package wazevo import ( "bytes" "context" "crypto/sha256" "encoding/binary" "fmt" "hash/crc32" "io" "runtime" "unsafe" "github.com/tetratelabs/wazero/experimental" "github.com/tetratelabs/wazero/internal/engine/wazevo/backend" "github.com/tetratelabs/wazero/internal/engine/wazevo/ssa" "github.com/tetratelabs/wazero/internal/engine/wazevo/wazevoapi" "github.com/tetratelabs/wazero/internal/filecache" "github.com/tetratelabs/wazero/internal/platform" "github.com/tetratelabs/wazero/internal/u32" "github.com/tetratelabs/wazero/internal/u64" "github.com/tetratelabs/wazero/internal/wasm" ) var crc = crc32.MakeTable(crc32.Castagnoli) // fileCacheKey returns a key for the file cache. // In order to avoid collisions with the existing compiler, we do not use m.ID directly, // but instead we rehash it with magic. func fileCacheKey(m *wasm.Module) (ret filecache.Key) { s := sha256.New() s.Write(m.ID[:]) s.Write(magic) // Write the CPU features so that we can cache the compiled module for the same CPU. // This prevents the incompatible CPU features from being used. cpu := platform.CpuFeatures.Raw() // Reuse the `ret` buffer to write the first 8 bytes of the CPU features so that we can avoid the allocation. binary.LittleEndian.PutUint64(ret[:8], cpu) s.Write(ret[:8]) // Finally, write the hash to the ret buffer. s.Sum(ret[:0]) return } func (e *engine) addCompiledModule(module *wasm.Module, cm *compiledModule) (err error) { e.addCompiledModuleToMemory(module, cm) if !module.IsHostModule && e.fileCache != nil { err = e.addCompiledModuleToCache(module, cm) } return } func (e *engine) getCompiledModule(module *wasm.Module, listeners []experimental.FunctionListener, ensureTermination bool) (cm *compiledModule, ok bool, err error) { cm, ok = e.getCompiledModuleFromMemory(module) if ok { return } cm, ok, err = e.getCompiledModuleFromCache(module) if ok { cm.parent = e cm.module = module cm.sharedFunctions = e.sharedFunctions cm.ensureTermination = ensureTermination cm.offsets = wazevoapi.NewModuleContextOffsetData(module, len(listeners) > 0) if len(listeners) > 0 { cm.listeners = listeners cm.listenerBeforeTrampolines = make([]*byte, len(module.TypeSection)) cm.listenerAfterTrampolines = make([]*byte, len(module.TypeSection)) for i := range module.TypeSection { typ := &module.TypeSection[i] before, after := e.getListenerTrampolineForType(typ) cm.listenerBeforeTrampolines[i] = before cm.listenerAfterTrampolines[i] = after } } e.addCompiledModuleToMemory(module, cm) ssaBuilder := ssa.NewBuilder() machine := newMachine() be := backend.NewCompiler(context.Background(), machine, ssaBuilder) cm.executables.compileEntryPreambles(module, machine, be) // Set the finalizer. e.setFinalizer(cm.executables, executablesFinalizer) } return } func (e *engine) addCompiledModuleToMemory(m *wasm.Module, cm *compiledModule) { e.mux.Lock() defer e.mux.Unlock() e.compiledModules[m.ID] = cm if len(cm.executable) > 0 { e.addCompiledModuleToSortedList(cm) } } func (e *engine) getCompiledModuleFromMemory(module *wasm.Module) (cm *compiledModule, ok bool) { e.mux.RLock() defer e.mux.RUnlock() cm, ok = e.compiledModules[module.ID] return } func (e *engine) addCompiledModuleToCache(module *wasm.Module, cm *compiledModule) (err error) { if e.fileCache == nil || module.IsHostModule { return } err = e.fileCache.Add(fileCacheKey(module), serializeCompiledModule(e.wazeroVersion, cm)) return } func (e *engine) getCompiledModuleFromCache(module *wasm.Module) (cm *compiledModule, hit bool, err error) { if e.fileCache == nil || module.IsHostModule { return } // Check if the entries exist in the external cache. var cached io.ReadCloser cached, hit, err = e.fileCache.Get(fileCacheKey(module)) if !hit || err != nil { return } // Otherwise, we hit the cache on external cache. // We retrieve *code structures from `cached`. var staleCache bool // Note: cached.Close is ensured to be called in deserializeCodes. cm, staleCache, err = deserializeCompiledModule(e.wazeroVersion, cached) if err != nil { hit = false return } else if staleCache { return nil, false, e.fileCache.Delete(fileCacheKey(module)) } return } var magic = []byte{'W', 'A', 'Z', 'E', 'V', 'O'} func serializeCompiledModule(wazeroVersion string, cm *compiledModule) io.Reader { buf := bytes.NewBuffer(nil) // First 6 byte: WAZEVO header. buf.Write(magic) // Next 1 byte: length of version: buf.WriteByte(byte(len(wazeroVersion))) // Version of wazero. buf.WriteString(wazeroVersion) // Number of *code (== locally defined functions in the module): 4 bytes. buf.Write(u32.LeBytes(uint32(len(cm.functionOffsets)))) for _, offset := range cm.functionOffsets { // The offset of this function in the executable (8 bytes). buf.Write(u64.LeBytes(uint64(offset))) } // The length of code segment (8 bytes). buf.Write(u64.LeBytes(uint64(len(cm.executable)))) // Append the native code. buf.Write(cm.executable) // Append checksum. checksum := crc32.Checksum(cm.executable, crc) buf.Write(u32.LeBytes(checksum)) if