diff options
author | Junio C Hamano <junkio@cox.net> | 2007-02-03 22:14:40 -0800 |
---|---|---|
committer | Junio C Hamano <junkio@cox.net> | 2007-02-03 23:05:34 -0800 |
commit | d77ee72662a821d66ae218056f0103eb24d8d4b4 (patch) | |
tree | e22abdbd11735a0669362f934ae723d233c87e2b /Documentation | |
parent | scan reflogs independently from refs (diff) | |
parent | Default GIT_MERGE_VERBOSITY to 5 during tests. (diff) | |
download | tgif-d77ee72662a821d66ae218056f0103eb24d8d4b4.tar.xz |
Merge branch 'master' into np/dreflog
This is to resolve conflicts early in preparation for possible
inclusion of "reflog on detached HEAD" series by Nico, as having
it in 1.5.0 would really help us remove confusion between
detached and attached states.
Signed-off-by: Junio C Hamano <junkio@cox.net>
Diffstat (limited to 'Documentation')
34 files changed, 3832 insertions, 440 deletions
diff --git a/Documentation/Makefile b/Documentation/Makefile index 5314068d32..266af47176 100644 --- a/Documentation/Makefile +++ b/Documentation/Makefile @@ -17,7 +17,7 @@ ARTICLES += hooks ARTICLES += everyday ARTICLES += git-tools # with their own formatting rules. -SP_ARTICLES = glossary howto/revert-branch-rebase +SP_ARTICLES = glossary howto/revert-branch-rebase user-manual DOC_HTML += $(patsubst %,%.html,$(ARTICLES) $(SP_ARTICLES)) @@ -99,6 +99,12 @@ clean: %.xml : %.txt asciidoc -b docbook -d manpage -f asciidoc.conf $< +user-manual.xml: user-manual.txt user-manual.conf + asciidoc -b docbook -d book $< + +user-manual.html: user-manual.xml + xmlto html-nochunks $< + glossary.html : glossary.txt sort_glossary.pl cat $< | \ perl sort_glossary.pl | \ diff --git a/Documentation/cmd-list.perl b/Documentation/cmd-list.perl index 744db82413..6dba8d8fe0 100755 --- a/Documentation/cmd-list.perl +++ b/Documentation/cmd-list.perl @@ -97,7 +97,7 @@ git-fetch-pack synchingrepositories git-fmt-merge-msg purehelpers git-for-each-ref plumbinginterrogators git-format-patch mainporcelain -git-fsck-objects ancillaryinterrogators +git-fsck ancillaryinterrogators git-gc mainporcelain git-get-tar-commit-id ancillaryinterrogators git-grep mainporcelain @@ -144,7 +144,7 @@ git-receive-pack synchelpers git-reflog ancillarymanipulators git-relink ancillarymanipulators git-repack ancillarymanipulators -git-repo-config ancillarymanipulators +git-config ancillarymanipulators git-request-pull foreignscminterface git-rerere ancillaryinterrogators git-reset mainporcelain diff --git a/Documentation/config.txt b/Documentation/config.txt index 6ea7c76a6a..4e650af01a 100644 --- a/Documentation/config.txt +++ b/Documentation/config.txt @@ -39,7 +39,7 @@ in the section header, like in example below: Subsection names can contain any characters except newline (doublequote '`"`' and backslash have to be escaped as '`\"`' and '`\\`', -respecitvely) and are case sensitive. Section header cannot span multiple +respectively) and are case sensitive. Section header cannot span multiple lines. Variables may belong directly to a section or to a given subsection. You can have `[section]` if you have `[section "subsection"]`, but you don't need to. @@ -62,7 +62,7 @@ The values following the equals sign in variable assign are all either a string, an integer, or a boolean. Boolean values may be given as yes/no, 0/1 or true/false. Case is not significant in boolean values, when converting value to the canonical form using '--bool' type specifier; -`git-repo-config` will ensure that the output is "true" or "false". +`git-config` will ensure that the output is "true" or "false". String values may be entirely or partially enclosed in double quotes. You need to enclose variable value in double quotes if you want to @@ -250,10 +250,15 @@ color.branch.<slot>:: Use customized color for branch coloration. `<slot>` is one of `current` (the current branch), `local` (a local branch), `remote` (a tracking branch in refs/remotes/), `plain` (other - refs), or `reset` (the normal terminal color). The value for - these configuration variables can be one of: `normal`, `bold`, - `dim`, `ul`, `blink`, `reverse`, `reset`, `black`, `red`, - `green`, `yellow`, `blue`, `magenta`, `cyan`, or `white`. + refs). ++ +The value for these configuration variables is a list of colors (at most +two) and attributes (at most one), separated by spaces. The colors +accepted are `normal`, `black`, `red`, `green`, `yellow`, `blue`, +`magenta`, `cyan` and `white`; the attributes are `bold`, `dim`, `ul`, +`blink` and `reverse`. The first color given is the foreground; the +second is the background. The position of the attribute, if any, +doesn't matter. color.diff:: When true (or `always`), always use colors in patch. @@ -261,12 +266,13 @@ color.diff:: colors only when the output is to the terminal. color.diff.<slot>:: - Use customized color for diff colorization. `<slot>` - specifies which part of the patch to use the specified - color, and is one of `plain` (context text), `meta` - (metainformation), `frag` (hunk header), `old` (removed - lines), or `new` (added lines). The values of these - variables may be specified as in color.branch.<slot>. + Use customized color for diff colorization. `<slot>` specifies + which part of the patch to use the specified color, and is one + of `plain` (context text), `meta` (metainformation), `frag` + (hunk header), `old` (removed lines), `new` (added lines), + `commit` (commit headers), or `whitespace` (highlighting dubious + whitespace). The values of these variables may be specified as + in color.branch.<slot>. color.pager:: A boolean to enable/disable colored output when the pager is in diff --git a/Documentation/core-intro.txt b/Documentation/core-intro.txt index 0458dc3d02..abafefc71c 100644 --- a/Documentation/core-intro.txt +++ b/Documentation/core-intro.txt @@ -82,7 +82,7 @@ size> + <byte\0> + <binary object data>. The structured objects can further have their structure and connectivity to other objects verified. This is generally done with -the `git-fsck-objects` program, which generates a full dependency graph +the `git-fsck` program, which generates a full dependency graph of all objects, and verifies their internal consistency (in addition to just verifying their superficial consistency through the hash). diff --git a/Documentation/core-tutorial.txt b/Documentation/core-tutorial.txt index 7317489cfc..9c28bea62e 100644 --- a/Documentation/core-tutorial.txt +++ b/Documentation/core-tutorial.txt @@ -624,7 +624,7 @@ name for the state at that point. Copying repositories -------------------- -git repositories are normally totally self-sufficient and relocatable +git repositories are normally totally self-sufficient and relocatable. Unlike CVS, for example, there is no separate notion of "repository" and "working tree". A git repository normally *is* the working tree, with the local git information hidden in the `.git` @@ -1118,7 +1118,7 @@ You could do without using any branches at all, by keeping as many local repositories as you would like to have branches, and merging between them with `git pull`, just like you merge between branches. The advantage of this approach is -that it lets you keep set of files for each `branch` checked +that it lets you keep a set of files for each `branch` checked out and you may find it easier to switch back and forth if you juggle multiple lines of development simultaneously. Of course, you will pay the price of more disk usage to hold @@ -1130,7 +1130,7 @@ the remote repository URL in the local repository's config file like this: ------------------------------------------------ -$ git repo-config remote.linus.url http://www.kernel.org/pub/scm/git/git.git/ +$ git config remote.linus.url http://www.kernel.org/pub/scm/git/git.git/ ------------------------------------------------ and use the "linus" keyword with `git pull` instead of the full URL. @@ -1300,7 +1300,7 @@ differences since stage 2 (i.e. your version). Publishing your work -------------------- -So we can use somebody else's work from a remote repository; but +So, we can use somebody else's work from a remote repository, but how can *you* prepare a repository to let other people pull from it? @@ -1469,8 +1469,8 @@ Working with Others Although git is a truly distributed system, it is often convenient to organize your project with an informal hierarchy of developers. Linux kernel development is run this way. There -is a nice illustration (page 17, "Merges to Mainline") in Randy -Dunlap's presentation (`http://tinyurl.com/a2jdg`). +is a nice illustration (page 17, "Merges to Mainline") in +link:http://tinyurl.com/a2jdg[Randy Dunlap's presentation]. It should be stressed that this hierarchy is purely *informal*. There is nothing fundamental in git that enforces the "chain of diff --git a/Documentation/cvs-migration.txt b/Documentation/cvs-migration.txt index 775bf4266a..764cc560b4 100644 --- a/Documentation/cvs-migration.txt +++ b/Documentation/cvs-migration.txt @@ -36,7 +36,7 @@ them first before running git pull. ================================ The `pull` command knows where to get updates from because of certain configuration variables that were set by the first `git clone` -command; see `git repo-config -l` and the gitlink:git-repo-config[1] man +command; see `git config -l` and the gitlink:git-config[1] man page for details. ================================ diff --git a/Documentation/diff-format.txt b/Documentation/diff-format.txt index 883c1bb0a6..378e72f38f 100644 --- a/Documentation/diff-format.txt +++ b/Documentation/diff-format.txt @@ -159,7 +159,7 @@ or like this (when '--cc' option is used): deleted file mode <mode>,<mode> + The `mode <mode>,<mode>..<mode>` line appears only if at least one of -the <mode> is diferent from the rest. Extended headers with +the <mode> is different from the rest. Extended headers with information about detected contents movement (renames and copying detection) are designed to work with diff of two <tree-ish> and are not used by combined diff format. diff --git a/Documentation/docbook-xsl.css b/Documentation/docbook-xsl.css new file mode 100644 index 0000000000..8821e305dd --- /dev/null +++ b/Documentation/docbook-xsl.css @@ -0,0 +1,286 @@ +/*
+ CSS stylesheet for XHTML produced by DocBook XSL stylesheets.
+ Tested with XSL stylesheets 1.61.2, 1.67.2
+*/
+
+span.strong {
+ font-weight: bold;
+}
+
+body blockquote {
+ margin-top: .75em;
+ line-height: 1.5;
+ margin-bottom: .75em;
+}
+
+html body {
+ margin: 1em 5% 1em 5%;
+ line-height: 1.2;
+}
+
+body div {
+ margin: 0;
+}
+
+h1, h2, h3, h4, h5, h6,
+div.toc p b,
+div.list-of-figures p b,
+div.list-of-tables p b,
+div.abstract p.title
+{
+ color: #527bbd;
+ font-family: tahoma, verdana, sans-serif;
+}
+
+div.toc p:first-child,
+div.list-of-figures p:first-child,
+div.list-of-tables p:first-child,
+div.example p.title
+{
+ margin-bottom: 0.2em;
+}
+
+body h1 {
+ margin: .0em 0 0 -4%;
+ line-height: 1.3;
+ border-bottom: 2px solid silver;
+}
+
+body h2 {
+ margin: 0.5em 0 0 -4%;
+ line-height: 1.3;
+ border-bottom: 2px solid silver;
+}
+
+body h3 {
+ margin: .8em 0 0 -3%;
+ line-height: 1.3;
+}
+
+body h4 {
+ margin: .8em 0 0 -3%;
+ line-height: 1.3;
+}
+
+body h5 {
+ margin: .8em 0 0 -2%;
+ line-height: 1.3;
+}
+
+body h6 {
+ margin: .8em 0 0 -1%;
+ line-height: 1.3;
+}
+
+body hr {
+ border: none; /* Broken on IE6 */
+}
+div.footnotes hr {
+ border: 1px solid silver;
+}
+
+div.navheader th, div.navheader td, div.navfooter td {
+ font-family: sans-serif;
+ font-size: 0.9em;
+ font-weight: bold;
+ color: #527bbd;
+}
+div.navheader img, div.navfooter img {
+ border-style: none;
+}
+div.navheader a, div.navfooter a {
+ font-weight: normal;
+}
+div.navfooter hr {
+ border: 1px solid silver;
+}
+
+body td {
+ line-height: 1.2
+}
+
+body th {
+ line-height: 1.2;
+}
+
+ol {
+ line-height: 1.2;
+}
+
+ul, body dir, body menu {
+ line-height: 1.2;
+}
+
+html {
+ margin: 0;
+ padding: 0;
+}
+
+body h1, body h2, body h3, body h4, body h5, body h6 {
+ margin-left: 0
+}
+
+body pre {
+ margin: 0.5em 10% 0.5em 1em;
+ line-height: 1.0;
+ color: navy;
+}
+
+tt.literal, code.literal {
+ color: navy;
+}
+
+div.literallayout p {
+ padding: 0em;
+ margin: 0em;
+}
+
+div.literallayout {
+ font-family: monospace;
+# margin: 0.5em 10% 0.5em 1em;
+ margin: 0em;
+ color: navy;
+ border: 1px solid silver;
+ background: #f4f4f4;
+ padding: 0.5em;
+}
+
+.programlisting, .screen {
+ border: 1px solid silver;
+ background: #f4f4f4;
+ margin: 0.5em 10% 0.5em 0;
+ padding: 0.5em 1em;
+}
+
+div.sidebar {
+ background: #ffffee;
+ margin: 1.0em 10% 0.5em 0;
+ padding: 0.5em 1em;
+ border: 1px solid silver;
+}
+div.sidebar * { padding: 0; }
+div.sidebar div { margin: 0; }
+div.sidebar p.title {
+ font-family: sans-serif;
+ margin-top: 0.5em;
+ margin-bottom: 0.2em;
+}
+
+div.bibliomixed {
+ margin: 0.5em 5% 0.5em 1em;
+}
+
+div.glossary dt {
+ font-weight: bold;
+}
+div.glossary dd p {
+ margin-top: 0.2em;
+}
+
+dl {
+ margin: .8em 0;
+ line-height: 1.2;
+}
+
+dt {
+ margin-top: 0.5em;
+}
+
+dt span.term {
+ font-style: italic;
+}
+
+div.variablelist dd p {
+ margin-top: 0;
+}
+
+div.itemizedlist li, div.orderedlist li {
+ margin-left: -0.8em;
+ margin-top: 0.5em;
+}
+
+ul, ol {
+ list-style-position: outside;
+}
+
+div.sidebar ul, div.sidebar ol {
+ margin-left: 2.8em;
+}
+
+div.itemizedlist p.title,
+div.orderedlist p.title,
+div.variablelist p.title
+{
+ margin-bottom: -0.8em;
+}
+
+div.revhistory table {
+ border-collapse: collapse;
+ border: none;
+}
+div.revhistory th {
+ border: none;
+ color: #527bbd;
+ font-family: tahoma, verdana, sans-serif;
+}
+div.revhistory td {
+ border: 1px solid silver;
+}
+
+/* Keep TOC and index lines close together. */
+div.toc dl, div.toc dt,
+div.list-of-figures dl, div.list-of-figures dt,
+div.list-of-tables dl, div.list-of-tables dt,
+div.indexdiv dl, div.indexdiv dt
+{
+ line-height: normal;
+ margin-top: 0;
+ margin-bottom: 0;
+}
+
+/*
+ Table styling does not work because of overriding attributes in
+ generated HTML.
