise 64K.
+ Also settable using mallopt(M_GRANULARITY, x)
+ The unit for allocating and deallocating memory from the system. On
+ most systems with contiguous MORECORE, there is no reason to
+ make this more than a page. However, systems with MMAP tend to
+ either require or encourage larger granularities. You can increase
+ this value to prevent system allocation functions to be called so
+ often, especially if they are slow. The value must be at least one
+ page and must be a power of two. Setting to 0 causes initialization
+ to either page size or win32 region size. (Note: In previous
+ versions of malloc, the equivalent of this option was called
+ "TOP_PAD")
+
+DEFAULT_TRIM_THRESHOLD default: 2MB
+ Also settable using mallopt(M_TRIM_THRESHOLD, x)
+ The maximum amount of unused top-most memory to keep before
+ releasing via malloc_trim in free(). Automatic trimming is mainly
+ useful in long-lived programs using contiguous MORECORE. Because
+ trimming via sbrk can be slow on some systems, and can sometimes be
+ wasteful (in cases where programs immediately afterward allocate
+ more large chunks) the value should be high enough so that your
+ overall system performance would improve by releasing this much
+ memory. As a rough guide, you might set to a value close to the
+ average size of a process (program) running on your system.
+ Releasing this much memory would allow such a process to run in
+ memory. Generally, it is worth tuning trim thresholds when a
+ program undergoes phases where several large chunks are allocated
+ and released in ways that can reuse each other's storage, perhaps
+ mixed with phases where there are no such chunks at all. The trim
+ value must be greater than page size to have any useful effect. To
+ disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
+ some people use of mallocing a huge space and then freeing it at
+ program startup, in an attempt to reserve system memory, doesn't
+ have the intended effect under automatic trimming, since that memory
+ will immediately be returned to the system.
+
+DEFAULT_MMAP_THRESHOLD default: 256K
+ Also settable using mallopt(M_MMAP_THRESHOLD, x)
+ The request size threshold for using MMAP to directly service a
+ request. Requests of at least this size that cannot be allocated
+ using already-existing space will be serviced via mmap. (If enough
+ normal freed space already exists it is used instead.) Using mmap
+ segregates relatively large chunks of memory so that they can be
+ individually obtained and released from the host system. A request
+ serviced through mmap is never reused by any other request (at least
+ not directly; the system may just so happen to remap successive
+ requests to the same locations). Segregating space in this way has
+ the benefits that: Mmapped space can always be individually released
+ back to the system, which helps keep the system level memory demands
+ of a long-lived program low. Also, mapped memory doesn't become
+ `locked' between other chunks, as can happen with normally allocated
+ chunks, which means that even trimming via malloc_trim would not
+ release them. However, it has the disadvantage that the space
+ cannot be reclaimed, consolidated, and then used to service later
+ requests, as happens with normal chunks. The advantages of mmap
+ nearly always outweigh disadvantages for "large" chunks, but the
+ value of "large" may vary across systems. The default is an
+ empirically derived value that works well in most systems. You can
+ disable mmap by setting to MAX_SIZE_T.
+
+MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
+ The number of consolidated frees between checks to release
+ unused segments when freeing. When using non-contiguous segments,
+ especially with multiple mspaces, checking only for topmost space
+ doesn't always suffice to trigger trimming. To compensate for this,
+ free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
+ current number of segments, if greater) try to release unused
+ segments to the OS when freeing chunks that result in
+ consolidation. The best value for this parameter is a compromise
+ between slowing down frees with relatively costly checks that
+ rarely trigger versus holding on to unused memory. To effectively
+ disable, set to MAX_SIZE_T. This may lead to a very slight speed
+ improvement at the expense of carrying around more memory.