sm := cm.sourceMap; len(sm.executableOffsets) > 0 { buf.WriteByte(1) // indicates that source map is present. l := len(sm.wasmBinaryOffsets) buf.Write(u64.LeBytes(uint64(l))) executableAddr := uintptr(unsafe.Pointer(&cm.executable[0])) for i := 0; i < l; i++ { buf.Write(u64.LeBytes(sm.wasmBinaryOffsets[i])) // executableOffsets is absolute address, so we need to subtract executableAddr. buf.Write(u64.LeBytes(uint64(sm.executableOffsets[i] - executableAddr))) } } else { buf.WriteByte(0) // indicates that source map is not present. } return bytes.NewReader(buf.Bytes()) } func deserializeCompiledModule(wazeroVersion string, reader io.ReadCloser) (cm *compiledModule, staleCache bool, err error) { defer reader.Close() cacheHeaderSize := len(magic) + 1 /* version size */ + len(wazeroVersion) + 4 /* number of functions */ // Read the header before the native code. header := make([]byte, cacheHeaderSize) n, err := reader.Read(header) if err != nil { return nil, false, fmt.Errorf("compilationcache: error reading header: %v", err) } if n != cacheHeaderSize { return nil, false, fmt.Errorf("compilationcache: invalid header length: %d", n) } if !bytes.Equal(header[:len(magic)], magic) { return nil, false, fmt.Errorf( "compilationcache: invalid magic number: got %s but want %s", magic, header[:len(magic)]) } // Check the version compatibility. versionSize := int(header[len(magic)]) cachedVersionBegin, cachedVersionEnd := len(magic)+1, len(magic)+1+versionSize if cachedVersionEnd >= len(header) { staleCache = true return } else if cachedVersion := string(header[cachedVersionBegin:cachedVersionEnd]); cachedVersion != wazeroVersion { staleCache = true return } functionsNum := binary.LittleEndian.Uint32(header[len(header)-4:]) cm = &compiledModule{functionOffsets: make([]int, functionsNum), executables: &executables{}} var eightBytes [8]byte for i := uint32(0); i < functionsNum; i++ { // Read the offset of each function in the executable. var offset uint64 if offset, err = readUint64(reader, &eightBytes); err != nil { err = fmt.Errorf("compilationcache: error reading func[%d] executable offset: %v", i, err) return } cm.functionOffsets[i] = int(offset) } executableLen, err := readUint64(reader, &eightBytes) if err != nil { err = fmt.Errorf("compilationcache: error reading executable size: %v", err) return } if executableLen > 0 { executable, err := platform.MmapCodeSegment(int(executableLen)) if err != nil { err = fmt.Errorf("compilationcache: error mmapping executable (len=%d): %v", executableLen, err) return nil, false, err } _, err = io.ReadFull(reader, executable) if err != nil { err = fmt.Errorf("compilationcache: error reading executable (len=%d): %v", executableLen, err) return nil, false, err } expected := crc32.Checksum(executable, crc) if _, err = io.ReadFull(reader, eightBytes[:4]); err != nil { return nil, false, fmt.Errorf("compilationcache: could not read checksum: %v", err) } else if checksum := binary.LittleEndian.Uint32(eightBytes[:4]); expected != checksum { return nil, false, fmt.Errorf("compilationcache: checksum mismatch (expected %d, got %d)", expected, checksum) } if runtime.GOARCH == "arm64" { // On arm64, we cannot give all of rwx at the same time, so we change it to exec. if err = platform.MprotectRX(executable); err != nil { return nil, false, err } } cm.executable = executable } if _, err := io.ReadFull(reader, eightBytes[:1]); err != nil { return nil, false, fmt.Errorf("compilationcache: error reading source map presence: %v", err) } if eightBytes[0] == 1 { sm := &cm.sourceMap sourceMapLen, err := readUint64(reader, &eightBytes) if err != nil { err = fmt.Errorf("compilationcache: error reading source map length: %v", err) return nil, false, err } executableOffset := uintptr(unsafe.Pointer(&cm.executable[0])) for i := uint64(0); i < sourceMapLen; i++ { wasmBinaryOffset, err := readUint64(reader, &eightBytes) if err != nil { err = fmt.Errorf("compilationcache: error reading source map[%d] wasm binary offset: %v", i, err) return nil, false, err } executableRelativeOffset, err := readUint64(reader, &eightBytes) if err != nil { err = fmt.Errorf("compilationcache: error reading source map[%d] executable offset: %v", i, err) return nil, false, err } sm.wasmBinaryOffsets = append(sm.wasmBinaryOffsets, wasmBinaryOffset) // executableOffsets is absolute address, so we need to add executableOffset. sm.executableOffsets = append(sm.executableOffsets, uintptr(executableRelativeOffset)+executableOffset) } } return } // readUint64 strictly reads an uint64 in little-endian byte order, using the // given array as a buffer. This returns io.EOF if less than 8 bytes were read. func readUint64(reader io.Reader, b *[8]byte) (uint64, error) { s := b[0:8] n, err := reader.Read(s) if err != nil { return 0, err } else if n < 8 { // more strict than reader.Read return 0, io.EOF } // Read the u64 from the underlying buffer. ret := binary.LittleEndian.Uint64(s) return ret, nil }