+*/
+div.table table,
+div.informaltable table
+{
+ margin-left: 0;
+ margin-right: 5%;
+ margin-bottom: 0.8em;
+}
+div.informaltable table
+{
+ margin-top: 0.4em
+}
+div.table thead,
+div.table tfoot,
+div.table tbody,
+div.informaltable thead,
+div.informaltable tfoot,
+div.informaltable tbody
+{
+ /* No effect in IE6. */
+ border-top: 2px solid #527bbd;
+ border-bottom: 2px solid #527bbd;
+}
+div.table thead, div.table tfoot,
+div.informaltable thead, div.informaltable tfoot
+{
+ font-weight: bold;
+}
+
+div.mediaobject img {
+ border: 1px solid silver;
+ margin-bottom: 0.8em;
+}
+div.figure p.title,
+div.table p.title
+{
+ margin-top: 1em;
+ margin-bottom: 0.4em;
+}
+
+@media print {
+ div.navheader, div.navfooter { display: none; }
+}
diff --git a/Documentation/everyday.txt b/Documentation/everyday.txt index ca36a76da6..08c61b1f1a 100644 --- a/Documentation/everyday.txt +++ b/Documentation/everyday.txt @@ -28,7 +28,7 @@ Everybody uses these commands to maintain git repositories. * gitlink:git-init[1] or gitlink:git-clone[1] to create a new repository. - * gitlink:git-fsck-objects[1] to check the repository for errors. + * gitlink:git-fsck[1] to check the repository for errors. * gitlink:git-prune[1] to remove unused objects in the repository. @@ -43,7 +43,7 @@ Examples Check health and remove cruft.:: + ------------ -$ git fsck-objects <1> +$ git fsck <1> $ git count-objects <2> $ git repack <3> $ git gc <4> @@ -212,12 +212,12 @@ Push into another repository.:: ------------ satellite$ git clone mothership:frotz frotz <1> satellite$ cd frotz -satellite$ git repo-config --get-regexp '^(remote|branch)\.' <2> +satellite$ git config --get-regexp '^(remote|branch)\.' <2> remote.origin.url mothership:frotz remote.origin.fetch refs/heads/*:refs/remotes/origin/* branch.master.remote origin branch.master.merge refs/heads/master -satellite$ git repo-config remote.origin.push \ +satellite$ git config remote.origin.push \ master:refs/remotes/satellite/master <3> satellite$ edit/compile/test/commit satellite$ git push origin <4> diff --git a/Documentation/git-blame.txt b/Documentation/git-blame.txt index 5dd8e36bbd..0ee887d73c 100644 --- a/Documentation/git-blame.txt +++ b/Documentation/git-blame.txt @@ -8,7 +8,7 @@ git-blame - Show what revision and author last modified each line of a file SYNOPSIS -------- [verse] -'git-blame' [-c] [-l] [-t] [-f] [-n] [-p] [-L n,m] [-S <revs-file>] +'git-blame' [-c] [-l] [-t] [-f] [-n] [-p] [--incremental] [-L n,m] [-S <revs-file>] [-M] [-C] [-C] [--since=<date>] [<rev>] [--] <file> DESCRIPTION @@ -63,6 +63,10 @@ OPTIONS -p, --porcelain:: Show in a format designed for machine consumption. +--incremental:: + Show the result incrementally in a format designed for + machine consumption. + -M:: Detect moving lines in the file as well. When a commit moves a block of lines in a file (e.g. the original file @@ -158,6 +162,47 @@ parents, using `commit{caret}!` notation: git blame -C -C -f $commit^! -- foo +INCREMENTAL OUTPUT +------------------ + +When called with `--incremental` option, the command outputs the +result as it is built. The output generally will talk about +lines touched by more recent commits first (i.e. the lines will +be annotated out of order) and is meant to be used by +interactive viewers. + +The output format is similar to the Porcelain format, but it +does not contain the actual lines from the file that is being +annotated. + +. Each blame entry always starts with a line of: + + <40-byte hex sha1> <sourceline> <resultline> <num_lines> ++ +Line numbers count from 1. + +. The first time that commit shows up in the stream, it has various + other information about it printed out with a one-word tag at the + beginning of each line about that "extended commit info" (author, + email, committer, dates, summary etc). + +. Unlike Porcelain format, the filename information is always + given and terminates the entry: + + "filename" <whitespace-quoted-filename-goes-here> ++ +and thus it's really quite easy to parse for some line- and word-oriented +parser (which should be quite natural for most scripting languages). ++ +[NOTE] +For people who do parsing: to make it more robust, just ignore any +lines in between the first and last one ("<sha1>" and "filename" lines) +where you don't recognize the tag-words (or care about that particular +one) at the beginning of the "extended information" lines. That way, if +there is ever added information (like the commit encoding or extended +commit commentary), a blame viewer won't ever care. + + SEE ALSO -------- gitlink:git-annotate[1] diff --git a/Documentation/git-cat-file.txt b/Documentation/git-cat-file.txt index 7e90ce91bc..075c0d05ef 100644 --- a/Documentation/git-cat-file.txt +++ b/Documentation/git-cat-file.txt @@ -19,7 +19,9 @@ or '-s' is used to find the object size. OPTIONS ------- <object>:: - The sha1 identifier of the object. + The name of the object to show. + For a more complete list of ways to spell object names, see + "SPECIFYING REVISIONS" section in gitlink:git-rev-parse[1]. -t:: Instead of the content, show the object type identified by diff --git a/Documentation/git-checkout.txt b/Documentation/git-checkout.txt index c44a4a8004..55c9289438 100644 --- a/Documentation/git-checkout.txt +++ b/Documentation/git-checkout.txt @@ -8,8 +8,8 @@ git-checkout - Checkout and switch to a branch SYNOPSIS -------- [verse] -'git-checkout' [-f] [-b <new_branch> [-l]] [-m] [<branch>] -'git-checkout' [<branch>] <paths>... +'git-checkout' [-q] [-f] [-b <new_branch> [-l]] [-m] [<branch>] +'git-checkout' [<tree-ish>] <paths>... DESCRIPTION ----------- @@ -22,15 +22,20 @@ be created. When <paths> are given, this command does *not* switch branches. It updates the named paths in the working tree from -the index file (i.e. it runs `git-checkout-index -f -u`). In +the index file (i.e. it runs `git-checkout-index -f -u`), or a +named commit. In this case, `-f` and `-b` options are meaningless and giving -either of them results in an error. <branch> argument can be -used to specify a specific tree-ish to update the index for the -given paths before updating the working tree. +either of them results in an error. <tree-ish> argument can be +used to specify a specific tree-ish (i.e. commit, tag or tree) +to update the index for the given paths before updating the +working tree. OPTIONS ------- +-q:: + Quiet, supress feedback messages. + -f:: Force a re-read of everything. diff --git a/Documentation/git-config.txt b/Documentation/git-config.txt new file mode 100644 index 0000000000..6624484fe1 --- /dev/null +++ b/Documentation/git-config.txt @@ -0,0 +1,227 @@ +git-config(1) +============= + +NAME +---- +git-config - Get and set repository or global options + + +SYNOPSIS +-------- +[verse] +'git-config' [--global] [type] name [value [value_regex]] +'git-config' [--global] [type] --add name value +'git-config' [--global] [type] --replace-all name [value [value_regex]] +'git-config' [--global] [type] --get name [value_regex] +'git-config' [--global] [type] --get-all name [value_regex] +'git-config' [--global] [type] --unset name [value_regex] +'git-config' [--global] [type] --unset-all name [value_regex] +'git-config' [--global] -l | --list + +DESCRIPTION +----------- +You can query/set/replace/unset options with this command. The name is +actually the section and the key separated by a dot, and the value will be +escaped. + +Multiple lines can be added to an option by using the '--add' option. +If you want to update or unset an option which can occur on multiple +lines, a POSIX regexp `value_regex` needs to be given. Only the +existing values that match the regexp are updated or unset. If +you want to handle the lines that do *not* match the regex, just +prepend a single exclamation mark in front (see EXAMPLES). + +The type specifier can be either '--int' or '--bool', which will make +'git-config' ensure that the variable(s) are of the given type and +convert the value to the canonical form (simple decimal number for int, +a "true" or "false" string for bool). If no type specifier is passed, +no checks or transformations are performed on the value. + +This command will fail if: + +. The .git/config file is invalid, +. Can not write to .git/config, +. no section was provided, +. the section or key is invalid, +. you try to unset an option which does not exist, +. you try to unset/set an option for which multiple lines match, or +. you use --global option without $HOME being properly set. + + +OPTIONS +------- + +--replace-all:: + Default behavior is to replace at most one line. This replaces + all lines matching the key (and optionally the value_regex). + +--add:: + Adds a new line to the option without altering any existing + values. This is the same as providing '^$' as the value_regex. + +--get:: + Get the value for a given key (optionally filtered by a regex + matching the value). Returns error code 1 if the key was not + found and error code 2 if multiple key values were found. + +--get-all:: + Like get, but does not fail if the number of values for the key + is not exactly one. + +--get-regexp:: + Like --get-all, but interprets the name as a regular expression. + +--global:: + Use global ~/.gitconfig file rather than the repository .git/config. + +--unset:: + Remove the line matching the key from config file. + +--unset-all:: + Remove all matching lines from config file. + +-l, --list:: + List all variables set in config file. + +--bool:: + git-config will ensure that the output is "true" or "false" + +--int:: + git-config will ensure that the output is a simple + decimal number. An optional value suffix of 'k', 'm', or 'g' + in the config file will cause the value to be multiplied + by 1024, 1048576, or 1073741824 prior to output. + + +ENVIRONMENT +----------- + +GIT_CONFIG:: + Take the configuration from the given file instead of .git/config. + Using the "--global" option forces this to ~/.gitconfig. + +GIT_CONFIG_LOCAL:: + Currently the same as $GIT_CONFIG; when Git will support global + configuration files, this will cause it to take the configuration + from the global configuration file in addition to the given file. + + +EXAMPLE +------- + +Given a .git/config like this: + + # + # This is the config file, and + # a '#' or ';' character indicates + # a comment + # + + ; core variables + [core] + ; Don't trust file modes + filemode = false + + ; Our diff algorithm + [diff] + external = "/usr/local/bin/gnu-diff -u" + renames = true + + ; Proxy settings + [core] + gitproxy="ssh" for "ssh://kernel.org/" + gitproxy="proxy-command" for kernel.org + gitproxy="myprotocol-command" for "my://" + gitproxy=default-proxy ; for all the rest + +you can set the filemode to true with + +------------ +% git config core.filemode true +------------ + +The hypothetical proxy command entries actually have a postfix to discern +what URL they apply to. Here is how to change the entry for kernel.org +to "ssh". + +------------ +% git config core.gitproxy '"ssh" for kernel.org' 'for kernel.org$' +------------ + +This makes sure that only the key/value pair for kernel.org is replaced. + +To delete the entry for renames, do + +------------ +% git config --unset diff.renames +------------ + +If you want to delete an entry for a multivar (like core.gitproxy above), +you have to provide a regex matching the value of exactly one line. + +To query the value for a given key, do + +------------ +% git config --get core.filemode +------------ + +or + +------------ +% git config core.filemode +------------ + +or, to query a multivar: + +------------ +% git config --get core.gitproxy "for kernel.org$" +------------ + +If you want to know all the values for a multivar, do: + +------------ +% git config --get-all core.gitproxy +------------ + +If you like to live dangerous, you can replace *all* core.gitproxy by a +new one with + +------------ +% git config --replace-all core.gitproxy ssh +------------ + +However, if you really only want to replace the line for the default proxy, +i.e. the one without a "for ..." postfix, do something like this: + +------------ +% git config core.gitproxy ssh '! for ' +------------ + +To actually match only values with an exclamation mark, you have to + +------------ +% git config section.key value '[!]' +------------ + +To add a new proxy, without altering any of the existing ones, use + +------------ +% git config core.gitproxy '"proxy" for example.com' +------------ + + +include::config.txt[] + + +Author +------ +Written by Johannes Schindelin <Johannes.Schindelin@gmx.de> + +Documentation +-------------- +Documentation by Johannes Schindelin, Petr Baudis and the git-list <git@vger.kernel.org>. + +GIT +--- +Part of the gitlink:git[7] suite + diff --git a/Documentation/git-for-each-ref.txt b/Documentation/git-for-each-ref.txt index 06e7ab1ec1..da52eba7b3 100644 --- a/Documentation/git-for-each-ref.txt +++ b/Documentation/git-for-each-ref.txt @@ -7,7 +7,7 @@ git-for-each-ref - Output information on each ref SYNOPSIS -------- -'git-for-each-ref' [--count=<count>]\* [--shell|--perl|--python] [--sort=<key>]\* [--format=<format>] [<pattern>] +'git-for-each-ref' [--count=<count>]\* [--shell|--perl|--python|--tcl] [--sort=<key>]\* [--format=<format>] [<pattern>] DESCRIPTION ----------- @@ -49,7 +49,7 @@ OPTIONS using fnmatch(3). Refs that do not match the pattern are not shown. ---shell, --perl, --python:: +--shell, --perl, --python, --tcl:: If given, strings that substitute `%(fieldname)` placeholders are quoted as string literals suitable for the specified host language. This is meant to produce diff --git a/Documentation/git-fsck-objects.txt b/Documentation/git-fsck-objects.txt index d0af99d351..f21061ecfe 100644 --- a/Documentation/git-fsck-objects.txt +++ b/Documentation/git-fsck-objects.txt @@ -8,132 +8,10 @@ git-fsck-objects - Verifies the connectivity and validity of the objects in the SYNOPSIS -------- -[verse] -'git-fsck-objects' [--tags] [--root] [--unreachable] [--cache] - [--full] [--strict] [<object>*] +'git-fsck-objects' ... DESCRIPTION ----------- -Verifies the connectivity and validity of the objects in the database. - -OPTIONS -------- -<object>:: - An object to treat as the head of an unreachability trace. -+ -If no objects are given, git-fsck-objects defaults to using the -index file and all SHA1 references in .git/refs/* as heads. - ---unreachable:: - Print out objects that exist but that aren't readable from any - of the reference nodes. - ---root:: - Report root nodes. - ---tags:: - Report tags. - ---cache:: - Consider any object recorded in the index also as a head node for - an unreachability trace. - ---full:: - Check not just objects in GIT_OBJECT_DIRECTORY - ($GIT_DIR/objects), but also the ones found in alternate - object pools listed in GIT_ALTERNATE_OBJECT_DIRECTORIES - or $GIT_DIR/objects/info/alternates, - and in packed git archives found in $GIT_DIR/objects/pack - and corresponding pack subdirectories in alternate - object pools. - ---strict:: - Enable more strict checking, namely to catch a file mode - recorded with g+w bit set, which was created by older - versions of git. Existing repositories, including the - Linux kernel, git itself, and sparse repository have old - objects that triggers this check, but it is recommended - to check new projects with this flag. - -It tests SHA1 and general object sanity, and it does full tracking of -the resulting reachability and everything else. It prints out any -corruption it finds (missing or bad objects), and if you use the -'--unreachable' flag it will also print out objects that exist but -that aren't readable from any of the specified head nodes. - -So for example - - git-fsck-objects --unreachable HEAD $(cat .git/refs/heads/*) - -will do quite a _lot_ of verification on the tree. There are a few -extra validity tests to be added (make sure that tree objects are -sorted properly etc), but on the whole if "git-fsck-objects" is happy, you -do have a valid tree. - -Any corrupt objects you will have to find in backups or other archives -(i.e., you can just remove them and do an "rsync" with some other site in -the hopes that somebody else has the object you have corrupted). - -Of course, "valid tree" doesn't mean that it wasn't generated by some -evil person, and the end result might be crap. git is a revision -tracking system, not a quality assurance system ;) - -Extracted Diagnostics ---------------------- - -expect dangling commits - potential heads - due to lack of head information:: - You haven't specified any nodes as heads so it won't be - possible to differentiate between un-parented commits and - root nodes. - -missing sha1 directory '<dir>':: - The directory holding the sha1 objects is missing. - -unreachable <type> <object>:: - The <type> object <object>, isn't actually referred to directly - or indirectly in any of the trees or commits seen. This can - mean that there's another root node that you're not specifying - or that the tree is corrupt. If you haven't missed a root node - then you might as well delete unreachable nodes since they - can't be used. - -missing <type> <object>:: - The <type> object <object>, is referred to but isn't present in - the database. - -dangling <type> <object>:: - The <type> object <object>, is present in the database but never - 'directly' used. A dangling commit could be a root node. - -warning: git-fsck-objects: tree <tree> has full pathnames in it:: - And it shouldn't... - -sha1 mismatch <object>:: - The database has an object who's sha1 doesn't match the - database value. - This indicates a serious data integrity problem. - -Environment Variables ---------------------- - -GIT_OBJECT_DIRECTORY:: - used to specify the object database root (usually $GIT_DIR/objects) - -GIT_INDEX_FILE:: - used to specify the index file of the index - -GIT_ALTERNATE_OBJECT_DIRECTORIES:: - used to specify additional object database roots (usually unset) - -Author ------- -Written by Linus Torvalds <torvalds@osdl.org> - -Documentation --------------- -Documentation by David Greaves, Junio C Hamano and the git-list <git@vger.kernel.org>. - -GIT ---- -Part of the gitlink:git[7] suite +This is a synonym for gitlink:git-fsck[1]. Please refer to the +documentation of that command. diff --git a/Documentation/git-fsck.txt b/Documentation/git-fsck.txt new file mode 100644 index 0000000000..058009d2fa --- /dev/null +++ b/Documentation/git-fsck.txt @@ -0,0 +1,139 @@ +git-fsck(1) +=========== + +NAME +---- +git-fsck - Verifies the connectivity and validity of the objects in the database + + +SYNOPSIS +-------- +[verse] +'git-fsck' [--tags] [--root] [--unreachable] [--cache] + [--full] [--strict] [<object>*] + +DESCRIPTION +----------- +Verifies the connectivity and validity of the objects in the database. + +OPTIONS +------- +<object>:: + An object to treat as the head of an unreachability trace. ++ +If no objects are given, git-fsck defaults to using the +index file and all SHA1 references in .git/refs/* as heads. + +--unreachable:: + Print out objects that exist but that aren't readable from any + of the reference nodes. + +--root:: + Report root nodes. + +--tags:: + Report tags. + +--cache:: + Consider any object recorded in the index also as a head node for + an unreachability trace. + +--full:: + Check not just objects in GIT_OBJECT_DIRECTORY + ($GIT_DIR/objects), but also the ones found in alternate + object pools listed in GIT_ALTERNATE_OBJECT_DIRECTORIES + or $GIT_DIR/objects/info/alternates, + and in packed git archives found in $GIT_DIR/objects/pack + and corresponding pack subdirectories in alternate + object pools. + +--strict:: + Enable more strict checking, namely to catch a file mode + recorded with g+w bit set, which was created by older + versions of git. Existing repositories, including the + Linux kernel, git itself, and sparse repository have old + objects that triggers this check, but it is recommended + to check new projects with this flag. + +It tests SHA1 and general object sanity, and it does full tracking of +the resulting reachability and everything else. It prints out any +corruption it finds (missing or bad objects), and if you use the +'--unreachable' flag it will also print out objects that exist but +that aren't readable from any of the specified head nodes. + +So for example + + git-fsck --unreachable HEAD $(cat .git/refs/heads/*) + +will do quite a _lot_ of verification on the tree. There are a few +extra validity tests to be added (make sure that tree objects are +sorted properly etc), but on the whole if "git-fsck" is happy, you +do have a valid tree. + +Any corrupt objects you will have to find in backups or other archives +(i.e., you can just remove them and do an "rsync" with some other site in +the hopes that somebody else has the object you have corrupted). + +Of course, "valid tree" doesn't mean that it wasn't generated by some +evil person, and the end result might be crap. git is a revision +tracking system, not a quality assurance system ;) + +Extracted Diagnostics +--------------------- + +expect dangling commits - potential heads - due to lack of head information:: + You haven't specified any nodes as heads so it won't be + possible to differentiate between un-parented commits and + root nodes. + +missing sha1 directory '<dir>':: + The directory holding the sha1 objects is missing. + +unreachable <type> <object>:: + The <type> object <object>, isn't actually referred to directly + or indirectly in any of the trees or commits seen. This can + mean that there's another root node that you're not specifying + or that the tree is corrupt. If you haven't missed a root node + then you might as well delete unreachable nodes since they + can't be used. + +missing <type> <object>:: + The <type> object <object>, is referred to but isn't present in + the database. + +dangling <type> <object>:: + The <type> object <object>, is present in the database but never + 'directly' used. A dangling commit could be a root node. + +warning: git-fsck: tree <tree> has full pathnames in it:: + And it shouldn't... + +sha1 mismatch <object>:: + The database has an object who's sha1 doesn't match the + database value. + This indicates a serious data integrity problem. + +Environment Variables +--------------------- + +GIT_OBJECT_DIRECTORY:: + used to specify the object database root (usually $GIT_DIR/objects) + +GIT_INDEX_FILE:: + used to specify the index file of the index + +GIT_ALTERNATE_OBJECT_DIRECTORIES:: + used to specify additional object database roots (usually unset) + +Author +------ +Written by Linus Torvalds <torvalds@osdl.org> + +Documentation +-------------- +Documentation by David Greaves, Junio C Hamano and the git-list <git@vger.kernel.org>. + +GIT +--- +Part of the gitlink:git[7] suite + diff --git a/Documentation/git-pack-redundant.txt b/Documentation/git-pack-redundant.txt index be2c64eb57..94bbea0db2 100644 --- a/Documentation/git-pack-redundant.txt +++ b/Documentation/git-pack-redundant.txt @@ -21,7 +21,7 @@ given will be ignored when checking which packs are required. This makes the following command useful when wanting to remove packs which contain unreachable objects. -git-fsck-objects --full --unreachable | cut -d ' ' -f3 | \ +git-fsck --full --unreachable | cut -d ' ' -f3 | \ git-pack-redundant --all | xargs rm OPTIONS diff --git a/Documentation/git-prune.txt b/Documentation/git-prune.txt index a11e303094..0b44f3015d 100644 --- a/Documentation/git-prune.txt +++ b/Documentation/git-prune.txt @@ -13,7 +13,7 @@ SYNOPSIS DESCRIPTION ----------- -This runs `git-fsck-objects --unreachable` using all the refs +This runs `git-fsck --unreachable` using all the refs available in `$GIT_DIR/refs`, optionally with additional set of objects specified on the command line, and prunes all objects unreachable from any of these head objects from the object database. diff --git a/Documentation/git-pull.txt b/Documentation/git-pull.txt index 3e5f115728..a81d68ccef 100644 --- a/Documentation/git-pull.txt +++ b/Documentation/git-pull.txt @@ -42,7 +42,7 @@ git pull, git pull origin:: current branch. Normally the branch merged in is the HEAD of the remote repository, but the choice is determined by the branch.