diff options
Diffstat (limited to 'vendor/golang.org/x')
| -rw-r--r-- | vendor/golang.org/x/image/riff/riff.go | 193 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/decode.go | 403 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/filter.go | 273 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/idct.go | 98 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/partition.go | 129 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/pred.go | 201 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/predfunc.go | 553 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/quant.go | 98 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/reconstruct.go | 442 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8/token.go | 381 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8l/decode.go | 603 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8l/huffman.go | 245 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/vp8l/transform.go | 299 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/webp/decode.go | 276 | ||||
| -rw-r--r-- | vendor/golang.org/x/image/webp/doc.go | 9 | 
15 files changed, 4203 insertions, 0 deletions
diff --git a/vendor/golang.org/x/image/riff/riff.go b/vendor/golang.org/x/image/riff/riff.go new file mode 100644 index 000000000..38dc0e568 --- /dev/null +++ b/vendor/golang.org/x/image/riff/riff.go @@ -0,0 +1,193 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package riff implements the Resource Interchange File Format, used by media +// formats such as AVI, WAVE and WEBP. +// +// A RIFF stream contains a sequence of chunks. Each chunk consists of an 8-byte +// header (containing a 4-byte chunk type and a 4-byte chunk length), the chunk +// data (presented as an io.Reader), and some padding bytes. +// +// A detailed description of the format is at +// http://www.tactilemedia.com/info/MCI_Control_Info.html +package riff // import "golang.org/x/image/riff" + +import ( +	"errors" +	"io" +	"io/ioutil" +	"math" +) + +var ( +	errMissingPaddingByte     = errors.New("riff: missing padding byte") +	errMissingRIFFChunkHeader = errors.New("riff: missing RIFF chunk header") +	errListSubchunkTooLong    = errors.New("riff: list subchunk too long") +	errShortChunkData         = errors.New("riff: short chunk data") +	errShortChunkHeader       = errors.New("riff: short chunk header") +	errStaleReader            = errors.New("riff: stale reader") +) + +// u32 decodes the first four bytes of b as a little-endian integer. +func u32(b []byte) uint32 { +	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 +} + +const chunkHeaderSize = 8 + +// FourCC is a four character code. +type FourCC [4]byte + +// LIST is the "LIST" FourCC. +var LIST = FourCC{'L', 'I', 'S', 'T'} + +// NewReader returns the RIFF stream's form type, such as "AVI " or "WAVE", and +// its chunks as a *Reader. +func NewReader(r io.Reader) (formType FourCC, data *Reader, err error) { +	var buf [chunkHeaderSize]byte +	if _, err := io.ReadFull(r, buf[:]); err != nil { +		if err == io.EOF || err == io.ErrUnexpectedEOF { +			err = errMissingRIFFChunkHeader +		} +		return FourCC{}, nil, err +	} +	if buf[0] != 'R' || buf[1] != 'I' || buf[2] != 'F' || buf[3] != 'F' { +		return FourCC{}, nil, errMissingRIFFChunkHeader +	} +	return NewListReader(u32(buf[4:]), r) +} + +// NewListReader returns a LIST chunk's list type, such as "movi" or "wavl", +// and its chunks as a *Reader. +func NewListReader(chunkLen uint32, chunkData io.Reader) (listType FourCC, data *Reader, err error) { +	if chunkLen < 4 { +		return FourCC{}, nil, errShortChunkData +	} +	z := &Reader{r: chunkData} +	if _, err := io.ReadFull(chunkData, z.buf[:4]); err != nil { +		if err == io.EOF || err == io.ErrUnexpectedEOF { +			err = errShortChunkData +		} +		return FourCC{}, nil, err +	} +	z.totalLen = chunkLen - 4 +	return FourCC{z.buf[0], z.buf[1], z.buf[2], z.buf[3]}, z, nil +} + +// Reader reads chunks from an underlying io.Reader. +type Reader struct { +	r   io.Reader +	err error + +	totalLen uint32 +	chunkLen uint32 + +	chunkReader *chunkReader +	buf         [chunkHeaderSize]byte +	padded      bool +} + +// Next returns the next chunk's ID, length and data. It returns io.EOF if there +// are no more chunks. The io.Reader returned becomes stale after the next Next +// call, and should no longer be used. +// +// It is valid to call Next even if all of the previous chunk's data has not +// been read. +func (z *Reader) Next() (chunkID FourCC, chunkLen uint32, chunkData io.Reader, err error) { +	if z.err != nil { +		return FourCC{}, 0, nil, z.err +	} + +	// Drain the rest of the previous chunk. +	if z.chunkLen != 0 { +		want := z.chunkLen +		var got int64 +		got, z.err = io.Copy(ioutil.Discard, z.chunkReader) +		if z.err == nil && uint32(got) != want { +			z.err = errShortChunkData +		} +		if z.err != nil { +			return FourCC{}, 0, nil, z.err +		} +	} +	z.chunkReader = nil +	if z.padded { +		if z.totalLen == 0 { +			z.err = errListSubchunkTooLong +			return FourCC{}, 0, nil, z.err +		} +		z.totalLen-- +		_, z.err = io.ReadFull(z.r, z.buf[:1]) +		if z.err != nil { +			if z.err == io.EOF { +				z.err = errMissingPaddingByte +			} +			return FourCC{}, 0, nil, z.err +		} +	} + +	// We are done if we have no more data. +	if z.totalLen == 0 { +		z.err = io.EOF +		return FourCC{}, 0, nil, z.err +	} + +	// Read the next chunk header. +	if z.totalLen < chunkHeaderSize { +		z.err = errShortChunkHeader +		return FourCC{}, 0, nil, z.err +	} +	