+*/
+
+/* Version identifier to allow people to support multiple versions */
+#ifndef DLMALLOC_VERSION
+#define DLMALLOC_VERSION 20804
+#endif /* DLMALLOC_VERSION */
+
+#ifndef WIN32
+#ifdef _WIN32
+#define WIN32 1
+#endif /* _WIN32 */
+#ifdef _WIN32_WCE
+#define LACKS_FCNTL_H
+#define WIN32 1
+#endif /* _WIN32_WCE */
+#endif /* WIN32 */
+#ifdef WIN32
+#define WIN32_LEAN_AND_MEAN
+#define _WIN32_WINNT 0x403
+#include <windows.h>
+#define HAVE_MMAP 1
+#define HAVE_MORECORE 0
+#define LACKS_UNISTD_H
+#define LACKS_SYS_PARAM_H
+#define LACKS_SYS_MMAN_H
+#define LACKS_STRING_H
+#define LACKS_STRINGS_H
+#define LACKS_SYS_TYPES_H
+#define LACKS_ERRNO_H
+#ifndef MALLOC_FAILURE_ACTION
+#define MALLOC_FAILURE_ACTION
+#endif /* MALLOC_FAILURE_ACTION */
+#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
+#define MMAP_CLEARS 0
+#else
+#define MMAP_CLEARS 1
+#endif /* _WIN32_WCE */
+#endif /* WIN32 */
+
+#if defined(DARWIN) || defined(_DARWIN)
+/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
+#ifndef HAVE_MORECORE
+#define HAVE_MORECORE 0
+#define HAVE_MMAP 1
+/* OSX allocators provide 16 byte alignment */
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT ((size_t)16U)
+#endif
+#endif /* HAVE_MORECORE */
+#endif /* DARWIN */
+
+#ifndef LACKS_SYS_TYPES_H
+#include <sys/types.h> /* For size_t */
+#endif /* LACKS_SYS_TYPES_H */
+
+/* The maximum possible size_t value has all bits set */
+#define MAX_SIZE_T (~(size_t)0)
+
+#ifndef ONLY_MSPACES
+#define ONLY_MSPACES 0 /* define to a value */
+#else
+#define ONLY_MSPACES 1
+#endif /* ONLY_MSPACES */
+#ifndef MSPACES
+#if ONLY_MSPACES
+#define MSPACES 1
+#else /* ONLY_MSPACES */
+#define MSPACES 0
+#endif /* ONLY_MSPACES */
+#endif /* MSPACES */
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT ((size_t)8U)
+#endif /* MALLOC_ALIGNMENT */
+#ifndef FOOTERS
+#define FOOTERS 0
+#endif /* FOOTERS */
+#ifndef ABORT
+#define ABORT abort()
+#endif /* ABORT */
+#ifndef ABORT_ON_ASSERT_FAILURE
+#define ABORT_ON_ASSERT_FAILURE 1
+#endif /* ABORT_ON_ASSERT_FAILURE */
+#ifndef PROCEED_ON_ERROR
+#define PROCEED_ON_ERROR 0
+#endif /* PROCEED_ON_ERROR */
+#ifndef USE_LOCKS
+#define USE_LOCKS 0
+#endif /* USE_LOCKS */
+#ifndef USE_SPIN_LOCKS
+#if USE_LOCKS && (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310)
+#define USE_SPIN_LOCKS 1
+#else
+#define USE_SPIN_LOCKS 0
+#endif /* USE_LOCKS && ... */
+#endif /* USE_SPIN_LOCKS */
+#ifndef INSECURE
+#define INSECURE 0
+#endif /* INSECURE */
+#ifndef HAVE_MMAP
+#define HAVE_MMAP 1
+#endif /* HAVE_MMAP */
+#ifndef MMAP_CLEARS
+#define MMAP_CLEARS 1
+#endif /* MMAP_CLEARS */
+#ifndef HAVE_MREMAP
+#ifdef linux
+#define HAVE_MREMAP 1
+#else /* linux */
+#define HAVE_MREMAP 0
+#endif /* linux */
+#endif /* HAVE_MREMAP */
+#ifndef MALLOC_FAILURE_ACTION
+#define MALLOC_FAILURE_ACTION errno = ENOMEM;
+#endif /* MALLOC_FAILURE_ACTION */
+#ifndef HAVE_MORECORE
+#if ONLY_MSPACES
+#define HAVE_MORECORE 0
+#else /* ONLY_MSPACES */
+#define HAVE_MORECORE 1
+#endif /* ONLY_MSPACES */
+#endif