<name>.remote and - branch.<name>.merge options; see gitlink:git-repo-config[1] + branch.<name>.merge options; see gitlink:git-config[1] for details. git pull origin next:: @@ -94,7 +94,7 @@ gitlink:git-reset[1]. SEE ALSO -------- -gitlink:git-fetch[1], gitlink:git-merge[1], gitlink:git-repo-config[1] +gitlink:git-fetch[1], gitlink:git-merge[1], gitlink:git-config[1] Author diff --git a/Documentation/git-remote.txt b/Documentation/git-remote.txt index 5b93a8c8be..a60c31a315 100644 --- a/Documentation/git-remote.txt +++ b/Documentation/git-remote.txt @@ -12,23 +12,43 @@ SYNOPSIS 'git-remote' 'git-remote' add <name> <url> 'git-remote' show <name> +'git-remote' prune <name> DESCRIPTION ----------- Manage the set of repositories ("remotes") whose branches you track. -With no arguments, shows a list of existing remotes. -In the second form, adds a remote named <name> for the repository at +COMMANDS +-------- + +With no arguments, shows a list of existing remotes. Several +subcommands are available to perform operations on the remotes. + +'add':: + +Adds a remote named <name> for the repository at <url>. The command `git fetch <name>` can then be used to create and update remote-tracking branches <name>/<branch>. -In the third form, gives some information about the remote <name>. +'show':: + +Gives some information about the remote <name>. + +'prune':: + +Deletes all stale tracking branches under <name>. +These stale branches have already been removed from the remote repository +referenced by <name>, but are still locally available in "remotes/<name>". + + +DISCUSSION +---------- The remote configuration is achieved using the `remote.origin.url` and `remote.origin.fetch` configuration variables. (See -gitlink:git-repo-config[1]). +gitlink:git-config[1]). Examples -------- @@ -58,7 +78,7 @@ See Also -------- gitlink:git-fetch[1] gitlink:git-branch[1] -gitlink:git-repo-config[1] +gitlink:git-config[1] Author ------ diff --git a/Documentation/git-repo-config.txt b/Documentation/git-repo-config.txt index 9db3d30825..2deba31763 100644 --- a/Documentation/git-repo-config.txt +++ b/Documentation/git-repo-config.txt @@ -8,220 +8,11 @@ git-repo-config - Get and set repository or global options SYNOPSIS -------- -[verse] -'git-repo-config' [--global] [type] name [value [value_regex]] -'git-repo-config' [--global] [type] --add name value -'git-repo-config' [--global] [type] --replace-all name [value [value_regex]] -'git-repo-config' [--global] [type] --get name [value_regex] -'git-repo-config' [--global] [type] --get-all name [value_regex] -'git-repo-config' [--global] [type] --unset name [value_regex] -'git-repo-config' [--global] [type] --unset-all name [value_regex] -'git-repo-config' [--global] -l | --list +'git-repo-config' ... -DESCRIPTION ------------ -You can query/set/replace/unset options with this command. The name is -actually the section and the key separated by a dot, and the value will be -escaped. - -Multiple lines can be added to an option by using the '--add' option. -If you want to update or unset an option which can occur on multiple -lines, a POSIX regexp `value_regex` needs to be given. Only the -existing values that match the regexp are updated or unset. If -you want to handle the lines that do *not* match the regex, just -prepend a single exclamation mark in front (see EXAMPLES). - -The type specifier can be either '--int' or '--bool', which will make -'git-repo-config' ensure that the variable(s) are of the given type and -convert the value to the canonical form (simple decimal number for int, -a "true" or "false" string for bool). If no type specifier is passed, -no checks or transformations are performed on the value. - -This command will fail if: - -. The .git/config file is invalid, -. Can not write to .git/config, -. no section was provided, -. the section or key is invalid, -. you try to unset an option which does not exist, -. you try to unset/set an option for which multiple lines match, or -. you use --global option without $HOME being properly set. - - -OPTIONS -------- - ---replace-all:: - Default behavior is to replace at most one line. This replaces - all lines matching the key (and optionally the value_regex). - ---add:: - Adds a new line to the option without altering any existing - values. This is the same as providing '^$' as the value_regex. - ---get:: - Get the value for a given key (optionally filtered by a regex - matching the value). Returns error code 1 if the key was not - found and error code 2 if multiple key values were found. - ---get-all:: - Like get, but does not fail if the number of values for the key - is not exactly one. - ---get-regexp:: - Like --get-all, but interprets the name as a regular expression. - ---global:: - Use global ~/.gitconfig file rather than the repository .git/config. - ---unset:: - Remove the line matching the key from config file. ---unset-all:: - Remove all matching lines from config file. - --l, --list:: - List all variables set in config file. - ---bool:: - git-repo-config will ensure that the output is "true" or "false" - ---int:: - git-repo-config will ensure that the output is a simple - decimal number. An optional value suffix of 'k', 'm', or 'g' - in the config file will cause the value to be multiplied - by 1024, 1048576, or 1073741824 prior to output. - - -ENVIRONMENT +DESCRIPTION ----------- -GIT_CONFIG:: - Take the configuration from the given file instead of .git/config. - Using the "--global" option forces this to ~/.gitconfig. - -GIT_CONFIG_LOCAL:: - Currently the same as $GIT_CONFIG; when Git will support global - configuration files, this will cause it to take the configuration - from the global configuration file in addition to the given file. - - -EXAMPLE -------- - -Given a .git/config like this: - - # - # This is the config file, and - # a '#' or ';' character indicates - # a comment - # - - ; core variables - [core] - ; Don't trust file modes - filemode = false - - ; Our diff algorithm - [diff] - external = "/usr/local/bin/gnu-diff -u" - renames = true - - ; Proxy settings - [core] - gitproxy="ssh" for "ssh://kernel.org/" - gitproxy="proxy-command" for kernel.org - gitproxy="myprotocol-command" for "my://" - gitproxy=default-proxy ; for all the rest - -you can set the filemode to true with - ------------- -% git repo-config core.filemode true ------------- - -The hypothetical proxy command entries actually have a postfix to discern -what URL they apply to. Here is how to change the entry for kernel.org -to "ssh". - ------------- -% git repo-config core.gitproxy '"ssh" for kernel.org' 'for kernel.org$' ------------- - -This makes sure that only the key/value pair for kernel.org is replaced. - -To delete the entry for renames, do - ------------- -% git repo-config --unset diff.renames ------------- - -If you want to delete an entry for a multivar (like core.gitproxy above), -you have to provide a regex matching the value of exactly one line. - -To query the value for a given key, do - ------------- -% git repo-config --get core.filemode ------------- - -or - ------------- -% git repo-config core.filemode ------------- - -or, to query a multivar: - ------------- -% git repo-config --get core.gitproxy "for kernel.org$" ------------- - -If you want to know all the values for a multivar, do: - ------------- -% git repo-config --get-all core.gitproxy ------------- - -If you like to live dangerous, you can replace *all* core.gitproxy by a -new one with - ------------- -% git repo-config --replace-all core.gitproxy ssh ------------- - -However, if you really only want to replace the line for the default proxy, -i.e. the one without a "for ..." postfix, do something like this: - ------------- -% git repo-config core.gitproxy ssh '! for ' ------------- - -To actually match only values with an exclamation mark, you have to - ------------- -% git repo-config section.key value '[!]' ------------- - -To add a new proxy, without altering any of the existing ones, use - ------------- -% git repo-config core.gitproxy '"proxy" for example.com' ------------- - - -include::config.txt[] - - -Author ------- -Written by Johannes Schindelin <Johannes.Schindelin@gmx.de> - -Documentation --------------- -Documentation by Johannes Schindelin, Petr Baudis and the git-list <git@vger.kernel.org>. - -GIT ---- -Part of the gitlink:git[7] suite - +This is a synonym for gitlink:git-config[1]. Please refer to the +documentation of that command. diff --git a/Documentation/git-rev-parse.txt b/Documentation/git-rev-parse.txt index aeb37b65d2..4041a16070 100644 --- a/Documentation/git-rev-parse.txt +++ b/Documentation/git-rev-parse.txt @@ -160,6 +160,10 @@ blobs contained in a commit. immediately following a ref name and the ref must have an existing log ($GIT_DIR/logs/<ref>). +* You can use the '@' construct with an empty ref part to get at a + reflog of the current branch. For example, if you are on the + branch 'blabla', then '@\{1\}' means the same as 'blabla@\{1\}'. + * A suffix '{caret}' to a revision parameter means the first parent of that commit object. '{caret}<n>' means the <n>th parent (i.e. 'rev{caret}' diff --git a/Documentation/git-send-pack.txt b/Documentation/git-send-pack.txt index 2f6267ce60..205bfd2d25 100644 --- a/Documentation/git-send-pack.txt +++ b/Documentation/git-send-pack.txt @@ -3,7 +3,7 @@ git-send-pack(1) NAME ---- -git-send-pack - Push objects over git protocol to another reposiotory +git-send-pack - Push objects over git protocol to another repository SYNOPSIS diff --git a/Documentation/git-svn.txt b/Documentation/git-svn.txt index b95ff1da96..6ce6a3944d 100644 --- a/Documentation/git-svn.txt +++ b/Documentation/git-svn.txt @@ -133,7 +133,7 @@ manually joining branches on commit. 'multi-init':: This command supports git-svnimport-like command-line syntax for - importing repositories that are layed out as recommended by the + importing repositories that are laid out as recommended by the SVN folks. This is a bit more tolerant than the git-svnimport command-line syntax and doesn't require the user to figure out where the repository URL ends and where the repository path @@ -204,7 +204,7 @@ removed by default if there are no files left in them. git cannot version empty directories. Enabling this flag will make the commit to SVN act like git. -repo-config key: svn.rmdir +config key: svn.rmdir -e:: --edit:: @@ -215,7 +215,7 @@ Edit the commit message before committing to SVN. This is off by default for objects that are commits, and forced on when committing tree objects. -repo-config key: svn.edit +config key: svn.edit -l<num>:: --find-copies-harder:: @@ -226,8 +226,8 @@ They are both passed directly to git-diff-tree see gitlink:git-diff-tree[1] for more information. [verse] -repo-config key: svn.l -repo-config key: svn.findcopiesharder +config key: svn.l +config key: svn.findcopiesharder -A<filename>:: --authors-file=<filename>:: @@ -245,7 +245,7 @@ will abort operation. The user will then have to add the appropriate entry. Re-running the previous git-svn command after the authors-file is modified should continue operation. -repo-config key: svn.authorsfile +config key: svn.authorsfile -q:: --quiet:: @@ -262,8 +262,8 @@ repo-config key: svn.authorsfile --repack-flags are passed directly to gitlink:git-repack[1]. -repo-config key: svn.repack -repo-config key: svn.repackflags +config key: svn.repack +config key: svn.repackflags -m:: --merge:: @@ -304,7 +304,7 @@ used to track branches across multiple SVN _repositories_. This option may be specified multiple times, once for each branch. -repo-config key: svn.branch +config key: svn.branch -i<GIT_SVN_ID>:: --id <GIT_SVN_ID>:: @@ -320,7 +320,7 @@ for more information on using GIT_SVN_ID. started tracking a branch and never tracked the trunk it was descended from. -repo-config key: svn.followparent +config key: svn.followparent --no-metadata:: This gets rid of the git-svn-id: lines at the end of every commit. @@ -332,7 +332,7 @@ repo-config key: svn.followparent The 'git-svn log' command will not work on repositories using this, either. -repo-config key: svn.nometadata +config key: svn.nometadata -- diff --git a/Documentation/git-update-index.txt b/Documentation/git-update-index.txt index 5bbae42d86..b161c8b32b 100644 --- a/Documentation/git-update-index.txt +++ b/Documentation/git-update-index.txt @@ -289,7 +289,7 @@ Configuration The command honors `core.filemode` configuration variable. If your repository is on an filesystem whose executable bits are -unreliable, this should be set to 'false' (see gitlink:git-repo-config[1]). +unreliable, this should be set to 'false' (see gitlink:git-config[1]). This causes the command to ignore differences in file modes recorded in the index and the file mode on the filesystem if they differ only on executable bit. On such an unfortunate filesystem, you may @@ -301,7 +301,7 @@ The command looks at `core.ignorestat` configuration variable. See See Also -------- -gitlink:git-repo-config[1] +gitlink:git-config[1] Author diff --git a/Documentation/git-var.txt b/Documentation/git-var.txt index 8a50638e98..9b0de1c111 100644 --- a/Documentation/git-var.txt +++ b/Documentation/git-var.txt @@ -20,7 +20,7 @@ OPTIONS Cause the logical variables to be listed. In addition, all the variables of the git configuration file .git/config are listed as well. (However, the configuration variables listing functionality - is deprecated in favor of `git-repo-config -l`.) + is deprecated in favor of `git-config -l`.) EXAMPLE -------- @@ -49,7 +49,7 @@ See Also -------- gitlink:git-commit-tree[1] gitlink:git-tag[1] -gitlink:git-repo-config[1] +gitlink:git-config[1] Author ------ diff --git a/Documentation/git.txt b/Documentation/git.txt index 9761de36b3..29ee24c34f 100644 --- a/Documentation/git.txt +++ b/Documentation/git.txt @@ -22,9 +22,12 @@ See this link:tutorial.html[tutorial] to get started, then see link:everyday.html[Everyday Git] for a useful minimum set of commands, and "man git-commandname" for documentation of each command. CVS users may also want to read link:cvs-migration.html[CVS migration]. +link:user-manual.html[Git User's Manual] is still work in +progress, but when finished hopefully it will guide a new user +in a coherent way to git enlightenment ;-). The COMMAND is either a name of a Git command (see below) or an alias -as defined in the configuration file (see gitlink:git-repo-config[1]). +as defined in the configuration file (see gitlink:git-config[1]). OPTIONS ------- diff --git a/Documentation/gitk.txt b/Documentation/gitk.txt index 5bdaa601f0..48c5894736 100644 --- a/Documentation/gitk.txt +++ b/Documentation/gitk.txt @@ -54,7 +54,7 @@ frequently used options. Limit commits to the ones touching files in the given paths. Note, to avoid ambiguity wrt. revision names use "--" to separate the paths - from any preceeding options. + from any preceding options. Examples -------- diff --git a/Documentation/hooks.txt b/Documentation/hooks.txt index e3b76f96eb..b083290d12 100644 --- a/Documentation/hooks.txt +++ b/Documentation/hooks.txt @@ -90,9 +90,6 @@ parameter, and is invoked after a commit is made. This hook is meant primarily for notification, and cannot affect the outcome of `git-commit`. -The default 'post-commit' hook, when enabled, demonstrates how to -send out a commit notification e-mail. - update ------ @@ -130,6 +127,8 @@ The standard output of this hook is sent to `stderr`, so if you want to report something to the `git-send-pack` on the other end, you can simply `echo` your messages. +The default 'update' hook, when enabled, demonstrates how to +send out a notification e-mail. post-update ----------- diff --git a/Documentation/howto/setup-git-server-over-http.txt b/Documentation/howto/setup-git-server-over-http.txt index a202f3a460..8eadc20494 100644 --- a/Documentation/howto/setup-git-server-over-http.txt +++ b/Documentation/howto/setup-git-server-over-http.txt @@ -205,7 +205,7 @@ To check whether all is OK, do: Now, add the remote in your existing repository which contains the project you want to export: - $ git-repo-config remote.upload.url \ + $ git-config remote.upload.url \ http://<username>@<servername>/my-new-repo.git/ It is important to put the last '/'; Without it, the server will send @@ -222,7 +222,7 @@ From your client repository, do This pushes branch 'master' (which is assumed to be the branch you want to export) to repository called 'upload', which we previously -defined with git-repo-config. +defined with git-config. Troubleshooting: diff --git a/Documentation/tutorial-2.txt b/Documentation/tutorial-2.txt index f363d17f0b..8d89992712 100644 --- a/Documentation/tutorial-2.txt +++ b/Documentation/tutorial-2.txt @@ -352,24 +352,23 @@ situation: ------------------------------------------------ $ git status -# -# Added but not yet committed: -# (will commit) +# On branch master +# Changes to be committed: +# (use "git reset HEAD <file>..." to unstage) # # new file: closing.txt # -# -# Changed but not added: -# (use "git add file1 file2" to include for commit) +# Changed but not updated: +# (use "git add <file>..." to update what will be committed) # # modified: file.txt # ------------------------------------------------ Since the current state of closing.txt is cached in the index file, -it is listed as "added but not yet committed". Since file.txt has +it is listed as "Changes to be committed". Since file.txt has changes in the working directory that aren't reflected in the index, -it is marked "changed but not added". At this point, running "git +it is marked "changed but not updated". At this point, running "git commit" would create a commit that added closing.txt (with its new contents), but that didn't modify file.txt. diff --git a/Documentation/tutorial.txt b/Documentation/tutorial.txt index c27a4505d4..5fc5be5a28 100644 --- a/Documentation/tutorial.txt +++ b/Documentation/tutorial.txt @@ -16,8 +16,8 @@ public email address before doing any operation. The easiest way to do so is: ------------------------------------------------ -$ git repo-config --global user.name "Your Name Comes Here" -$ git repo-config --global user.email you@yourdomain.example.com +$ git config --global user.name "Your Name Comes Here" +$ git config --global user.email you@yourdomain.example.com ------------------------------------------------ @@ -101,27 +101,27 @@ want to commit together. This can be done in a few different ways: 1) By using 'git add <file_spec>...' - This can be performed multiple times before a commit. Note that this - is not only for adding new files. Even modified files must be - added to the set of changes about to be committed. The "git status" - command gives you a summary of what is included so far for the - next commit. When done you should use the 'git commit' command to - make it real. +This can be performed multiple times before a commit. Note that this +is not only for adding new files. Even modified files must be +added to the set of changes about to be committed. The "git status" +command gives you a summary of what is included so far for the +next commit. When done you should use the 'git commit' command to +make it real. - Note: don't forget to 'add' a file again if you modified it after the - first 'add' and before 'commit'. Otherwise only the previous added - state of that file will be committed. This is because git tracks - content, so what you're really 'add'ing to the commit is the *content* - of the file in the state it is in when you 'add' it. +Note: don't forget to 'add' a file again if you modified it after the +first 'add' and before 'commit'. Otherwise only the previous added +state of that file will be committed. This is because git tracks +content, so what you're really 'add'ing to the commit is the *content* +of the file in the state it is in when you 'add' it. 2) By using 'git commit -a' directly - This is a quick way to automatically 'add' the content from all files - that were modified since the previous commit, and perform the actual - commit without having to separately 'add' them beforehand. This will - not add content from new files i.e. files that were never added before. - Those files still have to be added explicitly before performing a - commit. +This is a quick way to automatically 'add' the content from all files +that were modified since the previous commit, and perform the actual +commit without having to separately 'add' them beforehand. This will +not add content from new files i.e. files that were never added before. +Those files still have to be added explicitly before performing a +commit. But here's a twist. If you do 'git commit <file1> <file2> ...' then only the changes belonging to those explicitly specified files will be @@ -353,12 +353,12 @@ repository in the repository configuration, and that location is used for pulls: ------------------------------------- -$ git repo-config --get remote.origin.url +$ git config --get remote.origin.url /home/bob/myrepo ------------------------------------- (The complete configuration created by git-clone is visible using -"git repo-config -l", and the gitlink:git-repo-config[1] man page +"git config -l", and the gitlink:git-config[1] man page explains the meaning of each option.) Git also keeps a pristine copy of Alice's master branch under the @@ -458,9 +458,9 @@ $ git reset --hard HEAD^ # reset your current branch and working Be careful with that last command: in addition to losing any changes in the working directory, it will also remove all later commits from this branch. If this branch is the only branch containing those -commits, they will be lost. (Also, don't use "git reset" on a -publicly-visible branch that other developers pull from, as git will -be confused by history that disappears in this way.) +commits, they will be lost. Also, don't use "git reset" on a +publicly-visible branch that other developers pull from, as it will +force needless merges on other developers to clean up the history. The git grep command can search for strings in any version of your project, so diff --git a/Documentation/user-manual.conf b/Documentation/user-manual.conf new file mode 100644 index 0000000000..92b01ecf71 --- /dev/null +++ b/Documentation/user-manual.conf @@ -0,0 +1,21 @@ +[titles] + underlines="__","==","--","~~","^^" + +[attributes] +caret=^ +startsb=[ +endsb=] +tilde=~ + +[gitlink-inlinemacro] +<ulink url="{target}.html">{target}{0?