z.totalLen -= chunkHeaderSize +	if _, z.err = io.ReadFull(z.r, z.buf[:chunkHeaderSize]); z.err != nil { +		if z.err == io.EOF || z.err == io.ErrUnexpectedEOF { +			z.err = errShortChunkHeader +		} +		return FourCC{}, 0, nil, z.err +	} +	chunkID = FourCC{z.buf[0], z.buf[1], z.buf[2], z.buf[3]} +	z.chunkLen = u32(z.buf[4:]) +	if z.chunkLen > z.totalLen { +		z.err = errListSubchunkTooLong +		return FourCC{}, 0, nil, z.err +	} +	z.padded = z.chunkLen&1 == 1 +	z.chunkReader = &chunkReader{z} +	return chunkID, z.chunkLen, z.chunkReader, nil +} + +type chunkReader struct { +	z *Reader +} + +func (c *chunkReader) Read(p []byte) (int, error) { +	if c != c.z.chunkReader { +		return 0, errStaleReader +	} +	z := c.z +	if z.err != nil { +		if z.err == io.EOF { +			return 0, errStaleReader +		} +		return 0, z.err +	} + +	n := int(z.chunkLen) +	if n == 0 { +		return 0, io.EOF +	} +	if n < 0 { +		// Converting uint32 to int overflowed. +		n = math.MaxInt32 +	} +	if n > len(p) { +		n = len(p) +	} +	n, err := z.r.Read(p[:n]) +	z.totalLen -= uint32(n) +	z.chunkLen -= uint32(n) +	if err != io.EOF { +		z.err = err +	} +	return n, err +} diff --git a/vendor/golang.org/x/image/vp8/decode.go b/vendor/golang.org/x/image/vp8/decode.go new file mode 100644 index 000000000..2aa9fee03 --- /dev/null +++ b/vendor/golang.org/x/image/vp8/decode.go @@ -0,0 +1,403 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package vp8 implements a decoder for the VP8 lossy image format. +// +// The VP8 specification is RFC 6386. +package vp8 // import "golang.org/x/image/vp8" + +// This file implements the top-level decoding algorithm. + +import ( +	"errors" +	"image" +	"io" +) + +// limitReader wraps an io.Reader to read at most n bytes from it. +type limitReader struct { +	r io.Reader +	n int +} + +// ReadFull reads exactly len(p) bytes into p. +func (r *limitReader) ReadFull(p []byte) error { +	if len(p) > r.n { +		return io.ErrUnexpectedEOF +	} +	n, err := io.ReadFull(r.r, p) +	r.n -= n +	return err +} + +// FrameHeader is a frame header, as specified in section 9.1. +type FrameHeader struct { +	KeyFrame          bool +	VersionNumber     uint8 +	ShowFrame         bool +	FirstPartitionLen uint32 +	Width             int +	Height            int +	XScale            uint8 +	YScale            uint8 +} + +const ( +	nSegment     = 4 +	nSegmentProb = 3 +) + +// segmentHeader holds segment-related header information. +type segmentHeader struct { +	useSegment     bool +	updateMap      bool +	relativeDelta  bool +	quantizer      [nSegment]int8 +	filterStrength [nSegment]int8 +	prob           [nSegmentProb]uint8 +} + +const ( +	nRefLFDelta  = 4 +	nModeLFDelta = 4 +) + +// filterHeader holds filter-related header information. +type filterHeader struct { +	simple          bool +	level           int8 +	sharpness       uint8 +	useLFDelta      bool +	refLFDelta      [nRefLFDelta]int8 +	modeLFDelta     [nModeLFDelta]int8 +	perSegmentLevel [nSegment]int8 +} + +// mb is the per-macroblock decode state. A decoder maintains mbw+1 of these +// as it is decoding macroblocks left-to-right and top-to-bottom: mbw for the +// macroblocks in the row above, and one for the macroblock to the left. +type mb struct { +	// pred is the predictor mode for the 4 bottom or right 4x4 luma regions. +	pred [4]uint8 +	// nzMask is a mask of 8 bits: 4 for the bottom or right 4x4 luma regions, +	// and 2 + 2 for the bottom or right 4x4 chroma regions. A 1 bit indicates +	// that region has non-zero coefficients. +	nzMask uint8 +	// nzY16 is a 0/1 value that is 1 if the macroblock used Y16 prediction and +	// had non-zero coefficients. +	nzY16 uint8 +} + +// Decoder decodes VP8 bitstreams into frames. Decoding one frame consists of +// calling Init, DecodeFrameHeader and then DecodeFrame in that order. +// A Decoder can be re-used to decode multiple frames. +type Decoder struct { +	// r is the input bitsream. +	r limitReader +	// scratch is a scratch buffer. +	scratch [8]byte +	// img is the YCbCr image to decode into. +	img *image.YCbCr +	// mbw and mbh are the number of 16x16 macroblocks wide and high the image is. +	mbw, mbh int +	// frameHeader is the frame header. When decoding multiple frames, +	// frames that aren't key frames will inherit the Width, Height, +	// XScale and YScale of the most recent key frame. +	frameHeader FrameHeader +	// Other headers. +	segmentHeader segmentHeader +	filterHeader  filterHeader +	// The image data is divided into a number of independent partitions. +	// There is 1 "first partition" and between 1 and 8 "other partitions" +	// for coefficient data. +	fp  partition +	op  [8]partition +	nOP int +	// Quantization factors. +	quant [nSegment]quant +	// DCT/WHT coefficient decoding probabilities. +	tokenProb   [nPlane][nBand][nContext][nProb]uint8 +	useSkipProb bool +	skipProb    uint8 +	// Loop filter parameters. +	filterParams      [nSegment][2]filterParam +	perMBFilterParams []filterParam + +	// The eight fields below relate to the current macroblock being decoded. +	// +	// Segment-based adjustments. +	segment int +	// Per-macroblock state for the macroblock immediately left of and those +	// macroblocks immediately above the current macroblock. +	leftMB mb +	upMB   []mb +	// Bitmasks for which 4x4 regions of coeff contain non-zero coefficients. +	nzDCMask, nzACMask uint32 +	// Predictor modes. +	usePredY16 bool // The libwebp C code calls this !is_i4x4_. +	predY16    uint8 +	predC8     uint8 +	predY4     [4][4]uint8 + +	