({0})}</ulink> + +ifdef::backend-docbook[] +# "unbreak" docbook-xsl v1.68 for manpages. v1.69 works with or without this. +[listingblock] +<example><title>{title}</title> +<literallayout> +| +</literallayout> +{title#}</example> +endif::backend-docbook[] diff --git a/Documentation/user-manual.txt b/Documentation/user-manual.txt new file mode 100644 index 0000000000..c5e9ea8a42 --- /dev/null +++ b/Documentation/user-manual.txt @@ -0,0 +1,2961 @@ +Git User's Manual +_________________ + +This manual is designed to be readable by someone with basic unix +commandline skills, but no previous knowledge of git. + +Chapter 1 gives a brief overview of git commands, without any +explanation; you may prefer to skip to chapter 2 on a first reading. + +Chapters 2 and 3 explain how to fetch and study a project using +git--the tools you'd need to build and test a particular version of a +software project, to search for regressions, and so on. + +Chapter 4 explains how to do development with git, and chapter 5 how +to share that development with others. + +Further chapters cover more specialized topics. + +Comprehensive reference documentation is available through the man +pages. For a command such as "git clone", just use + +------------------------------------------------ +$ man git-clone +------------------------------------------------ + +Git Quick Start +=============== + +This is a quick summary of the major commands; the following chapters +will explain how these work in more detail. + +Creating a new repository +------------------------- + +From a tarball: + +----------------------------------------------- +$ tar xzf project.tar.gz +$ cd project +$ git init +Initialized empty Git repository in .git/ +$ git add . +$ git commit +----------------------------------------------- + +From a remote repository: + +----------------------------------------------- +$ git clone git://example.com/pub/project.git +$ cd project +----------------------------------------------- + +Managing branches +----------------- + +----------------------------------------------- +$ git branch # list all branches in this repo +$ git checkout test # switch working directory to branch "test" +$ git branch new # create branch "new" starting at current HEAD +$ git branch -d new # delete branch "new" +----------------------------------------------- + +Instead of basing new branch on current HEAD (the default), use: + +----------------------------------------------- +$ git branch new test # branch named "test" +$ git branch new v2.6.15 # tag named v2.6.15 +$ git branch new HEAD^ # commit before the most recent +$ git branch new HEAD^^ # commit before that +$ git branch new test~10 # ten commits before tip of branch "test" +----------------------------------------------- + +Create and switch to a new branch at the same time: + +----------------------------------------------- +$ git checkout -b new v2.6.15 +----------------------------------------------- + +Update and examine branches from the repository you cloned from: + +----------------------------------------------- +$ git fetch # update +$ git branch -r # list + origin/master + origin/next + ... +$ git branch checkout -b masterwork origin/master +----------------------------------------------- + +Fetch a branch from a different repository, and give it a new +name in your repository: + +----------------------------------------------- +$ git fetch git://example.com/project.git theirbranch:mybranch +$ git fetch git://example.com/project.git v2.6.15:mybranch +----------------------------------------------- + +Keep a list of repositories you work with regularly: + +----------------------------------------------- +$ git remote add example git://example.com/project.git +$ git remote # list remote repositories +example +origin +$ git remote show example # get details +* remote example + URL: git://example.com/project.git + Tracked remote branches + master next ... +$ git fetch example # update branches from example +$ git branch -r # list all remote branches +----------------------------------------------- + + +Exploring history +----------------- + +----------------------------------------------- +$ gitk # visualize and browse history +$ git log # list all commits +$ git log src/ # ...modifying src/ +$ git log v2.6.15..v2.6.16 # ...in v2.6.16, not in v2.6.15 +$ git log master..test # ...in branch test, not in branch master +$ git log test..master # ...in branch master, but not in test +$ git log test...master # ...in one branch, not in both +$ git log -S'foo()' # ...where difference contain "foo()" +$ git log --since="2 weeks ago" +$ git log -p # show patches as well +$ git show # most recent commit +$ git diff v2.6.15..v2.6.16 # diff between two tagged versions +$ git diff v2.6.15..HEAD # diff with current head +$ git grep "foo()" # search working directory for "foo()" +$ git grep v2.6.15 "foo()" # search old tree for "foo()" +$ git show v2.6.15:a.txt # look at old version of a.txt +----------------------------------------------- + +Search for regressions: + +----------------------------------------------- +$ git bisect start +$ git bisect bad # current version is bad +$ git bisect good v2.6.13-rc2 # last known good revision +Bisecting: 675 revisions left to test after this + # test here, then: +$ git bisect good # if this revision is good, or +$ git bisect bad # if this revision is bad. + # repeat until done. +----------------------------------------------- + +Making changes +-------------- + +Make sure git knows who to blame: + +------------------------------------------------ +$ cat >~/.gitconfig <<\EOF +[user] +name = Your Name Comes Here +email = you@yourdomain.example.com +EOF +------------------------------------------------ + +Select file contents to include in the next commit, then make the +commit: + +----------------------------------------------- +$ git add a.txt # updated file +$ git add b.txt # new file +$ git rm c.txt # old file +$ git commit +----------------------------------------------- + +Or, prepare and create the commit in one step: + +----------------------------------------------- +$ git commit d.txt # use latest content only of d.txt +$ git commit -a # use latest content of all tracked files +----------------------------------------------- + +Merging +------- + +----------------------------------------------- +$ git merge test # merge branch "test" into the current branch +$ git pull git://example.com/project.git master + # fetch and merge in remote branch +$ git pull . test # equivalent to git merge test +----------------------------------------------- + +Sharing your changes +-------------------- + +Importing or exporting patches: + +----------------------------------------------- +$ git format-patch origin..HEAD # format a patch for each commit + # in HEAD but not in origin +$ git-am mbox # import patches from the mailbox "mbox" +----------------------------------------------- + +Fetch a branch in a different git repository, then merge into the +current branch: + +----------------------------------------------- +$ git pull git://example.com/project.git theirbranch +----------------------------------------------- + +Store the fetched branch into a local branch before merging into the +current branch: + +----------------------------------------------- +$ git pull git://example.com/project.git theirbranch:mybranch +----------------------------------------------- + +After creating commits on a local branch, update the remote +branch with your commits: + +----------------------------------------------- +$ git push ssh://example.com/project.git mybranch:theirbranch +----------------------------------------------- + +When remote and local branch are both named "test": + +----------------------------------------------- +$ git push ssh://example.com/project.git test +----------------------------------------------- + +Shortcut version for a frequently used remote repository: + +----------------------------------------------- +$ git remote add example ssh://example.com/project.git +$ git push example test +----------------------------------------------- + +Repository maintenance +---------------------- + +Check for corruption: + +----------------------------------------------- +$ git fsck +----------------------------------------------- + +Recompress, remove unused cruft: + +----------------------------------------------- +$ git gc +----------------------------------------------- + +Repositories and Branches +========================= + +How to get a git repository +--------------------------- + +It will be useful to have a git repository to experiment with as you +read this manual. + +The best way to get one is by using the gitlink:git-clone[1] command +to download a copy of an existing repository for a project that you +are interested in. If you don't already have a project in mind, here +are some interesting examples: + +------------------------------------------------ + # git itself (approx. 10MB download): +$ git clone git://git.kernel.org/pub/scm/git/git.git + # the linux kernel (approx. 150MB download): +$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git +------------------------------------------------ + +The initial clone may be time-consuming for a large project, but you +will only need to clone once. + +The clone command creates a new directory named after the project +("git" or "linux-2.6" in the examples above). After you cd into this +directory, you will see that it contains a copy of the project files, +together with a special top-level directory named ".git", which +contains all the information about the history of the project. + +In most of the following, examples will be taken from one of the two +repositories above. + +How to check out a different version of a project +------------------------------------------------- + +Git is best thought of as a tool for storing the history of a +collection of files. It stores the history as a compressed +collection of interrelated snapshots (versions) of the project's +contents. + +A single git repository may contain multiple branches. Each branch +is a bookmark referencing a particular point in the project history. +The gitlink:git-branch[1] command shows you the list of branches: + +------------------------------------------------ +$ git branch +* master +------------------------------------------------ + +A freshly cloned repository contains a single branch, named "master", +and the working directory contains the version of the project +referred to by the master branch. + +Most projects also use tags. Tags, like branches, are references +into the project's history, and can be listed using the +gitlink:git-tag[1] command: + +------------------------------------------------ +$ git tag -l +v2.6.11 +v2.6.11-tree +v2.6.12 +v2.6.12-rc2 +v2.6.12-rc3 +v2.6.12-rc4 +v2.6.12-rc5 +v2.6.12-rc6 +v2.6.13 +... +------------------------------------------------ + +Tags are expected to always point at the same version of a project, +while branches are expected to advance as development progresses. + +Create a new branch pointing to one of these versions and check it +out using gitlink:git-checkout[1]: + +------------------------------------------------ +$ git checkout -b new v2.6.13 +------------------------------------------------ + +The working directory then reflects the contents that the project had +when it was tagged v2.6.13, and gitlink:git-branch[1] shows two +branches, with an asterisk marking the currently checked-out branch: + +------------------------------------------------ +$ git branch + master +* new +------------------------------------------------ + +If you decide that you'd rather see version 2.6.17, you can modify +the current branch to point at v2.6.17 instead, with + +------------------------------------------------ +$ git reset --hard v2.6.17 +------------------------------------------------ + +Note that if the current branch was your only reference to a +particular point in history, then resetting that branch may leave you +with no way to find the history it used to point to; so use this +command carefully. + +Understanding History: Commits +------------------------------ + +Every change in the history of a project is represented by a commit. +The gitlink:git-show[1] command shows the most recent commit on the +current branch: + +------------------------------------------------ +$ git show +commit 2b5f6dcce5bf94b9b119e9ed8d537098ec61c3d2 +Author: Jamal Hadi Salim <hadi@cyberus.ca> +Date: Sat Dec 2 22:22:25 2006 -0800 + + [XFRM]: Fix aevent structuring to be more complete. + + aevents can not uniquely identify an SA. We break the ABI with this + patch, but consensus is that since it is not yet utilized by any + (known) application then it is fine (better do it now than later). + + Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca> + Signed-off-by: David S. Miller <davem@davemloft.net> + +diff --git a/Documentation/networking/xfrm_sync.txt b/Documentation/networking/xfrm_sync.txt +index 8be626f..d7aac9d 100644 +--- a/Documentation/networking/xfrm_sync.txt ++++ b/Documentation/networking/xfrm_sync.txt +@@ -47,10 +47,13 @@ aevent_id structure looks like: + + struct xfrm_aevent_id { + struct xfrm_usersa_id sa_id; ++ xfrm_address_t saddr; + __u32 flags; ++ __u32 reqid; + }; +... +------------------------------------------------ + +As you can see, a commit shows who made the latest change, what they +did, and why. + +Every commit has a 40-hexdigit id, sometimes called the "object name" +or the "SHA1 id", shown on the first line of the "git show" output. +You can usually refer to a commit by a shorter name, such as a tag or a +branch name, but this longer name can also be useful. Most +importantly, it is a globally unique name for this commit: so if you +tell somebody else the object name (for example in email), then you are +guaranteed that name will refer to the same commit in their repository +that it does in yours (assuming their repository has that commit at +all). + +Understanding history: commits, parents, and reachability +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Every commit (except the very first commit in a project) also has a +parent commit which shows what happened before this commit. +Following the chain of parents will eventually take you back to the +beginning of the project. + +However, the commits do not form a simple list; git allows lines of +development to diverge and then reconverge, and the point where two +lines of development reconverge is called a "merge". The commit +representing a merge can therefore have more than one parent, with +each parent representing the most recent commit on one of the lines +of development leading to that point. + +The best way to see how this works is using the gitlink:gitk[1] +command; running gitk now on a git repository and looking for merge +commits will help understand how the git organizes history. + +In the following, we say that commit X is "reachable" from commit Y +if commit X is an ancestor of commit Y. Equivalently, you could say +that Y is a descendent of X, or that there is a chain of parents +leading from commit Y to commit X. + +Understanding history: History diagrams +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +We will sometimes represent git history using diagrams like the one +below. Commits are shown as "o", and the links between them with +lines drawn with - / and \. Time goes left to right: + + o--o--o <-- Branch A + / + o--o--o <-- master + \ + o--o--o <-- Branch B + +If we need to talk about a particular commit, the character "o" may +be replaced with another letter or number. + +Understanding history: What is a branch? +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Though we've been using the word "branch" to mean a kind of reference +to a particular commit, the word branch is also commonly used to +refer to the line of commits leading up to that point. In the +example above, git may think of the branch named "A" as just a +pointer to one particular commit, but we may refer informally to the +line of three commits leading up to that point as all being part of +"branch A". + +If we need to make it clear that we're just talking about the most +recent commit on the branch, we may refer to that commit as the +"head" of the branch. + +Manipulating branches +--------------------- + +Creating, deleting, and modifying branches is quick and easy; here's +a summary of the commands: + +git branch:: + list all branches +git branch <branch>:: + create a new branch named <branch>, referencing the same + point in history as the current branch +git branch <branch> <start-point>:: + create a new branch named <branch>, referencing + <start-point>, which may be specified any way you like, + including using a branch name or a tag name +git branch -d <branch>:: + delete the branch <branch>; if the branch you are deleting + points to a commit which is not reachable from this branch, + this command will fail with a warning. +git branch -D <branch>:: + even if the branch points to a commit not reachable + from the current branch, you may know that that commit + is still reachable from some other branch or tag. In that + case it is safe to use this command to force git to delete + the branch. +git checkout <branch>:: + make the current branch <branch>, updating the working + directory to reflect the version referenced by <branch> +git checkout -b <new> <start-point>:: + create a new branch <new> referencing <start-point>, and + check it out. + +It is also useful to know that the special symbol "HEAD" can always +be used to refer to the current branch. + +Examining branches from a remote repository +------------------------------------------- + +The "master" branch that was created at the time you cloned is a copy +of the HEAD in the repository that you cloned from. That repository +may also have had other branches, though, and your local repository +keeps branches which track each of those remote branches, which you +can view using the "-r" option to gitlink:git-branch[1]: + +------------------------------------------------ +$ git branch -r + origin/HEAD + origin/html + origin/maint + origin/man + origin/master + origin/next + origin/pu + origin/todo +------------------------------------------------ + +You cannot check out these remote-tracking branches, but you can +examine them on a branch of your own, just as you would a tag: + +------------------------------------------------ +$ git checkout -b my-todo-copy origin/todo +------------------------------------------------ + +Note that the name "origin" is just the name that git uses by default +to refer to the repository that you cloned from. + +[[how-git-stores-references]] +Naming branches, tags, and other references +------------------------------------------- + +Branches, remote-tracking branches, and tags are all references to +commits. All references are named with a slash-separated path name +starting with "refs"; the names we've been using so far are actually +shorthand: + + - The branch "test" is short for "refs/heads/test". + - The tag "v2.6.18" is short for "refs/tags/v2.6.18". + - "origin/master" is short for "refs/remotes/origin/master". + +The full name is occasionally useful if, for example, there ever +exists a tag and a branch with the same name. + +As another useful shortcut, if the repository "origin" posesses only +a single branch, you can refer to that branch as just "origin". + +More generally, if you have defined a remote repository named +"example", you can refer to the branch in that repository as +"example". And for a repository with multiple branches, this will +refer to the branch designated as the "HEAD" branch. + +For the complete list of paths which git checks for references, and +the order it uses to decide which to choose when there are multiple +references with the same shorthand name, see the "SPECIFYING +REVISIONS" section of gitlink:git-rev-parse[1]. + +[[Updating-a-repository-with-git-fetch]] +Updating a repository with git fetch +------------------------------------ + +Eventually the developer cloned from will do additional work in her +repository, creating new commits and advancing the branches to point +at the new commits. + +The command "git fetch", with no arguments, will update all of the +remote-tracking branches to the latest version found in her +repository. It will not touch any of your own branches--not even the +"master" branch that was created for you on clone. + +Fetching branches from other repositories +----------------------------------------- + +You can also track branches from repositories other than the one you +cloned from, using gitlink:git-remote[1]: + +------------------------------------------------- +$ git remote add linux-nfs git://linux-nfs.org/pub/nfs-2.6.git +$ git fetch +* refs/remotes/linux-nfs/master: storing branch 'master' ... + commit: bf81b46 +------------------------------------------------- + +New remote-tracking branches will be stored under the shorthand name +that you gave "git remote add", in this case linux-nfs: + +------------------------------------------------- +$ git branch -r +linux-nfs/master +origin/master +------------------------------------------------- + +If you run "git fetch <remote>" later, the