// The two fields below form a workspace for reconstructing a macroblock. +	// Their specific sizes are documented in reconstruct.go. +	coeff [1*16*16 + 2*8*8 + 1*4*4]int16 +	ybr   [1 + 16 + 1 + 8][32]uint8 +} + +// NewDecoder returns a new Decoder. +func NewDecoder() *Decoder { +	return &Decoder{} +} + +// Init initializes the decoder to read at most n bytes from r. +func (d *Decoder) Init(r io.Reader, n int) { +	d.r = limitReader{r, n} +} + +// DecodeFrameHeader decodes the frame header. +func (d *Decoder) DecodeFrameHeader() (fh FrameHeader, err error) { +	// All frame headers are at least 3 bytes long. +	b := d.scratch[:3] +	if err = d.r.ReadFull(b); err != nil { +		return +	} +	d.frameHeader.KeyFrame = (b[0] & 1) == 0 +	d.frameHeader.VersionNumber = (b[0] >> 1) & 7 +	d.frameHeader.ShowFrame = (b[0]>>4)&1 == 1 +	d.frameHeader.FirstPartitionLen = uint32(b[0])>>5 | uint32(b[1])<<3 | uint32(b[2])<<11 +	if !d.frameHeader.KeyFrame { +		return d.frameHeader, nil +	} +	// Frame headers for key frames are an additional 7 bytes long. +	b = d.scratch[:7] +	if err = d.r.ReadFull(b); err != nil { +		return +	} +	// Check the magic sync code. +	if b[0] != 0x9d || b[1] != 0x01 || b[2] != 0x2a { +		err = errors.New("vp8: invalid format") +		return +	} +	d.frameHeader.Width = int(b[4]&0x3f)<<8 | int(b[3]) +	d.frameHeader.Height = int(b[6]&0x3f)<<8 | int(b[5]) +	d.frameHeader.XScale = b[4] >> 6 +	d.frameHeader.YScale = b[6] >> 6 +	d.mbw = (d.frameHeader.Width + 0x0f) >> 4 +	d.mbh = (d.frameHeader.Height + 0x0f) >> 4 +	d.segmentHeader = segmentHeader{ +		prob: [3]uint8{0xff, 0xff, 0xff}, +	} +	d.tokenProb = defaultTokenProb +	d.segment = 0 +	return d.frameHeader, nil +} + +// ensureImg ensures that d.img is large enough to hold the decoded frame. +func (d *Decoder) ensureImg() { +	if d.img != nil { +		p0, p1 := d.img.Rect.Min, d.img.Rect.Max +		if p0.X == 0 && p0.Y == 0 && p1.X >= 16*d.mbw && p1.Y >= 16*d.mbh { +			return +		} +	} +	m := image.NewYCbCr(image.Rect(0, 0, 16*d.mbw, 16*d.mbh), image.YCbCrSubsampleRatio420) +	d.img = m.SubImage(image.Rect(0, 0, d.frameHeader.Width, d.frameHeader.Height)).(*image.YCbCr) +	d.perMBFilterParams = make([]filterParam, d.mbw*d.mbh) +	d.upMB = make([]mb, d.mbw) +} + +// parseSegmentHeader parses the segment header, as specified in section 9.3. +func (d *Decoder) parseSegmentHeader() { +	d.segmentHeader.useSegment = d.fp.readBit(uniformProb) +	if !d.segmentHeader.useSegment { +		d.segmentHeader.updateMap = false +		return +	} +	d.segmentHeader.updateMap = d.fp.readBit(uniformProb) +	if d.fp.readBit(uniformProb) { +		d.segmentHeader.relativeDelta = !d.fp.readBit(uniformProb) +		for i := range d.segmentHeader.quantizer { +			d.segmentHeader.quantizer[i] = int8(d.fp.readOptionalInt(uniformProb, 7)) +		} +		for i := range d.segmentHeader.filterStrength { +			d.segmentHeader.filterStrength[i] = int8(d.fp.readOptionalInt(uniformProb, 6)) +		} +	} +	if !d.segmentHeader.updateMap { +		return +	} +	for i := range d.segmentHeader.prob { +		if d.fp.readBit(uniformProb) { +			d.segmentHeader.prob[i] = uint8(d.fp.readUint(uniformProb, 8)) +		} else { +			d.segmentHeader.prob[i] = 0xff +		} +	} +} + +// parseFilterHeader parses the filter header, as specified in section 9.4. +func (d *Decoder) parseFilterHeader() { +	d.filterHeader.simple = d.fp.readBit(uniformProb) +	d.filterHeader.level = int8(d.fp.readUint(uniformProb, 6)) +	d.filterHeader.sharpness = uint8(d.fp.readUint(uniformProb, 3)) +	d.filterHeader.useLFDelta = d.fp.readBit(uniformProb) +	if d.filterHeader.useLFDelta && d.fp.readBit(uniformProb) { +		for i := range d.filterHeader.refLFDelta { +			d.filterHeader.refLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6)) +		} +		for i := range d.filterHeader.modeLFDelta { +			d.filterHeader.modeLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6)) +		} +	} +	if d.filterHeader.level == 0 { +		return +	} +	if d.segmentHeader.useSegment { +		for i := range d.filterHeader.perSegmentLevel { +			strength := d.segmentHeader.filterStrength[i] +			if d.segmentHeader.relativeDelta { +				strength += d.filterHeader.level +			} +			d.filterHeader.perSegmentLevel[i] = strength +		} +	} else { +		d.filterHeader.perSegmentLevel[0] = d.filterHeader.level +	} +	d.computeFilterParams() +} + +// parseOtherPartitions parses the other partitions, as specified in section 9.5. +func (d *Decoder) parseOtherPartitions() error { +	const maxNOP = 1 << 3 +	var partLens [maxNOP]int +	d.nOP = 1 << d.fp.readUint(uniformProb, 2) + +	// The final partition length is implied by the remaining chunk data +	// (d.r.n) and the other d.nOP-1 partition lengths. Those d.nOP-1 partition +	// lengths are stored as 24-bit uints, i.e. up to 16 MiB per partition. +	n := 3 * (d.nOP - 1) +	partLens[d.nOP-1] = d.r.n - n +	if partLens[d.nOP-1] < 0 { +		return io.ErrUnexpectedEOF +	} +	if n > 0 { +		buf := make([]byte, n) +		if err := d.r.ReadFull(buf); err != nil { +			return err +		} +		for i := 0; i < d.nOP-1; i++ { +			pl := int(buf[3*i+0]) | int(buf[3*i+1])<<8 | int(buf[3*i+2])<<16 +			if pl > partLens[d.nOP-1] { +				return io.ErrUnexpectedEOF +			} +			partLens[i] = pl +			partLens[d.nOP-1] -= pl +		} +	} + +	// We check if the final partition length can also fit into a 24-bit uint. +	// Strictly speaking, this isn't part of the spec, but it guards against a +	// malicious WEBP image that is too large to ReadFull the encoded DCT +	// coefficients into memory, whether that's because the actual WEBP