tracking branches for the +named <remote> will be updated. + +If you examine the file .git/config, you will see that git has added +a new stanza: + +------------------------------------------------- +$ cat .git/config +... +[remote "linux-nfs"] + url = git://linux-nfs.org/~bfields/git.git + fetch = +refs/heads/*:refs/remotes/linux-nfs-read/* +... +------------------------------------------------- + +This is what causes git to track the remote's branches; you may modify +or delete these configuration options by editing .git/config with a +text editor. (See the "CONFIGURATION FILE" section of +gitlink:git-config[1] for details.) + +Exploring git history +===================== + +Git is best thought of as a tool for storing the history of a +collection of files. It does this by storing compressed snapshots of +the contents of a file heirarchy, together with "commits" which show +the relationships between these snapshots. + +Git provides extremely flexible and fast tools for exploring the +history of a project. + +We start with one specialized tool that is useful for finding the +commit that introduced a bug into a project. + +How to use bisect to find a regression +-------------------------------------- + +Suppose version 2.6.18 of your project worked, but the version at +"master" crashes. Sometimes the best way to find the cause of such a +regression is to perform a brute-force search through the project's +history to find the particular commit that caused the problem. The +gitlink:git-bisect[1] command can help you do this: + +------------------------------------------------- +$ git bisect start +$ git bisect good v2.6.18 +$ git bisect bad master +Bisecting: 3537 revisions left to test after this +[65934a9a028b88e83e2b0f8b36618fe503349f8e] BLOCK: Make USB storage depend on SCSI rather than selecting it [try #6] +------------------------------------------------- + +If you run "git branch" at this point, you'll see that git has +temporarily moved you to a new branch named "bisect". This branch +points to a commit (with commit id 65934...) that is reachable from +v2.6.19 but not from v2.6.18. Compile and test it, and see whether +it crashes. Assume it does crash. Then: + +------------------------------------------------- +$ git bisect bad +Bisecting: 1769 revisions left to test after this +[7eff82c8b1511017ae605f0c99ac275a7e21b867] i2c-core: Drop useless bitmaskings +------------------------------------------------- + +checks out an older version. Continue like this, telling git at each +stage whether the version it gives you is good or bad, and notice +that the number of revisions left to test is cut approximately in +half each time. + +After about 13 tests (in this case), it will output the commit id of +the guilty commit. You can then examine the commit with +gitlink:git-show[1], find out who wrote it, and mail them your bug +report with the commit id. Finally, run + +------------------------------------------------- +$ git bisect reset +------------------------------------------------- + +to return you to the branch you were on before and delete the +temporary "bisect" branch. + +Note that the version which git-bisect checks out for you at each +point is just a suggestion, and you're free to try a different +version if you think it would be a good idea. For example, +occasionally you may land on a commit that broke something unrelated; +run + +------------------------------------------------- +$ git bisect-visualize +------------------------------------------------- + +which will run gitk and label the commit it chose with a marker that +says "bisect". Chose a safe-looking commit nearby, note its commit +id, and check it out with: + +------------------------------------------------- +$ git reset --hard fb47ddb2db... +------------------------------------------------- + +then test, run "bisect good" or "bisect bad" as appropriate, and +continue. + +Naming commits +-------------- + +We have seen several ways of naming commits already: + + - 40-hexdigit object name + - branch name: refers to the commit at the head of the given + branch + - tag name: refers to the commit pointed to by the given tag + (we've seen branches and tags are special cases of + <<how-git-stores-references,references>>). + - HEAD: refers to the head of the current branch + +There are many more; see the "SPECIFYING REVISIONS" section of the +gitlink:git-rev-parse[1] man page for the complete list of ways to +name revisions. Some examples: + +------------------------------------------------- +$ git show fb47ddb2 # the first few characters of the object name + # are usually enough to specify it uniquely +$ git show HEAD^ # the parent of the HEAD commit +$ git show HEAD^^ # the grandparent +$ git show HEAD~4 # the great-great-grandparent +------------------------------------------------- + +Recall that merge commits may have more than one parent; by default, +^ and ~ follow the first parent listed in the commit, but you can +also choose: + +------------------------------------------------- +$ git show HEAD^1 # show the first parent of HEAD +$ git show HEAD^2 # show the second parent of HEAD +------------------------------------------------- + +In addition to HEAD, there are several other special names for +commits: + +Merges (to be discussed later), as well as operations such as +git-reset, which change the currently checked-out commit, generally +set ORIG_HEAD to the value HEAD had before the current operation. + +The git-fetch operation always stores the head of the last fetched +branch in FETCH_HEAD. For example, if you run git fetch without +specifying a local branch as the target of the operation + +------------------------------------------------- +$ git fetch git://example.com/proj.git theirbranch +------------------------------------------------- + +the fetched commits will still be available from FETCH_HEAD. + +When we discuss merges we'll also see the special name MERGE_HEAD, +which refers to the other branch that we're merging in to the current +branch. + +The gitlink:git-rev-parse[1] command is a low-level command that is +occasionally useful for translating some name for a commit to the object +name for that commit: + +------------------------------------------------- +$ git rev-parse origin +e05db0fd4f31dde7005f075a84f96b360d05984b +------------------------------------------------- + +Creating tags +------------- + +We can also create a tag to refer to a particular commit; after +running + +------------------------------------------------- +$ git-tag stable-1 1b2e1d63ff +------------------------------------------------- + +You can use stable-1 to refer to the commit 1b2e1d63ff. + +This creates a "lightweight" tag. If the tag is a tag you wish to +share with others, and possibly sign cryptographically, then you +should create a tag object instead; see the gitlink:git-tag[1] man +page for details. + +Browsing revisions +------------------ + +The gitlink:git-log[1] command can show lists of commits. On its +own, it shows all commits reachable from the parent commit; but you +can also make more specific requests: + +------------------------------------------------- +$ git log v2.5.. # commits since (not reachable from) v2.5 +$ git log test..master # commits reachable from master but not test +$ git log master..test # ...reachable from test but not master +$ git log master...test # ...reachable from either test or master, + # but not both +$ git log --since="2 weeks ago" # commits from the last 2 weeks +$ git log Makefile # commits which modify Makefile +$ git log fs/ # ... which modify any file under fs/ +$ git log -S'foo()' # commits which add or remove any file data + # matching the string 'foo()' +------------------------------------------------- + +And of course you can combine all of these; the following finds +commits since v2.5 which touch the Makefile or any file under fs: + +------------------------------------------------- +$ git log v2.5.. Makefile fs/ +------------------------------------------------- + +You can also ask git log to show patches: + +------------------------------------------------- +$ git log -p +------------------------------------------------- + +See the "--pretty" option in the gitlink:git-log[1] man page for more +display options. + +Note that git log starts with the most recent commit and works +backwards through the parents; however, since git history can contain +multiple independent lines of development, the particular order that +commits are listed in may be somewhat arbitrary. + +Generating diffs +---------------- + +You can generate diffs between any two versions using +gitlink:git-diff[1]: + +------------------------------------------------- +$ git diff master..test +------------------------------------------------- + +Sometimes what you want instead is a set of patches: + +------------------------------------------------- +$ git format-patch master..test +------------------------------------------------- + +will generate a file with a patch for each commit reachable from test +but not from master. Note that if master also has commits which are +not reachable from test, then the combined result of these patches +will not be the same as the diff produced by the git-diff example. + +Viewing old file versions +------------------------- + +You can always view an old version of a file by just checking out the +correct revision first. But sometimes it is more convenient to be +able to view an old version of a single file without checking +anything out; this command does that: + +------------------------------------------------- +$ git show v2.5:fs/locks.c +------------------------------------------------- + +Before the colon may be anything that names a commit, and after it +may be any path to a file tracked by git. + +Examples +-------- + +Check whether two branches point at the same history +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Suppose you want to check whether two branches point at the same point +in history. + +------------------------------------------------- +$ git diff origin..master +------------------------------------------------- + +will tell you whether the contents of the project are the same at the +two branches; in theory, however, it's possible that the same project +contents could have been arrived at by two different historical +routes. You could compare the object names: + +------------------------------------------------- +$ git rev-list origin +e05db0fd4f31dde7005f075a84f96b360d05984b +$ git rev-list master +e05db0fd4f31dde7005f075a84f96b360d05984b +------------------------------------------------- + +Or you could recall that the ... operator selects all commits +contained reachable from either one reference or the other but not +both: so + +------------------------------------------------- +$ git log origin...master +------------------------------------------------- + +will return no commits when the two branches are equal. + +Find first tagged version including a given fix +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Suppose you know that the commit e05db0fd fixed a certain problem. +You'd like to find the earliest tagged release that contains that +fix. + +Of course, there may be more than one answer--if the history branched +after commit e05db0fd, then there could be multiple "earliest" tagged +releases. + +You could just visually inspect the commits since e05db0fd: + +------------------------------------------------- +$ gitk e05db0fd.. +------------------------------------------------- + +Or you can use gitlink:git-name-rev[1], which will give the commit a +name based on any tag it finds pointing to one of the commit's +descendants: + +------------------------------------------------- +$ git name-rev e05db0fd +e05db0fd tags/v1.5.0-rc1^0~23 +------------------------------------------------- + +The gitlink:git-describe[1] command does the opposite, naming the +revision using a tag on which the given commit is based: + +------------------------------------------------- +$ git describe e05db0fd +v1.5.0-rc0-ge05db0f +------------------------------------------------- + +but that may sometimes help you guess which tags might come after the +given commit. + +If you just want to verify whether a given tagged version contains a +given commit, you could use gitlink:git-merge-base[1]: + +------------------------------------------------- +$ git merge-base e05db0fd v1.5.0-rc1 +e05db0fd4f31dde7005f075a84f96b360d05984b +------------------------------------------------- + +The merge-base command finds a common ancestor of the given commits, +and always returns one or the other in the case where one is a +descendant of the other; so the above output shows that e05db0fd +actually is an ancestor of v1.5.0-rc1. + +Alternatively, note that + +------------------------------------------------- +$ git log v1.5.0-rc1..e05db0fd +------------------------------------------------- + +will produce empty output if and only if v1.5.0-rc1 includes e05db0fd, +because it outputs only commits that are not reachable from v1.5.0-rc1. + +As yet another alternative, the gitlink:git-show-branch[1] command lists +the commits reachable from its arguments with a display on the left-hand +side that indicates which arguments that commit is reachable from. So, +you can run something like + +------------------------------------------------- +$ git show-branch e05db0fd v1.5.0-rc0 v1.5.0-rc1 v1.5.0-rc2 +! [e05db0fd] Fix warnings in sha1_file.c - use C99 printf format if +available + ! [v1.5.0-rc0] GIT v1.5.0 preview + ! [v1.5.0-rc1] GIT v1.5.0-rc1 + ! [v1.5.0-rc2] GIT v1.5.0-rc2 +... +------------------------------------------------- + +then search for a line that looks like + +------------------------------------------------- ++ ++ [e05db0fd] Fix warnings in sha1_file.c - use C99 printf format if +available +------------------------------------------------- + +Which shows that e05db0fd is reachable from itself, from v1.5.0-rc1, and +from v1.5.0-rc2, but not from v1.5.0-rc0. + + +Developing with git +=================== + +Telling git your name +--------------------- + +Before creating any commits, you should introduce yourself to git. The +easiest way to do so is: + +------------------------------------------------ +$ cat >~/.gitconfig <<\EOF +[user] + name = Your Name Comes Here + email = you@yourdomain.example.com +EOF +------------------------------------------------ + +(See the "CONFIGURATION FILE" section of gitlink:git-config[1] for +details on the configuration file.) + + +Creating a new repository +------------------------- + +Creating a new repository from scratch is very easy: + +------------------------------------------------- +$ mkdir project +$ cd project +$ git init +------------------------------------------------- + +If you have some initial content (say, a tarball): + +------------------------------------------------- +$ tar -xzvf project.tar.gz +$ cd project +$ git init +$ git add . # include everything below ./ in the first commit: +$ git commit +------------------------------------------------- + +[[how-to-make-a-commit]] +how to make a commit +-------------------- + +Creating a new commit takes three steps: + + 1. Making some changes to the working directory using your + favorite editor. + 2. Telling git about your changes. + 3. Creating the commit using the content you told git about + in step 2. + +In practice, you can interleave and repeat steps 1 and 2 as many +times as you want: in order to keep track of what you want committed +at step 3, git maintains a snapshot of the tree's contents in a +special staging area called "the index." + +At the beginning, the content of the index will be identical to +that of the HEAD. The command "git diff --cached", which shows +the difference between the HEAD and the index, should therefore +produce no output at that point. + +Modifying the index is easy: + +To update the index with the new contents of a modified file, use + +------------------------------------------------- +$ git add path/to/file +------------------------------------------------- + +To add the contents of a new file to the index, use + +------------------------------------------------- +$ git add path/to/file +------------------------------------------------- + +To remove a file from the index and from the working tree, + +------------------------------------------------- +$ git rm path/to/file +------------------------------------------------- + +After each step you can verify that + +------------------------------------------------- +$ git diff --cached +------------------------------------------------- + +always shows the difference between the HEAD and the index file--this +is what you'd commit if you created the commit now--and that + +------------------------------------------------- +$ git diff +------------------------------------------------- + +shows the difference between the working tree and the index file. + +Note that "git add" always adds just the current contents of a file +to the index; further changes to the same file will be ignored unless +you run git-add on the file again. + +When you're ready, just run + +------------------------------------------------- +$ git commit +------------------------------------------------- + +and git will prompt you for a commit message and then create the new +commit. Check to make sure it looks like what you expected with + +------------------------------------------------- +$ git show +------------------------------------------------- + +As a special shortcut, + +------------------------------------------------- +$ git commit -a +------------------------------------------------- + +will update the index with any files that you've modified or removed +and create a commit, all in one step. + +A number of commands are useful for keeping track of what you're +about to commit: + +------------------------------------------------- +$ git diff --cached # difference between HEAD and the index; what + # would be commited if you ran "commit" now. +$ git diff # difference between the index file and your + # working directory; changes that would not + # be included if you ran "commit" now. +$ git status # a brief per-file summary of the above. +------------------------------------------------- + +creating good commit messages +----------------------------- + +Though not required, it's a good idea to begin the commit message +with a single short (less than 50 character) line summarizing the +change, followed by a blank line and then a more thorough +description. Tools that turn commits into email, for example, use +the first line on the Subject line and the rest of the commit in the +body. + +how to merge +------------ + +You can rejoin two diverging branches of development using +gitlink:git-merge[1]: + +------------------------------------------------- +$ git merge branchname +------------------------------------------------- + +merges the development in the branch "branchname" into the current +branch. If there are conflicts--for example, if the same file is +modified in two different ways in the remote branch and the local +branch--then you are warned; the output may look something like this: + +------------------------------------------------- +$ git pull . next +Trying really trivial in-index merge... +fatal: Merge requires file-level merging +Nope. +Merging HEAD with 77976da35a11db4580b80ae27e8d65caf5208086 +Merging: +15e2162 world +77976da goodbye +found 1 common ancestor(s): +d122ed4 initial +Auto-merging file.txt +CONFLICT (content): Merge conflict in file.txt +Automatic merge failed; fix conflicts and then commit the result. +------------------------------------------------- + +Conflict markers are left in the problematic files, and after +you resolve the conflicts manually, you can update the index +with the contents and run git commit, as you normally would when +creating a new file. + +If you examine the resulting commit using gitk, you will see that it +has two parents, one pointing to the top of the current branch, and +one to the top of the other branch. + +In more detail: + +[[resolving-a-merge]] +Resolving a merge +----------------- + +When a merge isn't resolved automatically, git leaves the index and +the working tree in a special state that gives you all the +information you need to help resolve the merge. + +Files with conflicts are marked specially in the index, so until you +resolve the problem and update the index, git commit will fail: + +------------------------------------------------- +$ git commit +file.txt: needs merge +------------------------------------------------- + +Also, git status will list those files as "unmerged". + +All of the changes that git was able to merge automatically are +already added to the index file, so gitlink:git-diff[1] shows only +the conflicts. Also, it uses a somewhat unusual syntax: + +------------------------------------------------- +$ git diff +diff --cc file.txt +index 802992c,2b60207..0000000 +--- a/file.txt ++++ b/file.txt +@@@ -1,1 -1,1 +1,5 @@@ +++<<<<<<< HEAD:file.txt + +Hello world +++======= ++ Goodbye +++>>>>>>> 77976da35a11db4580b80ae27e8d65caf5208086:file.txt +------------------------------------------------- + +Recall that the commit which will be commited after we resolve this +conflict will have two parents instead of the usual one: one parent +will be HEAD, the tip of the current branch; the other will be the +tip of the other branch, which is stored temporarily in MERGE_HEAD. + +The diff above shows the differences between the working-tree version +of file.txt and two previous version: one version from HEAD, and one +from MERGE_HEAD. So instead of preceding each line by a single "+" +or "-", it now uses two columns: the first column is used for +differences between the first parent and the working directory copy, +and the second for differences between the second parent and the +working directory copy. Thus after resolving the conflict in the +obvious way, the diff will look like: + +------------------------------------------------- +$ git diff +diff --cc file.txt +index 802992c,2b60207..0000000 +--- a/file.txt ++++ b/file.txt +@@@ -1,1 -1,1 +1,1 @@@ +- Hello world + -Goodbye +++Goodbye world +------------------------------------------------- + +This shows that our resolved version deleted "Hello world" from the +first parent, deleted "Goodbye" from the second parent, and added +"Goodbye world", which was previously absent from both. + +The gitlink:git-log[1] command also provides special help for merges: + +------------------------------------------------- +$ git log --merge +------------------------------------------------- + +This will list all commits which exist only on HEAD or on MERGE_HEAD, +and which touch an unmerged file. + +We can now add the resolved version to the index and commit: + +------------------------------------------------- +$ git add file.txt +$ git commit +------------------------------------------------- + +Note that the commit message will already be filled in for you with +some information about the merge. Normally you can just use this +default message unchanged, but you may add additional commentary of +your own if desired. + +[[undoing-a-merge]] +undoing a merge +--------------- + +If you get stuck and decide to just give up and throw the whole mess +away, you can always return to the pre-merge state with + +------------------------------------------------- +$ git reset --hard HEAD +------------------------------------------------- + +Or, if you've already commited the merge that you want to throw away, + +------------------------------------------------- +$ git reset --hard HEAD^ +------------------------------------------------- + +However, this last command can be dangerous in some cases--never +throw away a commit you have already committed if that commit may +itself have been merged into another branch, as doing so may confuse +further merges. + +Fast-forward merges +------------------- + +There is one special case not mentioned above, which is treated +differently. Normally, a merge results in a merge commit, with two +parents, one pointing at each of the two lines of development that +were merged. + +However, if one of the two lines of development is completely +contained within the other--so every commit present in the one is +already contained in the other--then git just performs a +<<fast-forwards,fast forward>>; the head of the current branch is +moved forward to point at the head of the merged-in branch, without +any new commits being created. + +Fixing mistakes +--------------- + +If you've messed up the working tree, but haven't yet committed your +mistake, you can return the entire working tree to the last committed +state with + +------------------------------------------------- +$ git reset --hard HEAD +------------------------------------------------- + +If you make a commit that you later wish you hadn't, there are two +fundamentally different ways to fix the problem: + + 1. You can create a new commit that undoes whatever was done + by the previous commit. This is the correct thing if your + mistake has already been made public. + + 2. You can go back and modify the old commit. You should + never do this if you have already made the history public; + git does not normally expect the "history" of a project to + change, and cannot correctly perform repeated merges from + a branch that has had its history changed. + +Fixing a mistake with a new commit +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Creating a new commit that reverts an earlier change is very easy; +just pass the gitlink:git-revert[1] command a reference to the bad +commit; for example, to revert the most recent commit: + +------------------------------------------------- +$ git revert HEAD +------------------------------------------------- + +This will create a new commit which undoes the change in HEAD. You +will be given a chance to edit the commit message for the new commit. + +You can also revert an earlier change, for example, the next-to-last: + +------------------------------------------------- +$ git revert HEAD^ +------------------------------------------------- + +In this case git will attempt to undo the old change while leaving +intact any changes made since then. If more recent changes overlap +with the changes to be reverted, then you will be asked to fix +conflicts manually, just as in the case of <<resolving-a-merge, +resolving a merge>>. + +Fixing a mistake by editing history +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +If the problematic commit is the most recent commit, and you have not +yet made that commit public, then you may just +<<undoing-a-merge,destroy it using git-reset>>. + +Alternatively, you +can edit the working directory and update the index to fix your +mistake, just as if you were going to <<how-to-make-a-commit,create a +new commit>>, then run + +------------------------------------------------- +$ git commit --amend +------------------------------------------------- + +which will replace the old commit by a new commit incorporating your +changes, giving you a chance to edit the old commit message first. + +Again, you should never do this to a commit that may already have +been merged into another branch; use gitlink:git-revert[1] instead in +that case. + +It is also possible to edit commits further back in the history, but +this is an advanced topic to be left for +<<cleaning-up-history,another chapter>>. + +Checking out an old version of a file +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In the process of undoing a previous bad change, you may find it +useful to check out an older version of a particular file using +gitlink:git-checkout[1]. We've used git checkout before to switch +branches, but it has quite different behavior if it is given a path +name: the command + +------------------------------------------------- +$ git checkout HEAD^ path/to/file +------------------------------------------------- + +replaces path/to/file by the contents it had in the commit HEAD^, and +also updates the index to match. It does not change branches. + +If you just want to look at an old version of the file, without +modifying the working directory, you can do that with +gitlink:git-show[1]: + +------------------------------------------------- +$ git show HEAD^ path/to/file +------------------------------------------------- + +which will display the given version of the file. + +Ensuring good performance +------------------------- + +On large repositories, git depends on compression to keep the history +information from taking up to much space on disk or in memory. + +This compression is not performed automatically. Therefore you +should occasionally run gitlink:git-gc[1]: + +------------------------------------------------- +$ git gc +------------------------------------------------- + +to recompress the archive. This can be very time-consuming, so +you may prefer to run git-gc when you are not doing other work. + +Ensuring reliability +-------------------- + +Checking the repository for corruption +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The gitlink:git-fsck[1] command runs a number of self-consistency checks +on the repository, and reports on any problems. This may take some +time. The most common warning by far is about "dangling" objects: + +------------------------------------------------- +$ git fsck +dangling commit 7281251ddd2a61e38657c827739c57015671a6b3 +dangling commit 2706a059f258c6b245f298dc4ff2ccd30ec21a63 +dangling commit 13472b7c4b80851a1bc551779171dcb03655e9b5 +dangling blob 218761f9d90712d37a9c5e36f406f92202db07eb +dangling commit bf093535a34a4d35731aa2bd90fe6b176302f14f +dangling commit 8e4bec7f2ddaa268bef999853c25755452100f8e +dangling tree d50bb86186bf27b681d25af89d3b5b68382e4085 +dangling tree b24c2473f1fd3d91352a624795be026d64c8841f +... +------------------------------------------------- + +Dangling objects are objects that are harmless, but also unnecessary; +you can remove them at any time with gitlink:git-prune[1] or the --prune +option to gitlink:git-gc[1]: + +------------------------------------------------- +$ git gc --prune +------------------------------------------------- + +This may be time-consuming. Unlike most other git operations (including +git-gc when run without any options), it is not safe to prune while +other git operations are in progress in the same repository. + +For more about dangling objects, see <<dangling-objects>>. + + +Recovering lost changes +~~~~~~~~~~~~~~~~~~~~~~~ + +Reflogs +^^^^^^^ + +Say you modify a branch with gitlink:git-reset[1] --hard, and then +realize that the branch was the only reference you had to that point in +history. + +Fortunately, git also keeps a log, called a "reflog", of all the +previous values of each branch. So in this case you can still find the +old history using, for example, + +------------------------------------------------- +$ git log master@{1} +------------------------------------------------- + +This lists the commits reachable from the previous version of the head. +This syntax can be used to with any git command that accepts a commit, +not just with git log. Some other examples: + +------------------------------------------------- +$ git show master@{2} # See where the branch pointed 2, +$ git show master@{3} # 3, ... changes ago. +$ gitk master@{yesterday} # See where it pointed yesterday, +$ gitk master@{"1 week ago"} # ... or last week +------------------------------------------------- + +The reflogs are kept by default for 30 days, after which they may be +pruned. See gitlink:git-reflog[1] and gitlink:git-gc[1] to learn +how to control this pruning, and see the "SPECIFYING REVISIONS" +section of gitlink:git-rev-parse[1] for details. + +Note that the reflog history is very different from normal git history. +While normal history is shared by every repository that works on the +same project, the reflog history is not shared: it tells you only about +how the branches in your local repository have changed over time. + +Examining dangling objects +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +In some situations the reflog may not be able to save you. For +example, suppose you delete a branch, then realize you need the history +it pointed you. The reflog is also deleted; however, if you have not +yet pruned the repository, then you may still be able to find +the lost commits; run git-fsck and watch for output that mentions +"dangling commits": + +------------------------------------------------- +$ git fsck +dangling commit 7281251ddd2a61e38657c827739c57015671a6b3 +dangling commit 2706a059f258c6b245f298dc4ff2ccd30ec21a63 +dangling commit 13472b7c4b80851a1bc551779171dcb03655e9b5 +... +------------------------------------------------- + +You can examine +one of those dangling commits with, for example, + +------------------------------------------------ +$ gitk 7281251ddd --not --all +------------------------------------------------ + +which does what it sounds like: it says that you want to see the commit +history that is described by the dangling commit(s), but not the +history that is described by all your existing branches and tags. Thus +you get exactly the history reachable from that commit that is lost. +(And notice that it might not be just one commit: we only report the +"tip of the line" as being dangling, but there might be a whole deep +and complex commit history that was gotten dropped.) + +If you decide you want the history back, you can always create a new +reference pointing to it, for example, a new branch: + +------------------------------------------------ +$ git branch recovered-branch 7281251ddd +------------------------------------------------ + + +Sharing development with others +=============================== + +[[getting-updates-with-git-pull]] +Getting updates with git pull +----------------------------- + +After you clone a repository and make a few changes of your own, you +may wish to check the original repository for updates and merge them +into your own work. + +We have already seen <<Updating-a-repository-with-git-fetch,how to +keep remote tracking branches up to date>> with gitlink:git-fetch[1], +and how to merge two branches. So you can merge in changes from the +original repository's master branch with: + +------------------------------------------------- +$ git fetch +$ git merge origin/master +------------------------------------------------- + +However, the gitlink:git-pull[1] command provides a way to do this in +one step: + +------------------------------------------------- +$ git pull origin master +------------------------------------------------- + +In fact, "origin" is normally the default repository to pull from, +and the default branch is normally the HEAD of the remote repository, +so often you can accomplish the above with just + +------------------------------------------------- +$ git pull +------------------------------------------------- + +See the descriptions of the branch.<name>.remote and +branch.<name>.merge options in gitlink:git-config[1] to learn +how to control these defaults depending on the current branch. + +In addition to saving you keystrokes, "git pull" also helps you by +producing a default commit message documenting the branch and +repository that you pulled from. + +(But note that no such commit will be created in the case of a +<<fast-forwards,fast forward>>; instead, your branch will just be +updated to point to the latest commit from the upstream branch). + +The git-pull command can also be given "." as the "remote" repository, +in which case it just merges in a branch from the current repository; so +the commands + +------------------------------------------------- +$ git pull . branch +$ git merge branch +------------------------------------------------- + +are roughly equivalent. The former is actually very commonly used. + +Submitting patches to a project +------------------------------- + +If you just have a few changes, the simplest way to submit them may +just be to send them as patches in email: + +First, use gitlink:git-format-patch[1]; for example: + +------------------------------------------------- +$ git format-patch origin +------------------------------------------------- + +will produce a numbered series of files in the current directory, one +for each patch in the current branch but not in origin/HEAD. + +You can then import these into your mail client and send them by +hand. However, if you have a lot to send at once, you may prefer to +use the gitlink:git-send-email[1] script to automate the process. +Consult the mailing list for your project first to determine how they +prefer such patches be handled. + +Importing patches to a project +------------------------------ + +Git also provides a tool called gitlink:git-am[1] (am stands for +"apply mailbox"), for importing such an emailed series of patches. +Just save all of the patch-containing messages, in order, into a +single mailbox file, say "patches.mbox", then run + +------------------------------------------------- +$ git am -3 patches.mbox +------------------------------------------------- + +Git will apply each patch in order; if any conflicts are found, it +will stop, and you can fix the conflicts as described in +"<<resolving-a-merge,Resolving a merge>>". (The "-3" option tells +git to perform a merge; if you would prefer it just to abort and +leave your tree and index untouched, you may omit that option.) + +Once the index is updated with the results of the conflict +resolution, instead of creating a new commit, just run + +------------------------------------------------- +$ git am --resolved +------------------------------------------------- + +and git will create the commit for you and continue applying the +remaining patches from the mailbox. + +The final result will be a series of commits, one for each patch in +the original mailbox, with authorship and commit log message each +taken from the message containing each patch. + +[[setting-up-a-public-repository]] +Setting up a public repository +------------------------------ + +Another way to submit changes to a project is to simply tell the +maintainer of that project to pull from your repository, exactly as +you did in the section "<<getting-updates-with-git-pull, Getting +updates with git pull>>". + +If you and maintainer both have accounts on the same machine, then +then you can just pull changes from each other's repositories +directly; note that all of the command (gitlink:git-clone[1], +git-fetch[1], git-pull[1], etc.) which accept a URL as an argument +will also accept a local file patch; so, for example, you can +use + +------------------------------------------------- +$ git clone /path/to/repository +$ git pull /path/to/other/repository +------------------------------------------------- + +If this sort of setup is inconvenient or impossible, another (more +common) option is to set up a public repository on a public server. +This also allows you to cleanly separate private work in progress +from publicly visible work. + +You will continue to do your day-to-day work in your personal +repository, but periodically "push" changes from your personal +repository into your public repository, allowing other developers to +pull from that repository. So the flow of changes, in a situation +where there is one other developer with a public repository, looks +like this: + + you push + your personal repo ------------------> your public repo + ^ | + | | + | you pull | they pull + | | + | | + | they push V + their public repo <------------------- their repo + +Now, assume your personal repository is in the directory ~/proj. We +first create a new clone of the repository: + +------------------------------------------------- +$ git clone --bare proj-clone.git +------------------------------------------------- + +The resulting directory proj-clone.git will contains a "bare" git +repository--it is just the contents of the ".git" directory, without +a checked-out copy of a working directory. + +Next, copy proj-clone.git to the server where you plan to host the +public repository. You can use scp, rsync, or whatever is most +convenient. + +If somebody else maintains the public server, they may already have +set up a git service for you, and you may skip to the section +"<<pushing-changes-to-a-public-repository,Pushing changes to a public +repository>>", below. + +Otherwise, the following sections explain how to export your newly +created public repository: + +[[exporting-via-http]] +Exporting a git repository via http +----------------------------------- + +The git protocol gives better performance and reliability, but on a +host with a web server set up, http exports may be simpler to set up. + +All you need to do is place the newly created bare git repository in +a directory that is exported by the web server, and make some +adjustments to give web clients some extra information they need: + +------------------------------------------------- +$ mv proj.git /home/you/public_html/proj.git +$ cd proj.git +$ git update-server-info +$ chmod a+x hooks/post-update +------------------------------------------------- + +(For an explanation of the last two lines, see +gitlink:git-update-server-info[1], and the documentation +link:hooks.txt[Hooks used by git].) + +Advertise the url of proj.git. Anybody else should then be able to +clone or pull from that url, for example with a commandline like: + +------------------------------------------------- +$ git clone http://yourserver.com/~you/proj.git +------------------------------------------------- + +(See also +link:howto/setup-git-server-over-http.txt[setup-git-server-over-http] +for a slightly more sophisticated setup using WebDAV which also +allows pushing over http.) + +[[exporting-via-git]] +Exporting a git repository via the git protocol +----------------------------------------------- + +This is the preferred method. + +For now, we refer you to the gitlink:git-daemon[1] man page for +instructions. (See especially the examples section.) + +[[pushing-changes-to-a-public-repository]] +Pushing changes to a public repository +-------------------------------------- + +Note that the two techniques outline above (exporting via +<<exporting-via-http,http>> or <<exporting-via-git,git>>) allow other +maintainers to fetch your latest changes, but they do not allow write +access, which you will need to update the public repository with the +latest changes created in your private repository. + +The simplest way to do this is using gitlink:git-push[1] and ssh; to +update the remote branch named "master" with the latest state of your +branch named "master", run + +------------------------------------------------- +$ git push ssh://yourserver.com/~you/proj.git master:master +------------------------------------------------- + +or just + +------------------------------------------------- +$ git push ssh://yourserver.com/~you/proj.git master +------------------------------------------------- + +As with git-fetch, git-push will complain if this does not result in +a <<fast-forwards,fast forward>>. Normally this is a sign of +something wrong. However, if you are sure you know what you're +doing, you may force git-push to perform the update anyway by +proceeding the branch name by a plus sign: + +------------------------------------------------- +$ git push ssh://yourserver.com/~you/proj.git +master +------------------------------------------------- + +As with git-fetch, you may also set up configuration options to +save typing; so, for example, after + +------------------------------------------------- +$ cat >.git/config <<EOF +[remote "public-repo"] + url = ssh://yourserver.com/~you/proj.git +EOF +------------------------------------------------- + +you should be able to perform the above push with just + +------------------------------------------------- +$ git push public-repo master +------------------------------------------------- + +See the explanations of the remote.<name>.url, branch.<name>.remote, +and remote.