file is +	// too large, or whether its RIFF metadata lists too large a chunk. +	if 1<<24 <= partLens[d.nOP-1] { +		return errors.New("vp8: too much data to decode") +	} + +	buf := make([]byte, d.r.n) +	if err := d.r.ReadFull(buf); err != nil { +		return err +	} +	for i, pl := range partLens { +		if i == d.nOP { +			break +		} +		d.op[i].init(buf[:pl]) +		buf = buf[pl:] +	} +	return nil +} + +// parseOtherHeaders parses header information other than the frame header. +func (d *Decoder) parseOtherHeaders() error { +	// Initialize and parse the first partition. +	firstPartition := make([]byte, d.frameHeader.FirstPartitionLen) +	if err := d.r.ReadFull(firstPartition); err != nil { +		return err +	} +	d.fp.init(firstPartition) +	if d.frameHeader.KeyFrame { +		// Read and ignore the color space and pixel clamp values. They are +		// specified in section 9.2, but are unimplemented. +		d.fp.readBit(uniformProb) +		d.fp.readBit(uniformProb) +	} +	d.parseSegmentHeader() +	d.parseFilterHeader() +	if err := d.parseOtherPartitions(); err != nil { +		return err +	} +	d.parseQuant() +	if !d.frameHeader.KeyFrame { +		// Golden and AltRef frames are specified in section 9.7. +		// TODO(nigeltao): implement. Note that they are only used for video, not still images. +		return errors.New("vp8: Golden / AltRef frames are not implemented") +	} +	// Read and ignore the refreshLastFrameBuffer bit, specified in section 9.8. +	// It applies only to video, and not still images. +	d.fp.readBit(uniformProb) +	d.parseTokenProb() +	d.useSkipProb = d.fp.readBit(uniformProb) +	if d.useSkipProb { +		d.skipProb = uint8(d.fp.readUint(uniformProb, 8)) +	} +	if d.fp.unexpectedEOF { +		return io.ErrUnexpectedEOF +	} +	return nil +} + +// DecodeFrame decodes the frame and returns it as an YCbCr image. +// The image's contents are valid up until the next call to Decoder.Init. +func (d *Decoder) DecodeFrame() (*image.YCbCr, error) { +	d.ensureImg() +	if err := d.parseOtherHeaders(); err != nil { +		return nil, err +	} +	// Reconstruct the rows. +	for mbx := 0; mbx < d.mbw; mbx++ { +		d.upMB[mbx] = mb{} +	} +	for mby := 0; mby < d.mbh; mby++ { +		d.leftMB = mb{} +		for mbx := 0; mbx < d.mbw; mbx++ { +			skip := d.reconstruct(mbx, mby) +			fs := d.filterParams[d.segment][btou(!d.usePredY16)] +			fs.inner = fs.inner || !skip +			d.perMBFilterParams[d.mbw*mby+mbx] = fs +		} +	} +	if d.fp.unexpectedEOF { +		return nil, io.ErrUnexpectedEOF +	} +	for i := 0; i < d.nOP; i++ { +		if d.op[i].unexpectedEOF { +			return nil, io.ErrUnexpectedEOF +		} +	} +	// Apply the loop filter. +	// +	// Even if we are using per-segment levels, section 15 says that "loop +	// filtering must be skipped entirely if loop_filter_level at either the +	// frame header level or macroblock override level is 0". +	if d.filterHeader.level != 0 { +		if d.filterHeader.simple { +			d.simpleFilter() +		} else { +			d.normalFilter() +		} +	} +	return d.img, nil +} diff --git a/vendor/golang.org/x/image/vp8/filter.go b/vendor/golang.org/x/image/vp8/filter.go new file mode 100644 index 000000000..e34a811b1 --- /dev/null +++ b/vendor/golang.org/x/image/vp8/filter.go @@ -0,0 +1,273 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// filter2 modifies a 2-pixel wide or 2-pixel high band along an edge. +func filter2(pix []byte, level, index, iStep, jStep int) { +	for n := 16; n > 0; n, index = n-1, index+iStep { +		p1 := int(pix[index-2*jStep]) +		p0 := int(pix[index-1*jStep]) +		q0 := int(pix[index+0*jStep]) +		q1 := int(pix[index+1*jStep]) +		if abs(p0-q0)<<1+abs(p1-q1)>>1 > level { +			continue +		} +		a := 3*(q0-p0) + clamp127(p1-q1) +		a1 := clamp15((a + 4) >> 3) +		a2 := clamp15((a + 3) >> 3) +		pix[index-1*jStep] = clamp255(p0 + a2) +		pix[index+0*jStep] = clamp255(q0 - a1) +	} +} + +// filter246 modifies a 2-, 4- or 6-pixel wide or high band along an edge. +func filter246(pix []byte, n, level, ilevel, hlevel, index, iStep, jStep int, fourNotSix bool) { +	for ; n > 0; n, index = n-1, index+iStep { +		p3 := int(pix[index-4*jStep]) +		p2 := int(pix[index-3*jStep]) +		p1 := int(pix[index-2*jStep]) +		p0 := int(pix[index-1*jStep]) +		q0 := int(pix[index+0*jStep]) +		q1 := int(pix[index+1*jStep]) +		q2 := int(pix[index+2*jStep]) +		q3 := int(pix[index+3*jStep]) +		if abs(p0-q0)<<1+abs(p1-q1)>>1 > level { +			continue +		} +		if abs(p3-p2) > ilevel || +			abs(p2-p1) > ilevel || +			abs(p1-p0) > ilevel || +			abs(q1-q0) > ilevel || +			abs(q2-q1) > ilevel || +			abs(q3-q2) > ilevel { +			continue +		} +		if abs(p1-p0) > hlevel || abs(q1-q0) > hlevel { +			// Filter 2 pixels. +			a := 3*(q0-p0) + clamp127(p1-q1) +			a1 := clamp15((a + 4) >> 3) +			a2 := clamp15((a + 3) >> 3) +			pix[index-1*jStep] = clamp255(p0 + a2) +			pix[index+0*jStep] = clamp255(q0 - a1) +		} else if fourNotSix { +			// Filter 4 pixels. +			a := 3 * (q0 - p0) +			a1 := clamp15((a + 4) >> 3) +			a2 := clamp15((a + 3) >> 3) +			a3 := (a1 + 1) >> 1 +			pix[index-2*jStep] = clamp255(p1 + a3) +			pix[index-1*jStep] = clamp255(p0 + a2) +			pix[index+0*jStep] = clamp255(q0 - a1) +			pix[index+1*jStep] = clamp255(q1 - a3) +		} else { +			// Filter 6 pixels. +			a := clamp127(3*(q0-p0) + clamp127(p1-q1)) +			a1 := (27*a + 63) >> 7 +			a2 := (18*a + 63) >> 7 +			a3 := (9*a + 63) >> 7 +			pix[index-3*jStep] = clamp255(p2 + a3) +			pix[index-2*jStep] = clamp255(p1 + a2) +			pix[index-1*jStep] = clamp255(p0 + a1) +			pix[index+0*jStep] = clamp255(q0 - a1) +			pix[index+1*jStep] = clamp255(q1 - a2) +			