<name>.push options in gitlink:git-config[1] for +details. + +Setting up a shared repository +------------------------------ + +Another way to collaborate is by using a model similar to that +commonly used in CVS, where several developers with special rights +all push to and pull from a single shared repository. See +link:cvs-migration.txt[git for CVS users] for instructions on how to +set this up. + +Allow web browsing of a repository +---------------------------------- + +The gitweb cgi script provides users an easy way to browse your +project's files and history without having to install git; see the file +gitweb/README in the git source tree for instructions on setting it up. + +Examples +-------- + +TODO: topic branches, typical roles as in everyday.txt, ? + + +[[cleaning-up-history]] +Rewriting history and maintaining patch series +============================================== + +Normally commits are only added to a project, never taken away or +replaced. Git is designed with this assumption, and violating it will +cause git's merge machinery (for example) to do the wrong thing. + +However, there is a situation in which it can be useful to violate this +assumption. + +Creating the perfect patch series +--------------------------------- + +Suppose you are a contributor to a large project, and you want to add a +complicated feature, and to present it to the other developers in a way +that makes it easy for them to read your changes, verify that they are +correct, and understand why you made each change. + +If you present all of your changes as a single patch (or commit), they +may find it is too much to digest all at once. + +If you present them with the entire history of your work, complete with +mistakes, corrections, and dead ends, they may be overwhelmed. + +So the ideal is usually to produce a series of patches such that: + + 1. Each patch can be applied in order. + + 2. Each patch includes a single logical change, together with a + message explaining the change. + + 3. No patch introduces a regression: after applying any initial + part of the series, the resulting project still compiles and + works, and has no bugs that it didn't have before. + + 4. The complete series produces the same end result as your own + (probably much messier!) development process did. + +We will introduce some tools that can help you do this, explain how to +use them, and then explain some of the problems that can arise because +you are rewriting history. + +Keeping a patch series up to date using git-rebase +-------------------------------------------------- + +Suppose you have a series of commits in a branch "mywork", which +originally branched off from "origin". + +Suppose you create a branch "mywork" on a remote-tracking branch +"origin", and created some commits on top of it: + +------------------------------------------------- +$ git checkout -b mywork origin +$ vi file.txt +$ git commit +$ vi otherfile.txt +$ git commit +... +------------------------------------------------- + +You have performed no merges into mywork, so it is just a simple linear +sequence of patches on top of "origin": + + + o--o--o <-- origin + \ + o--o--o <-- mywork + +Some more interesting work has been done in the upstream project, and +"origin" has advanced: + + o--o--O--o--o--o <-- origin + \ + a--b--c <-- mywork + +At this point, you could use "pull" to merge your changes back in; +the result would create a new merge commit, like this: + + + o--o--O--o--o--o <-- origin + \ \ + a--b--c--m <-- mywork + +However, if you prefer to keep the history in mywork a simple series of +commits without any merges, you may instead choose to use +gitlink:git-rebase[1]: + +------------------------------------------------- +$ git checkout mywork +$ git rebase origin +------------------------------------------------- + +This will remove each of your commits from mywork, temporarily saving +them as patches (in a directory named ".dotest"), update mywork to +point at the latest version of origin, then apply each of the saved +patches to the new mywork. The result will look like: + + + o--o--O--o--o--o <-- origin + \ + a'--b'--c' <-- mywork + +In the process, it may discover conflicts. In that case it will stop +and allow you to fix the conflicts; after fixing conflicts, use "git +add" to update the index with those contents, and then, instead of +running git-commit, just run + +------------------------------------------------- +$ git rebase --continue +------------------------------------------------- + +and git will continue applying the rest of the patches. + +At any point you may use the --abort option to abort this process and +return mywork to the state it had before you started the rebase: + +------------------------------------------------- +$ git rebase --abort +------------------------------------------------- + +Reordering or selecting from a patch series +------------------------------------------- + +Given one existing commit, the gitlink:git-cherry-pick[1] command +allows you to apply the change introduced by that commit and create a +new commit that records it. So, for example, if "mywork" points to a +series of patches on top of "origin", you might do something like: + +------------------------------------------------- +$ git checkout -b mywork-new origin +$ gitk origin..mywork & +------------------------------------------------- + +And browse through the list of patches in the mywork branch using gitk, +applying them (possibly in a different order) to mywork-new using +cherry-pick, and possibly modifying them as you go using commit +--amend. + +Another technique is to use git-format-patch to create a series of +patches, then reset the state to before the patches: + +------------------------------------------------- +$ git format-patch origin +$ git reset --hard origin +------------------------------------------------- + +Then modify, reorder, or eliminate patches as preferred before applying +them again with gitlink:git-am[1]. + +Other tools +----------- + +There are numerous other tools, such as stgit, which exist for the +purpose of maintaining a patch series. These are out of the scope of +this manual. + +Problems with rewriting history +------------------------------- + +The primary problem with rewriting the history of a branch has to do +with merging. Suppose somebody fetches your branch and merges it into +their branch, with a result something like this: + + o--o--O--o--o--o <-- origin + \ \ + t--t--t--m <-- their branch: + +Then suppose you modify the last three commits: + + o--o--o <-- new head of origin + / + o--o--O--o--o--o <-- old head of origin + +If we examined all this history together in one repository, it will +look like: + + o--o--o <-- new head of origin + / + o--o--O--o--o--o <-- old head of origin + \ \ + t--t--t--m <-- their branch: + +Git has no way of knowing that the new head is an updated version of +the old head; it treats this situation exactly the same as it would if +two developers had independently done the work on the old and new heads +in parallel. At this point, if someone attempts to merge the new head +in to their branch, git will attempt to merge together the two (old and +new) lines of development, instead of trying to replace the old by the +new. The results are likely to be unexpected. + +You may still choose to publish branches whose history is rewritten, +and it may be useful for others to be able to fetch those branches in +order to examine or test them, but they should not attempt to pull such +branches into their own work. + +For true distributed development that supports proper merging, +published branches should never be rewritten. + +Advanced branch management +========================== + +Fetching individual branches +---------------------------- + +Instead of using gitlink:git-remote[1], you can also choose just +to update one branch at a time, and to store it locally under an +arbitrary name: + +------------------------------------------------- +$ git fetch origin todo:my-todo-work +------------------------------------------------- + +The first argument, "origin", just tells git to fetch from the +repository you originally cloned from. The second argument tells git +to fetch the branch named "todo" from the remote repository, and to +store it locally under the name refs/heads/my-todo-work. + +You can also fetch branches from other repositories; so + +------------------------------------------------- +$ git fetch git://example.com/proj.git master:example-master +------------------------------------------------- + +will create a new branch named "example-master" and store in it the +branch named "master" from the repository at the given URL. If you +already have a branch named example-master, it will attempt to +"fast-forward" to the commit given by example.com's master branch. So +next we explain what a fast-forward is: + +[[fast-forwards]] +Understanding git history: fast-forwards +---------------------------------------- + +In the previous example, when updating an existing branch, "git +fetch" checks to make sure that the most recent commit on the remote +branch is a descendant of the most recent commit on your copy of the +branch before updating your copy of the branch to point at the new +commit. Git calls this process a "fast forward". + +A fast forward looks something like this: + + o--o--o--o <-- old head of the branch + \ + o--o--o <-- new head of the branch + + +In some cases it is possible that the new head will *not* actually be +a descendant of the old head. For example, the developer may have +realized she made a serious mistake, and decided to backtrack, +resulting in a situation like: + + o--o--o--o--a--b <-- old head of the branch + \ + o--o--o <-- new head of the branch + + + +In this case, "git fetch" will fail, and print out a warning. + +In that case, you can still force git to update to the new head, as +described in the following section. However, note that in the +situation above this may mean losing the commits labeled "a" and "b", +unless you've already created a reference of your own pointing to +them. + +Forcing git fetch to do non-fast-forward updates +------------------------------------------------ + +If git fetch fails because the new head of a branch is not a +descendant of the old head, you may force the update with: + +------------------------------------------------- +$ git fetch git://example.com/proj.git +master:refs/remotes/example/master +------------------------------------------------- + +Note the addition of the "+" sign. Be aware that commits which the +old version of example/master pointed at may be lost, as we saw in +the previous section. + +Configuring remote branches +--------------------------- + +We saw above that "origin" is just a shortcut to refer to the +repository which you originally cloned from. This information is +stored in git configuration variables, which you can see using +gitlink:git-config[1]: + +------------------------------------------------- +$ git config -l +core.repositoryformatversion=0 +core.filemode=true +core.logallrefupdates=true +remote.origin.url=git://git.kernel.org/pub/scm/git/git.git +remote.origin.fetch=+refs/heads/*:refs/remotes/origin/* +branch.master.remote=origin +branch.master.merge=refs/heads/master +------------------------------------------------- + +If there are other repositories that you also use frequently, you can +create similar configuration options to save typing; for example, +after + +------------------------------------------------- +$ git config remote.example.url git://example.com/proj.git +------------------------------------------------- + +then the following two commands will do the same thing: + +------------------------------------------------- +$ git fetch git://example.com/proj.git master:refs/remotes/example/master +$ git fetch example master:refs/remotes/example/master +------------------------------------------------- + +Even better, if you add one more option: + +------------------------------------------------- +$ git config remote.example.fetch master:refs/remotes/example/master +------------------------------------------------- + +then the following commands will all do the same thing: + +------------------------------------------------- +$ git fetch git://example.com/proj.git master:ref/remotes/example/master +$ git fetch example master:ref/remotes/example/master +$ git fetch example example/master +$ git fetch example +------------------------------------------------- + +You can also add a "+" to force the update each time: + +------------------------------------------------- +$ git config remote.example.fetch +master:ref/remotes/example/master +------------------------------------------------- + +Don't do this unless you're sure you won't mind "git fetch" possibly +throwing away commits on mybranch. + +Also note that all of the above configuration can be performed by +directly editing the file .git/config instead of using +gitlink:git-config[1]. + +See gitlink:git-config[1] for more details on the configuration +options mentioned above. + + +Git internals +============= + +There are two object abstractions: the "object database", and the +"current directory cache" aka "index". + +The Object Database +------------------- + +The object database is literally just a content-addressable collection +of objects. All objects are named by their content, which is +approximated by the SHA1 hash of the object itself. Objects may refer +to other objects (by referencing their SHA1 hash), and so you can +build up a hierarchy of objects. + +All objects have a statically determined "type" aka "tag", which is +determined at object creation time, and which identifies the format of +the object (i.e. how it is used, and how it can refer to other +objects). There are currently four different object types: "blob", +"tree", "commit" and "tag". + +A "blob" object cannot refer to any other object, and is, like the type +implies, a pure storage object containing some user data. It is used to +actually store the file data, i.e. a blob object is associated with some +particular version of some file. + +A "tree" object is an object that ties one or more "blob" objects into a +directory structure. In addition, a tree object can refer to other tree +objects, thus creating a directory hierarchy. + +A "commit" object ties such directory hierarchies together into +a DAG of revisions - each "commit" is associated with exactly one tree +(the directory hierarchy at the time of the commit). In addition, a +"commit" refers to one or more "parent" commit objects that describe the +history of how we arrived at that directory hierarchy. + +As a special case, a commit object with no parents is called the "root" +object, and is the point of an initial project commit. Each project +must have at least one root, and while you can tie several different +root objects together into one project by creating a commit object which +has two or more separate roots as its ultimate parents, that's probably +just going to confuse people. So aim for the notion of "one root object +per project", even if git itself does not enforce that. + +A "tag" object symbolically identifies and can be used to sign other +objects. It contains the identifier and type of another object, a +symbolic name (of course!) and, optionally, a signature. + +Regardless of object type, all objects share the following +characteristics: they are all deflated with zlib, and have a header +that not only specifies their type, but also provides size information +about the data in the object. It's worth noting that the SHA1 hash +that is used to name the object is the hash of the original data +plus this header, so `sha1sum` 'file' does not match the object name +for 'file'. +(Historical note: in the dawn of the age of git the hash +was the sha1 of the 'compressed' object.) + +As a result, the general consistency of an object can always be tested +independently of the contents or the type of the object: all objects can +be validated by verifying that (a) their hashes match the content of the +file and (b) the object successfully inflates to a stream of bytes that +forms a sequence of <ascii type without space> + <space> + <ascii decimal +size> + <byte\0> + <binary object data>. + +The structured objects can further have their structure and +connectivity to other objects verified. This is generally done with +the `git-fsck` program, which generates a full dependency graph +of all objects, and verifies their internal consistency (in addition +to just verifying their superficial consistency through the hash). + +The object types in some more detail: + +Blob Object +----------- + +A "blob" object is nothing but a binary blob of data, and doesn't +refer to anything else. There is no signature or any other +verification of the data, so while the object is consistent (it 'is' +indexed by its sha1 hash, so the data itself is certainly correct), it +has absolutely no other attributes. No name associations, no +permissions. It is purely a blob of data (i.e. normally "file +contents"). + +In particular, since the blob is entirely defined by its data, if two +files in a directory tree (or in multiple different versions of the +repository) have the same contents, they will share the same blob +object. The object is totally independent of its location in the +directory tree, and renaming a file does not change the object that +file is associated with in any way. + +A blob is typically created when gitlink:git-update-index[1] +is run, and its data can be accessed by gitlink:git-cat-file[1]. + +Tree Object +----------- + +The next hierarchical object type is the "tree" object. A tree object +is a list of mode/name/blob data, sorted by name. Alternatively, the +mode data may specify a directory mode, in which case instead of +naming a blob, that name is associated with another TREE object. + +Like the "blob" object, a tree object is uniquely determined by the +set contents, and so two separate but identical trees will always +share the exact same object. This is true at all levels, i.e. it's +true for a "leaf" tree (which does not refer to any other trees, only +blobs) as well as for a whole subdirectory. + +For that reason a "tree" object is just a pure data abstraction: it +has no history, no signatures, no verification of validity, except +that since the contents are again protected by the hash itself, we can +trust that the tree is immutable and its contents never change. + +So you can trust the contents of a tree to be valid, the same way you +can trust the contents of a blob, but you don't know where those +contents 'came' from. + +Side note on trees: since a "tree" object is a sorted list of +"filename+content", you can create a diff between two trees without +actually having to unpack two trees. Just ignore all common parts, +and your diff will look right. In other words, you can effectively +(and efficiently) tell the difference between any two random trees by +O(n) where "n" is the size of the difference, rather than the size of +the tree. + +Side note 2 on trees: since the name of a "blob" depends entirely and +exclusively on its contents (i.e. there are no names or permissions +involved), you can see trivial renames or permission changes by +noticing that the blob stayed the same. However, renames with data +changes need a smarter "diff" implementation. + +A tree is created with gitlink:git-write-tree[1] and +its data can be accessed by gitlink:git-ls-tree[1]. +Two trees can be compared with gitlink:git-diff-tree[1]. + +Commit Object +------------- + +The "commit" object is an object that introduces the notion of +history into the picture. In contrast to the other objects, it +doesn't just describe the physical state of a tree, it describes how +we got there, and why. + +A "commit" is defined by the tree-object that it results in, the +parent commits (zero, one or more) that led up to that point, and a +comment on what happened. Again, a commit is not trusted per se: +the contents are well-defined and "safe" due to the cryptographically +strong signatures at all levels, but there is no reason to believe +that the tree is "good" or that the merge information makes sense. +The parents do not have to actually have any relationship with the +result, for example. + +Note on commits: unlike real SCM's, commits do not contain +rename information or file mode change information. All of that is +implicit in the trees involved (the result tree, and the result trees +of the parents), and describing that makes no sense in this idiotic +file manager. + +A commit is created with gitlink:git-commit-tree[1] and +its data can be accessed by gitlink:git-cat-file[1]. + +Trust +----- + +An aside on the notion of "trust". Trust is really outside the scope +of "git", but it's worth noting a few things. First off, since +everything is hashed with SHA1, you 'can' trust that an object is +intact and has not been messed with by external sources. So the name +of an object uniquely identifies a known state - just not a state that +you may want to trust. + +Furthermore, since the SHA1 signature of a commit refers to the +SHA1 signatures of the tree it is associated with and the signatures +of the parent, a single named commit specifies uniquely a whole set +of history, with full contents. You can't later fake any step of the +way once you have the name of a commit. + +So to introduce some real trust in the system, the only thing you need +to do is to digitally sign just 'one' special note, which includes the +name of a top-level commit. Your digital signature shows others +that you trust that commit, and the immutability of the history of +commits tells others that they can trust the whole history. + +In other words, you can easily validate a whole archive by just +sending out a single email that tells the people the name (SHA1 hash) +of the top commit, and digitally sign that email using something +like GPG/PGP. + +To assist in this, git also provides the tag object... + +Tag Object +---------- + +Git provides the "tag" object to simplify creating, managing and +exchanging symbolic and signed tokens. The "tag" object at its +simplest simply symbolically identifies another object by containing +the sha1, type and symbolic name. + +However it can optionally contain additional signature information +(which git doesn't care about as long as there's less than 8k of +it). This can then be verified externally to git. + +Note that despite the tag features, "git" itself only handles content +integrity; the trust framework (and signature provision and +verification) has to come from outside. + +A tag is created with gitlink:git-mktag[1], +its data can be accessed by gitlink:git-cat-file[1], +and the signature can be verified by +gitlink:git-verify-tag[1]. + + +The "index" aka "Current Directory Cache" +----------------------------------------- + +The index is a simple binary file, which contains an efficient +representation of a virtual directory content at some random time. It +does so by a simple array that associates a set of names, dates, +permissions and content (aka "blob") objects together. The cache is +always kept ordered by name, and names are unique (with a few very +specific rules) at any point in time, but the cache has no long-term +meaning, and can be partially updated at any time. + +In particular, the index certainly does not need to be consistent with +the current directory contents (in fact, most operations will depend on +different ways to make the index 'not' be consistent with the directory +hierarchy), but it has three very important attributes: + +'(a) it can re-generate the full