pix[index+2*jStep] = clamp255(q2 - a3) +		} +	} +} + +// simpleFilter implements the simple filter, as specified in section 15.2. +func (d *Decoder) simpleFilter() { +	for mby := 0; mby < d.mbh; mby++ { +		for mbx := 0; mbx < d.mbw; mbx++ { +			f := d.perMBFilterParams[d.mbw*mby+mbx] +			if f.level == 0 { +				continue +			} +			l := int(f.level) +			yIndex := (mby*d.img.YStride + mbx) * 16 +			if mbx > 0 { +				filter2(d.img.Y, l+4, yIndex, d.img.YStride, 1) +			} +			if f.inner { +				filter2(d.img.Y, l, yIndex+0x4, d.img.YStride, 1) +				filter2(d.img.Y, l, yIndex+0x8, d.img.YStride, 1) +				filter2(d.img.Y, l, yIndex+0xc, d.img.YStride, 1) +			} +			if mby > 0 { +				filter2(d.img.Y, l+4, yIndex, 1, d.img.YStride) +			} +			if f.inner { +				filter2(d.img.Y, l, yIndex+d.img.YStride*0x4, 1, d.img.YStride) +				filter2(d.img.Y, l, yIndex+d.img.YStride*0x8, 1, d.img.YStride) +				filter2(d.img.Y, l, yIndex+d.img.YStride*0xc, 1, d.img.YStride) +			} +		} +	} +} + +// normalFilter implements the normal filter, as specified in section 15.3. +func (d *Decoder) normalFilter() { +	for mby := 0; mby < d.mbh; mby++ { +		for mbx := 0; mbx < d.mbw; mbx++ { +			f := d.perMBFilterParams[d.mbw*mby+mbx] +			if f.level == 0 { +				continue +			} +			l, il, hl := int(f.level), int(f.ilevel), int(f.hlevel) +			yIndex := (mby*d.img.YStride + mbx) * 16 +			cIndex := (mby*d.img.CStride + mbx) * 8 +			if mbx > 0 { +				filter246(d.img.Y, 16, l+4, il, hl, yIndex, d.img.YStride, 1, false) +				filter246(d.img.Cb, 8, l+4, il, hl, cIndex, d.img.CStride, 1, false) +				filter246(d.img.Cr, 8, l+4, il, hl, cIndex, d.img.CStride, 1, false) +			} +			if f.inner { +				filter246(d.img.Y, 16, l, il, hl, yIndex+0x4, d.img.YStride, 1, true) +				filter246(d.img.Y, 16, l, il, hl, yIndex+0x8, d.img.YStride, 1, true) +				filter246(d.img.Y, 16, l, il, hl, yIndex+0xc, d.img.YStride, 1, true) +				filter246(d.img.Cb, 8, l, il, hl, cIndex+0x4, d.img.CStride, 1, true) +				filter246(d.img.Cr, 8, l, il, hl, cIndex+0x4, d.img.CStride, 1, true) +			} +			if mby > 0 { +				filter246(d.img.Y, 16, l+4, il, hl, yIndex, 1, d.img.YStride, false) +				filter246(d.img.Cb, 8, l+4, il, hl, cIndex, 1, d.img.CStride, false) +				filter246(d.img.Cr, 8, l+4, il, hl, cIndex, 1, d.img.CStride, false) +			} +			if f.inner { +				filter246(d.img.Y, 16, l, il, hl, yIndex+d.img.YStride*0x4, 1, d.img.YStride, true) +				filter246(d.img.Y, 16, l, il, hl, yIndex+d.img.YStride*0x8, 1, d.img.YStride, true) +				filter246(d.img.Y, 16, l, il, hl, yIndex+d.img.YStride*0xc, 1, d.img.YStride, true) +				filter246(d.img.Cb, 8, l, il, hl, cIndex+d.img.CStride*0x4, 1, d.img.CStride, true) +				filter246(d.img.Cr, 8, l, il, hl, cIndex+d.img.CStride*0x4, 1, d.img.CStride, true) +			} +		} +	} +} + +// filterParam holds the loop filter parameters for a macroblock. +type filterParam struct { +	// The first three fields are thresholds used by the loop filter to smooth +	// over the edges and interior of a macroblock. level is used by both the +	// simple and normal filters. The inner level and high edge variance level +	// are only used by the normal filter. +	level, ilevel, hlevel uint8 +	// inner is whether the inner loop filter cannot be optimized out as a +	// no-op for this particular macroblock. +	inner bool +} + +// computeFilterParams computes the loop filter parameters, as specified in +// section 15.4. +func (d *Decoder) computeFilterParams() { +	for i := range d.filterParams { +		baseLevel := d.filterHeader.level +		if d.segmentHeader.useSegment { +			baseLevel = d.segmentHeader.filterStrength[i] +			if d.segmentHeader.relativeDelta { +				baseLevel += d.filterHeader.level +			} +		} + +		for j := range d.filterParams[i] { +			p := &d.filterParams[i][j] +			p.inner = j != 0 +			level := baseLevel +			if d.filterHeader.useLFDelta { +				// The libwebp C code has a "TODO: only CURRENT is handled for now." +				level += d.filterHeader.refLFDelta[0] +				if j != 0 { +					level += d.filterHeader.modeLFDelta[0] +				} +			} +			if level <= 0 { +				p.level = 0 +				continue +			} +			if level > 63 { +				level = 63 +			} +			ilevel := level +			if d.filterHeader.sharpness > 0 { +				if d.filterHeader.sharpness > 4 { +					ilevel >>= 2 +				} else { +					ilevel >>= 1 +				} +				if x := int8(9 - d.filterHeader.sharpness); ilevel > x { +					ilevel = x +				} +			} +			if ilevel < 1 { +				ilevel = 1 +			} +			p.ilevel = uint8(ilevel) +			p.level = uint8(2*level + ilevel) +			if d.frameHeader.KeyFrame { +				if level < 15 { +					p.hlevel = 0 +				} else if level < 40 { +					p.hlevel = 1 +				} else { +					p.hlevel = 2 +				} +			} else { +				if level < 15 { +					p.hlevel = 0 +				} else if level < 20 { +					p.hlevel = 1 +				} else if level < 40 { +					p.hlevel = 2 +				} else { +					p.hlevel = 3 +				} +			} +		} +	} +} + +// intSize is either 32 or 64. +const intSize = 32 << (^uint(0) >> 63) + +func abs(x int) int { +	// m := -1 if x < 0. m := 0 otherwise. +	m := x >> (intSize - 1) + +	// In two's complement representation, the negative number +	// of any number (except the smallest one) can be computed +	// by flipping all the bits and add 1. This is faster than +	// code with a branch. +	// See Hacker's Delight, section 2-4. +	return (x ^ m) - m +} + +func clamp15(x int) int { +	if x < -16 { +		return -16 +	} +	if x > 15 { +		return 15 +	} +	return x +} + +func clamp127(x int) int { +	if x < -128 { +		return -128 +	} +	if x > 127 { +		return 127 +	} +	return x +} + +func clamp255(x int) uint8 { +	if x < 0 { +		return 0 +	} +	if x > 255 { +		return 255 +	} +	return uint8(x) +} diff --git a/vendor/golang.org/x/image/vp8/idct.go b/vendor/golang.org/x/image/vp8/idct.go new file mode 100644 index 000000000..929af2cc9 --- /dev/null +++ b/vendor/golang.org/x/image/vp8/idct.go @@ -0,0 +1,98 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// This file implements the inverse Discrete Cosine Transform and the inverse +// Walsh Hadamard Transform (WHT), as specified in sections 14.3 and 14.4. + +func clip8(i int32) uint8 { +	if i < 0 { +		return 0 +	} +	if i > 255 { +		return 255 +	} +	return uint8(i) +} + +func (z *Decoder) inverseDCT4(y, x, coeffBase int) { +	const ( +		c1 = 85627 // 65536 * cos(pi/8) * sqrt(2). +		c2 = 35468 // 65536 * sin(pi/8) * sqrt(2). +	) +	var m [4][4]int32 +	for i := 0; i < 4; i++ { +		a := int32(z.coeff[coeffBase+0]) + int32(z.coeff[coeffBase+8]) +		b := int32(z.coeff[coeffBase+0]) - int32(z.coeff[coeffBase+8]) +		c := (int32(z.coeff[coeffBase+4])*c2)>>16 - (int32(z.coeff[coeffBase+12])*c1)>>16 +		d := (int32(z.coeff[coeffBase+4])*c1)>>16 + (int32(z.coeff[coeffBase+12])*c2)>>16 +		m[i][0] = a + d +		m[i][1] = b + c +		m[i][2] = b - c +		m[i][3] = a - d +		coeffBase++ +	} +	for j := 0; j < 4; j++ { +		dc := m[0][j] + 4 +		a := dc + m[2][j] +		b := dc - m[2][j] +		c := (m[1][j]*c2)>>16 - (m[3][j]*c1)>>16 +		d := (m[1][j]*c1)>>16 + (m[3][j]*c2)>>16 +		z.ybr[y+j][x+0] = clip8(int32(z.ybr[y+j][x+0]) + (a+d)>>3) +		z.ybr[y+j][x+1] = clip8(int32(z.ybr[y+j][x+1]) + (b+c)>>3) +		z.ybr[y+j][x+2] = clip8(int32(z.ybr[y+j][x+2]) + (b-c)>>3) +		z.ybr[y+j][x+3] = clip8(int32(z.ybr[y+j][x+3]) + (a-d)>>3) +	} +} + +func (z *Decoder) inverseDCT4DCOnly(y, x, coeffBase int) { +	dc := (int32(z.coeff[coeffBase+0]) + 4) >> 3 +	for j := 0; j < 4; j++ { +		for i := 0; i < 4; i++ { +			z.ybr[y+j][x+i] = clip8(int32(z.ybr[y+j][x+i]) + dc) +		} +	} +} + +func (z *Decoder) inverseDCT8(y, x, coeffBase int) { +	z.inverseDCT4(y+0, x+0, coeffBase+0*16) +	z.inverseDCT4(y+0, x+4, coeffBase+1*16) +	z.inverseDCT4(y+4, x+0, coeffBase+2*16) +	z.inverseDCT4(y+4, x+4, coeffBase+3*16) +} + +func (z *Decoder) inverseDCT8DCOnly(y, x, coeffBase int) { +	z.inverseDCT4DCOnly(y+0, x+0, coeffBase+0*16) +	z.inverseDCT4DCOnly(y+0, x+4, coeffBase+1*16) +	z.inverseDCT4DCOnly(y+4, x+0, coeffBase+2*16) +	z.inverseDCT4DCOnly(y+4, x+4, coeffBase+3*16) +} + +func (d *Decoder) inverseWHT16() { +	var m [16]int32 +	for i := 0; i < 4; i++ { +		a0 := int32(d.coeff[384+0+i]) + int32(d.coeff[384+12+i]) +		a1 := int32(d.coeff[384+4+i]) + int32(d.coeff[384+8+i]) +		a2 := int32(d.coeff[384+4+i]) - int32(d.coeff[384+8+i]) +		a3 := int32(d.coeff[384+0+i]) - int32(d.coeff[384+12+i]) +		m[0+i] = a0 + a1 +		m[8+i] = a0 - a1 +		m[4+i] = a3 + a2 +		m[12+i] = a3 - a2 +	} +	out := 0 +	for i := 0; i < 4; i++ { +		dc := m[0+i*4] + 3 +		a0 := dc + m[3+i*4] +		a1 := m[1+i*4] + m[2+i*4] +		a2 := m[1+i*4] - m[2+i*4] +		a3 := dc - m[3+i*4] +		d.coeff[out+0] = int16((a0 + a1) >> 3) +		d.coeff[out+16] = int16((a3 + a2) >> 3) +		d.coeff[out+32] = int16((a0 - a1) >> 3) +		d.coeff[out+48] = int16((a3 - a2) >> 3) +		out += 64 +	} +} diff --git a/vendor/golang.org/x/image/vp8/partition.go b/vendor/golang.org/x/image/vp8/partition.go new file mode 100644 index 000000000..72288bdeb --- /dev/null +++ b/vendor/golang.org/x/image/vp8/partition.go @@ -0,0 +1,129 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// Each VP8 frame consists of between 2 and 9 bitstream partitions. +// Each partition is byte-aligned and is independently arithmetic-encoded. +// +// This file implements decoding a partition's bitstream, as specified in +// chapter 7. The implementation follows libwebp's approach instead of the +// specification's reference C implementation. For example, we use a look-up +// table instead of a for loop to recalibrate the encoded range. + +var ( +	lutShift = [127]uint8{ +		7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, +		3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, +		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, +		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, +		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, +		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, +		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, +		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, +	} +	lutRangeM1 = [127]uint8{ +		127, +		127, 191, +		127, 159, 191, 223, +		127, 143, 159, 175, 191, 207, 223, 239, +		127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, +		127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, +		191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, +		127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, +		159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, +		191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, +		223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, +	} +) + +// uniformProb represents a 50% probability that the next bit is 0. +const uniformProb = 128 + +// partition holds arithmetic-coded bits. +type partition struct { +	// buf is the input bytes. +	buf []byte +	// r is how many of buf's bytes have been consumed. +	r int +	// rangeM1 is range minus 1, where range is in the arithmetic coding sense, +	// not the Go language sense. +	rangeM1 uint32 +	// bits and nBits hold those bits shifted out of buf but not yet consumed. +	bits  uint32 +	nBits uint8 +	// unexpectedEOF