state it caches (not just the +directory structure: it contains pointers to the "blob" objects so +that it can regenerate the data too)' + +As a special case, there is a clear and unambiguous one-way mapping +from a current directory cache to a "tree object", which can be +efficiently created from just the current directory cache without +actually looking at any other data. So a directory cache at any one +time uniquely specifies one and only one "tree" object (but has +additional data to make it easy to match up that tree object with what +has happened in the directory) + +'(b) it has efficient methods for finding inconsistencies between that +cached state ("tree object waiting to be instantiated") and the +current state.' + +'(c) it can additionally efficiently represent information about merge +conflicts between different tree objects, allowing each pathname to be +associated with sufficient information about the trees involved that +you can create a three-way merge between them.' + +Those are the three ONLY things that the directory cache does. It's a +cache, and the normal operation is to re-generate it completely from a +known tree object, or update/compare it with a live tree that is being +developed. If you blow the directory cache away entirely, you generally +haven't lost any information as long as you have the name of the tree +that it described. + +At the same time, the index is at the same time also the +staging area for creating new trees, and creating a new tree always +involves a controlled modification of the index file. In particular, +the index file can have the representation of an intermediate tree that +has not yet been instantiated. So the index can be thought of as a +write-back cache, which can contain dirty information that has not yet +been written back to the backing store. + + + +The Workflow +------------ + +Generally, all "git" operations work on the index file. Some operations +work *purely* on the index file (showing the current state of the +index), but most operations move data to and from the index file. Either +from the database or from the working directory. Thus there are four +main combinations: + +working directory -> index +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +You update the index with information from the working directory with +the gitlink:git-update-index[1] command. You +generally update the index information by just specifying the filename +you want to update, like so: + +------------------------------------------------- +$ git-update-index filename +------------------------------------------------- + +but to avoid common mistakes with filename globbing etc, the command +will not normally add totally new entries or remove old entries, +i.e. it will normally just update existing cache entries. + +To tell git that yes, you really do realize that certain files no +longer exist, or that new files should be added, you +should use the `--remove` and `--add` flags respectively. + +NOTE! A `--remove` flag does 'not' mean that subsequent filenames will +necessarily be removed: if the files still exist in your directory +structure, the index will be updated with their new status, not +removed. The only thing `--remove` means is that update-cache will be +considering a removed file to be a valid thing, and if the file really +does not exist any more, it will update the index accordingly. + +As a special case, you can also do `git-update-index --refresh`, which +will refresh the "stat" information of each index to match the current +stat information. It will 'not' update the object status itself, and +it will only update the fields that are used to quickly test whether +an object still matches its old backing store object. + +index -> object database +~~~~~~~~~~~~~~~~~~~~~~~~ + +You write your current index file to a "tree" object with the program + +------------------------------------------------- +$ git-write-tree +------------------------------------------------- + +that doesn't come with any options - it will just write out the +current index into the set of tree objects that describe that state, +and it will return the name of the resulting top-level tree. You can +use that tree to re-generate the index at any time by going in the +other direction: + +object database -> index +~~~~~~~~~~~~~~~~~~~~~~~~ + +You read a "tree" file from the object database, and use that to +populate (and overwrite - don't do this if your index contains any +unsaved state that you might want to restore later!) your current +index. Normal operation is just + +------------------------------------------------- +$ git-read-tree <sha1 of tree> +------------------------------------------------- + +and your index file will now be equivalent to the tree that you saved +earlier. However, that is only your 'index' file: your working +directory contents have not been modified. + +index -> working directory +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +You update your working directory from the index by "checking out" +files. This is not a very common operation, since normally you'd just +keep your files updated, and rather than write to your working +directory, you'd tell the index files about the changes in your +working directory (i.e. `git-update-index`). + +However, if you decide to jump to a new version, or check out somebody +else's version, or just restore a previous tree, you'd populate your +index file with read-tree, and then you need to check out the result +with + +------------------------------------------------- +$ git-checkout-index filename +------------------------------------------------- + +or, if you want to check out all of the index, use `-a`. + +NOTE! git-checkout-index normally refuses to overwrite old files, so +if you have an old version of the tree already checked out, you will +need to use the "-f" flag ('before' the "-a" flag or the filename) to +'force' the checkout. + + +Finally, there are a few odds and ends which are not purely moving +from one representation to the other: + +Tying it all together +~~~~~~~~~~~~~~~~~~~~~ + +To commit a tree you have instantiated with "git-write-tree", you'd +create a "commit" object that refers to that tree and the history +behind it - most notably the "parent" commits that preceded it in +history. + +Normally a "commit" has one parent: the previous state of the tree +before a certain change was made. However, sometimes it can have two +or more parent commits, in which case we call it a "merge", due to the +fact that such a commit brings together ("merges") two or more +previous states represented by other commits. + +In other words, while a "tree" represents a particular directory state +of a working directory, a "commit" represents that state in "time", +and explains how we got there. + +You create a commit object by giving it the tree that describes the +state at the time of the commit, and a list of parents: + +------------------------------------------------- +$ git-commit-tree <tree> -p <parent> [-p <parent2> ..] +------------------------------------------------- + +and then giving the reason for the commit on stdin (either through +redirection from a pipe or file, or by just typing it at the tty). + +git-commit-tree will return the name of the object that represents +that commit, and you should save it away for later use. Normally, +you'd commit a new `HEAD` state, and while git doesn't care where you +save the note about that state, in practice we tend to just write the +result to the file pointed at by `.git/HEAD`, so that we can always see +what the last committed state was. + +Here is an ASCII art by Jon Loeliger that illustrates how +various pieces fit together. + +------------ + + commit-tree + commit obj + +----+ + | | + | | + V V + +-----------+ + | Object DB | + | Backing | + | Store | + +-----------+ + ^ + write-tree | | + tree obj | | + | | read-tree + | | tree obj + V + +-----------+ + | Index | + | "cache" | + +-----------+ + update-index ^ + blob obj | | + | | + checkout-index -u | | checkout-index + stat | | blob obj + V + +-----------+ + | Working | + | Directory | + +-----------+ + +------------ + + +Examining the data +------------------ + +You can examine the data represented in the object database and the +index with various helper tools. For every object, you can use +gitlink:git-cat-file[1] to examine details about the +object: + +------------------------------------------------- +$ git-cat-file -t <objectname> +------------------------------------------------- + +shows the type of the object, and once you have the type (which is +usually implicit in where you find the object), you can use + +------------------------------------------------- +$ git-cat-file blob|tree|commit|tag <objectname> +------------------------------------------------- + +to show its contents. NOTE! Trees have binary content, and as a result +there is a special helper for showing that content, called +`git-ls-tree`, which turns the binary content into a more easily +readable form. + +It's especially instructive to look at "commit" objects, since those +tend to be small and fairly self-explanatory. In particular, if you +follow the convention of having the top commit name in `.git/HEAD`, +you can do + +------------------------------------------------- +$ git-cat-file commit HEAD +------------------------------------------------- + +to see what the top commit was. + +Merging multiple trees +---------------------- + +Git helps you do a three-way merge, which you can expand to n-way by +repeating the merge procedure arbitrary times until you finally +"commit" the state. The normal situation is that you'd only do one +three-way merge (two parents), and commit it, but if you like to, you +can do multiple parents in one go. + +To do a three-way merge, you need the two sets of "commit" objects +that you want to merge, use those to find the closest common parent (a +third "commit" object), and then use those commit objects to find the +state of the directory ("tree" object) at these points. + +To get the "base" for the merge, you first look up the common parent +of two commits with + +------------------------------------------------- +$ git-merge-base <commit1> <commit2> +------------------------------------------------- + +which will return you the commit they are both based on. You should +now look up the "tree" objects of those commits, which you can easily +do with (for example) + +------------------------------------------------- +$ git-cat-file commit <commitname> | head -1 +------------------------------------------------- + +since the tree object information is always the first line in a commit +object. + +Once you know the three trees you are going to merge (the one "original" +tree, aka the common case, and the two "result" trees, aka the branches +you want to merge), you do a "merge" read into the index. This will +complain if it has to throw away your old index contents, so you should +make sure that you've committed those - in fact you would normally +always do a merge against your last commit (which should thus match what +you have in your current index anyway). + +To do the merge, do + +------------------------------------------------- +$ git-read-tree -m -u <origtree> <yourtree> <targettree> +------------------------------------------------- + +which will do all trivial merge operations for you directly in the +index file, and you can just write the result out with +`git-write-tree`. + + +Merging multiple trees, continued +--------------------------------- + +Sadly, many merges aren't trivial. If there are files that have +been added.moved or removed, or if both branches have modified the +same file, you will be left with an index tree that contains "merge +entries" in it. Such an index tree can 'NOT' be written out to a tree +object, and you will have to resolve any such merge clashes using +other tools before you can write out the result. + +You can examine such index state with `git-ls-files --unmerged` +command. An example: + +------------------------------------------------ +$ git-read-tree -m $orig HEAD $target +$ git-ls-files --unmerged +100644 263414f423d0e4d70dae8fe53fa34614ff3e2860 1 hello.c +100644 06fa6a24256dc7e560efa5687fa84b51f0263c3a 2 hello.c +100644 cc44c73eb783565da5831b4d820c962954019b69 3 hello.c +------------------------------------------------ + +Each line of the `git-ls-files --unmerged` output begins with +the blob mode bits, blob SHA1, 'stage number', and the +filename. The 'stage number' is git's way to say which tree it +came from: stage 1 corresponds to `$orig` tree, stage 2 `HEAD` +tree, and stage3 `$target` tree. + +Earlier we said that trivial merges are done inside +`git-read-tree -m`. For example, if the file did not change +from `$orig` to `HEAD` nor `$target`, or if the file changed +from `$orig` to `HEAD` and `$orig` to `$target` the same way, +obviously the final outcome is what is in `HEAD`. What the +above example shows is that file `hello.c` was changed from +`$orig` to `HEAD` and `$orig` to `$target` in a different way. +You could resolve this by running your favorite 3-way merge +program, e.g. `diff3` or `merge`, on the blob objects from +these three stages yourself, like this: + +------------------------------------------------ +$ git-cat-file blob 263414f... >hello.c~1 +$ git-cat-file blob 06fa6a2... >hello.c~2 +$ git-cat-file blob cc44c73... >hello.c~3 +$ merge hello.c~2 hello.c~1 hello.c~3 +------------------------------------------------ + +This would leave the merge result in `hello.c~2` file, along +with conflict markers if there are conflicts. After verifying +the merge result makes sense, you can tell git what the final +merge result for this file is by: + +------------------------------------------------- +$ mv -f hello.c~2 hello.c +$ git-update-index hello.c +------------------------------------------------- + +When a path is in unmerged state, running `git-update-index` for +that path tells git to mark the path resolved. + +The above is the description of a git merge at the lowest level, +to help you understand what conceptually happens under the hood. +In practice, nobody, not even git itself, uses three `git-cat-file` +for this. There is `git-merge-index` program that extracts the +stages to temporary files and calls a "merge" script on it: + +------------------------------------------------- +$ git-merge-index git-merge-one-file hello.c +------------------------------------------------- + +and that is what higher level `git resolve` is implemented with. + +How git stores objects efficiently: pack files +---------------------------------------------- + +We've seen how git stores each object in a file named after the +object's SHA1 hash. + +Unfortunately this system becomes inefficient once a project has a +lot of objects. Try this on an old project: + +------------------------------------------------ +$ git count-objects +6930 objects, 47620 kilobytes +------------------------------------------------ + +The first number is the number of objects which are kept in +individual files. The second is the amount of space taken up by +those "loose" objects. + +You can save space and make git faster by moving these loose objects in +to a "pack file", which stores a group of objects in an efficient +compressed format; the details of how pack files are formatted can be +found in link:technical/pack-format.txt[technical/pack-format.txt]. + +To put the loose objects into a pack, just run git repack: + +------------------------------------------------ +$ git repack +Generating pack... +Done counting 6020 objects. +Deltifying 6020 objects. + 100% (6020/6020) done +Writing 6020 objects. + 100% (6020/6020) done +Total 6020, written 6020 (delta 4070), reused 0 (delta 0) +Pack pack-3e54ad29d5b2e05838c75df582c65257b8d08e1c created. +------------------------------------------------ + +You can then run + +------------------------------------------------ +$ git prune +------------------------------------------------ + +to remove any of the "loose" objects that are now contained in the +pack. This will also remove any unreferenced objects (which may be +created when, for example, you use "git reset" to remove a commit). +You can verify that the loose objects are gone by looking at the +.git/objects directory or by running + +------------------------------------------------ +$ git count-objects +0 objects, 0 kilobytes +------------------------------------------------ + +Although the object files are gone, any commands that refer to those +objects will work exactly as they did before. + +The gitlink:git-gc[1] command performs packing, pruning, and more for +you, so is normally the only high-level command you need. + +[[dangling-objects]] +Dangling objects +---------------- + +The gitlink:git-fsck[1] command will sometimes complain about dangling +objects. They are not a problem. + +The most common cause of dangling objects is that you've rebased a +branch, or you have pulled from somebody else who rebased a branch--see +<<cleaning-up-history>>. In that case, the old head of the original +branch still exists, as does obviously everything it pointed to. The +branch pointer itself just doesn't, since you replaced it with another +one. + +There are also other situations too that cause dangling objects. For +example, a "dangling blob" may arise because you did a "git add" of a +file, but then, before you actually committed it and made it part of the +bigger picture, you changed something else in that file and committed +that *updated* thing - the old state that you added originally ends up +not being pointed to by any commit or tree, so it's now a dangling blob +object. + +Similarly, when the "recursive" merge strategy runs, and finds that +there are criss-cross merges and thus more than one merge base (which is +fairly unusual, but it does happen), it will generate one temporary +midway tree (or possibly even more, if you had lots of criss-crossing +merges and more than two merge bases) as a temporary internal merge +base, and again, those are real objects, but the end result will not end +up pointing to them, so they end up "dangling" in your repository. + +Generally, dangling objects aren't anything to worry about. They can +even be very useful: if you screw something up, the dangling objects can +be how you recover your old tree (say, you did a rebase, and realized +that you really didn't want to - you can look at what dangling objects +you have, and decide to reset your head to some old dangling state). + +For commits, the most useful thing to do with dangling objects tends to +be to do a simple + +------------------------------------------------ +$ gitk <dangling-commit-sha-goes-here> --not --all +------------------------------------------------ + +For blobs and trees, you can't do the same, but you can examine them. +You can just do + +------------------------------------------------ +$ git show <dangling-blob/tree-sha-goes-here> +------------------------------------------------ + +to show what the contents of the blob were (or, for a tree, basically +what the "ls" for that directory was), and that may give you some idea +of what the operation was that left that dangling object. + +Usually, dangling blobs and trees aren't very interesting. They're +almost always the result of either being a half-way mergebase (the blob +will often even have the conflict markers from a merge in it, if you +have had conflicting merges that you fixed up by hand), or simply +because you interrupted a "git fetch" with ^C or something like that, +leaving _some_ of the new objects in the object database, but just +dangling and useless. + +Anyway, once you are sure that you're not interested in any dangling +state, you can just prune all unreachable objects: + +------------------------------------------------ +$ git prune +------------------------------------------------ + +and they'll be gone. But you should only run "git prune" on a quiescent +repository - it's kind of like doing a filesystem fsck recovery: you +don't want to do that while the filesystem is mounted. + +(The same is true of "git-fsck" itself, btw - but since +git-fsck never actually *changes* the repository, it just reports +on what it found, git-fsck itself is never "dangerous" to run. +Running it while somebody is actually changing the repository can cause +confusing and scary messages, but it won't actually do anything bad. In +contrast, running "git prune" while somebody is actively changing the +repository is a *BAD* idea). + +Glossary of git terms +===================== + +include::glossary.txt[] + +Notes and todo list for this manual +=================================== + +This is a work in progress. + +The basic requirements: + - It must be readable in order, from beginning to end, by + someone intelligent with a basic grasp of the unix + commandline, but without any special knowledge of git. If + necessary, any other prerequisites should be specifically + mentioned as they arise. + - Whenever possible, section headings should clearly describe + the task they explain how to do, in language that requires + no more knowledge than necessary: for example, "importing + patches into a project" rather than "the git-am command" + +Think about how to create a clear chapter dependency graph that will +allow people to get to important topics without necessarily reading +everything in between. + +Say something about .gitignore. + +Scan Documentation/ for other stuff left out; in particular: + howto's + some of technical/? + hooks + list of commands in gitlink:git[1] + +Scan email archives for other stuff left out + +Scan man pages to see if any assume more background than this manual +provides. + +Simplify beginning by suggesting disconnected head instead of +temporary branch creation? + +Explain how to refer to file stages in the "how to resolve a merge" +section: diff -1, -2, -3, --ours, --theirs :1:/path notation. The +"git ls-files --unmerged --stage" thing is sorta useful too, +actually. And note gitk --merge. + +Add more good examples. Entire sections of just cookbook examples +might be a good idea; maybe make an "advanced examples" section a +standard end-of-chapter section? + +Include cross-references to the glossary, where appropriate. + +Document shallow clones? See draft 1.5.0 release notes for some +documentation. + +Add a section on working with other version control systems, including +CVS, Subversion, and just imports of series of release tarballs. + +More details on gitweb? + +Write a chapter on using plumbing and writing scripts. |