tells whether we tried to read past buf. +	unexpectedEOF bool +} + +// init initializes the partition. +func (p *partition) init(buf []byte) { +	p.buf = buf +	p.r = 0 +	p.rangeM1 = 254 +	p.bits = 0 +	p.nBits = 0 +	p.unexpectedEOF = false +} + +// readBit returns the next bit. +func (p *partition) readBit(prob uint8) bool { +	if p.nBits < 8 { +		if p.r >= len(p.buf) { +			p.unexpectedEOF = true +			return false +		} +		// Expression split for 386 compiler. +		x := uint32(p.buf[p.r]) +		p.bits |= x << (8 - p.nBits) +		p.r++ +		p.nBits += 8 +	} +	split := (p.rangeM1*uint32(prob))>>8 + 1 +	bit := p.bits >= split<<8 +	if bit { +		p.rangeM1 -= split +		p.bits -= split << 8 +	} else { +		p.rangeM1 = split - 1 +	} +	if p.rangeM1 < 127 { +		shift := lutShift[p.rangeM1] +		p.rangeM1 = uint32(lutRangeM1[p.rangeM1]) +		p.bits <<= shift +		p.nBits -= shift +	} +	return bit +} + +// readUint returns the next n-bit unsigned integer. +func (p *partition) readUint(prob, n uint8) uint32 { +	var u uint32 +	for n > 0 { +		n-- +		if p.readBit(prob) { +			u |= 1 << n +		} +	} +	return u +} + +// readInt returns the next n-bit signed integer. +func (p *partition) readInt(prob, n uint8) int32 { +	u := p.readUint(prob, n) +	b := p.readBit(prob) +	if b { +		return -int32(u) +	} +	return int32(u) +} + +// readOptionalInt returns the next n-bit signed integer in an encoding +// where the likely result is zero. +func (p *partition) readOptionalInt(prob, n uint8) int32 { +	if !p.readBit(prob) { +		return 0 +	} +	return p.readInt(prob, n) +} diff --git a/vendor/golang.org/x/image/vp8/pred.go b/vendor/golang.org/x/image/vp8/pred.go new file mode 100644 index 000000000..58c2689ea --- /dev/null +++ b/vendor/golang.org/x/image/vp8/pred.go @@ -0,0 +1,201 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// This file implements parsing the predictor modes, as specified in chapter +// 11. + +func (d *Decoder) parsePredModeY16(mbx int) { +	var p uint8 +	if !d.fp.readBit(156) { +		if !d.fp.readBit(163) { +			p = predDC +		} else { +			p = predVE +		} +	} else if !d.fp.readBit(128) { +		p = predHE +	} else { +		p = predTM +	} +	for i := 0; i < 4; i++ { +		d.upMB[mbx].pred[i] = p +		d.leftMB.pred[i] = p +	} +	d.predY16 = p +} + +func (d *Decoder) parsePredModeC8() { +	if !d.fp.readBit(142) { +		d.predC8 = predDC +	} else if !d.fp.readBit(114) { +		d.predC8 = predVE +	} else if !d.fp.readBit(183) { +		d.predC8 = predHE +	} else { +		d.predC8 = predTM +	} +} + +func (d *Decoder) parsePredModeY4(mbx int) { +	for j := 0; j < 4; j++ { +		p := d.leftMB.pred[j] +		for i := 0; i < 4; i++ { +			prob := &predProb[d.upMB[mbx].pred[i]][p] +			if !d.fp.readBit(prob[0]) { +				p = predDC +			} else if !d.fp.readBit(prob[1]) { +				p = predTM +			} else if !d.fp.readBit(prob[2]) { +				p = predVE +			} else if !d.fp.readBit(prob[3]) { +				if !d.fp.readBit(prob[4]) { +					p = predHE +				} else if !d.fp.readBit(prob[5]) { +					p = predRD +				} else { +					p = predVR +				} +			} else if !d.fp.readBit(prob[6]) { +				p = predLD +			} else if !d.fp.readBit(prob[7]) { +				p = predVL +			} else if !d.fp.readBit(prob[8]) { +				p = predHD +			} else { +				p = predHU +			} +			d.predY4[j][i] = p +			d.upMB[mbx].pred[i] = p +		} +		d.leftMB.pred[j] = p +	} +} + +// predProb are the probabilities to decode a 4x4 region's predictor mode given +// the predictor modes of the regions above and left of it. +// These values are specified in section 11.5. +var predProb = [nPred][nPred][9]uint8{ +	{ +		{231, 120, 48, 89, 115, 113, 120, 152, 112}, +		{152, 179, 64, 126, 170, 118, 46, 70, 95}, +		{175, 69, 143, 80, 85, 82, 72, 155, 103}, +		{56, 58, 10, 171, 218, 189, 17, 13, 152}, +		{114, 26, 17, 163, 44, 195, 21, 10, 173}, +		{121, 24, 80, 195, 26, 62, 44, 64, 85}, +		{144, 71, 10, 38, 171, 213, 144, 34, 26}, +		{170, 46, 55, 19, 136, 160, 33, 206, 71}, +		{63, 20, 8, 114, 114, 208, 12, 9, 226}, +		{81, 40, 11, 96, 182, 84, 29, 16, 36}, +	}, +	{ +		{134, 183, 89, 137, 98, 101, 106, 165, 148}, +		{72, 187, 100, 130, 157, 111, 32, 75, 80}, +		{66, 102, 167, 99, 74, 62, 40, 234, 128}, +		{41, 53, 9, 178, 241, 141, 26, 8, 107}, +		{74, 43, 26, 146, 73, 166, 49, 23, 157}, +		{65, 38, 105, 160, 51, 52, 31, 115, 128}, +		{104, 79, 12, 27, 217, 255, 87, 17, 7}, +		{87, 68, 71, 44, 114, 51, 15, 186, 23}, +		{47, 41, 14, 110, 182, 183, 21, 17, 194}, +		{66, 45, 25, 102, 197, 189, 23, 18, 22}, +	}, +	{ +		{88, 88, 147, 150, 42, 46, 45, 196, 205}, +		{43, 97, 183, 117, 85, 38, 35, 179, 61}, +		{39, 53, 200, 87, 26, 21, 43, 232, 171}, +		{56, 34, 51, 104, 114, 102, 29, 93, 77}, +		{39, 28, 85, 171, 58, 165, 90, 98, 64}, +		{34, 22, 116, 206, 23, 34, 43, 166, 73}, +		{107, 54, 32, 26, 51, 1, 81, 43, 31}, +		{68, 25, 106, 22, 64, 171, 36, 225, 114}, +		{34, 19, 21, 102, 132, 188, 16, 76, 124}, +		{62, 18, 78, 95, 85, 57, 50, 48, 51}, +	}, +	{ +		{193, 101, 35, 159, 215, 111, 89, 46, 111}, +		{60, 148, 31, 172, 219, 228, 21, 18, 111}, +		{112, 113, 77, 85, 179, 255, 38, 120, 114}, +		{40, 42, 1, 196, 245, 209, 10, 25, 109}, +		{88, 43, 29, 140, 166, 213, 37, 43, 154}, +		{61, 63, 30, 155, 67, 45, 68, 1, 209}, +		{100, 80, 8, 43, 154, 1, 51, 26, 71}, +		{142, 78, 78, 16, 255, 128, 34, 197, 171}, +		{41, 40, 5, 102, 211, 183, 4, 1, 221}, +		{51, 50, 17, 168, 209, 192, 23, 25, 82}, +	}, +	{ +		{138, 31, 36, 171, 27, 166, 38, 44, 229}, +		{67, 87, 58, 169, 82, 115, 26, 59, 179}, +		{63, 59, 90, 180, 59, 166, 93, 73, 154}, +		{40, 40, 21, 116, 143, 209, 34, 39, 175}, +		{47, 15, 16, 183, 34, 223, 49, 45, 183}, +		{46, 17, 33, 183, 6, 98, 15, 32, 183}, +		{57, 46, 22, 24, 128, 1, 54, 17, 37}, +		{65, 32, 73, 115, 28, 128, 23, 128, 205}, +		{40, 3, 9, 115, 51, 192, 18, 6, 223}, +		{87, 37, 9, 115, 59, 77, 64, 21, 47}, +	}, +	{ +		{104, 55, 44, 218, 9, 54, 53, 130, 226}, +		{64, 90, 70, 205, 40, 41, 23, 26, 57}, +		{54, 57, 112, 184, 5, 41, 38, 166, 213}, +		{30, 34, 26, 133, 152, 116, 10, 32, 134}, +		{39, 19, 53, 221, 26, 114, 32, 73, 255}, +		{31, 9, 65, 234, 2, 15, 1, 118, 73}, +		{75, 32, 12, 51, 192, 255, 160, 43, 51}, +		{88, 31, 35, 67, 102, 85, 55, 186, 85}, +		{56, 21, 23, 111, 59, 205, 45, 37, 192}, +		{55, 38, 70, 124, 73, 102, 1, 34, 98}, +	}, +	{ +		{125, 98, 42, 88, 104, 85, 117, 175, 82}, +		{95, 84, 53, 89, 128, 100, 113, 101, 45}, +		{75, 79, 123, 47, 51, 128, 81, 171, 1}, +		{57, 17, 5, 71, 102, 57, 53, 41, 49}, +		{38, 33, 13, 121, 57, 73, 26, 1, 85}, +		{41, 10, 67, 138, 77, 110, 90, 47, 114}, +		{115, 21, 2, 10, 102, 255, 166, 23, 6}, +		{101, 29, 16, 10, 85, 128, 101, 196, 26}, +		{57, 18, 10, 102, 102, 213, 34, 20, 43}, +		{117, 20, 15, 36, 163, 128, 68, 1, 26}, +	}, +	{ +		{102, 61, 71, 37, 34, 53, 31, 243, 192}, +		{69, 60, 71, 38, 73, 119, 28, 222, 37}, +		{68, 45, 128, 34, 1, 47, 11, 245, 171}, +		{62, 17, 19, 70, 146, 85, 55, 62, 70}, +		{37, 43, 37, 154, 100, 163, 85, 160, 1}, +		{63, 9, 92, 136, 28, 64, 32, 201, 85}, +		{75, 15, 9, 9, 64, 255, 184, 119, 16}, +		{86, 6, 28, 5, 64, 255, 25, 248, 1}, +		{56, 8, 17, 132, 137, 255, 55, 116, 128}, +		{58, 15, 20, 82, 135, 57, 26, 121, 40}, +	}, +	{ +		{164, 50, 31, 137, 154, 133, 25, 35, 218}, +		{51, 103, 44, 131, 131, 123, 31, 6, 158}, +		{86, 40, 64, 135, 148, 224, 45, 183, 128}, +		{22, 26, 17, 131, 240, 154, 14, 1, 209}, +		{45, 16, 21, 91, 64, 222, 7, 1, 197}, +		{56, 21, 39, 155, 60, 138, 23, 102, 213}, +		{83, 12, 13, 54, 192, 255, 68, 47, 28}, +		{85, 26, 85, 85, 128, 128, 32, 146, 171}, +		{18, 11, 7, 63, 144, 171, 4, 4, 246}, +		{35, 27, 10, 146, 174, 171, 12, 26, 128}, +	}, +	{ +		{190, 80, 35, 99, 180, 80, 126, 54, 45}, +		{85, 126, 47, 87, 176, 51, 41, 20, 32}, +		{101, 75, 128, 139, 118, 146, 116, 128, 85}, +		{56, 41, 15, 176, 236, 85, 37, 9, 62}, +		{71, 30, 17, 119, 118, 255, 17, 18, 138}, +		{101, 38, 60, 138, 55, 70, 43, 26, 142}, +		{146, 36, 19, 30, 171, 255, 97, 27, 20}, +		{138, 45, 61, 62, 219, 1, 81, 188, 64}, +		{32, 41, 20, 117, 151, 142, 20, 21, 163}, +		{112, 19, 12, 61, 195, 128, 48, 4, 24}, +	}, +} diff --git a/vendor/golang.org/x/image/vp8/predfunc.go b/vendor/golang.org/x/image/vp8/predfunc.go new file mode 100644 index 000000000..f8999582b --- /dev/null +++ b/vendor/golang.org/x/image/vp8/predfunc.go @@ -0,0 +1,553 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// This file implements the predicition functions, as specified in chapter 12. +// +// For each macroblock (of 1x16x16 luma and 2x8x8 chroma coefficients), the +// luma values are either predicted as one large 16x16 region or 16 separate +// 4x4 regions. The chroma values are always predicted as one 8x8 region. +// +// For 4x4 regions, the target block's predicted values (Xs) are a function of +// its previously-decoded top and left border values, as well as a number of +// pixels from the top-right: +// +//	a b c d e f g h +//	p X X X X +//	q X X X X +//	r X X X X +//	s X X X X +// +// The predictor modes are: +//	- DC: all Xs = (b + c + d + e + p + q + r + s + 4) / 8. +//	- TM: the first X = (b + p - a), the second X = (c + p - a), and so on. +//	- VE: each X = the weighted average of its column's top value and that +//	      value's neighbors, i.e. averages of abc, bcd, cde or def. +//	- HE: similar to VE except rows instead of columns, and the final row is +//	      an average of r, s and s. +//	- RD, VR, LD, VL, HD, HU: these diagonal modes ("Right Down", "Vertical +//	      Right", etc) are more complicated and are described in section 12.3. +// All Xs are clipped to the range [0, 255]. +// +// For 8x8 and 16x16 regions, the target block's predicted values are a +// function of the top and left border values without the top-right overhang, +// i.e. without the 8x8 or 16x16 equivalent of f, g and h. Furthermore: +//	- There are no diagonal predictor modes, only DC, TM, VE and HE. +//	- The DC mode has variants for macroblocks in the top row and/or left +//	  column, i.e. for macroblocks with mby == 0 || mbx == 0. +//	- The VE and HE modes take only the column top or row left values; they do +//	  not smooth that top/left value with its neighbors. + +// nPred is the number of predictor modes, not including the Top/Left versions +// of the DC predictor mode. +const nPred = 10 + +const ( +	predDC = iota +	predTM +	predVE +	predHE +	predRD +	predVR +	predLD +	predVL +	predHD +	predHU +	predDCTop +	predDCLeft +	predDCTopLeft +) + +func checkTopLeftPred(mbx, mby int, p uint8) uint8 { +	if p != predDC { +		return p +	} +	if mbx == 0 { +		if mby == 0 { +			return predDCTopLeft +		} +		return predDCLeft +	} +	if mby == 0 { +		return predDCTop +	} +	return predDC +} + +var predFunc4 = [...]func(*Decoder, int, int){ +	predFunc4DC, +	predFunc4TM, +	predFunc4VE, +	predFunc4HE, +	predFunc4RD, +	predFunc4VR, +	predFunc4LD, +	predFunc4VL, +	predFunc4HD, +	predFunc4HU, +	nil, +	nil, +	nil, +} + +var predFunc8 = [...]func(*Decoder, int, int){ +	predFunc8DC, +	predFunc8TM, +	predFunc8VE, +	predFunc8HE, +	nil, +	nil, +	nil, +	nil, +	nil, +	nil, +	predFunc8DCTop, +	predFunc8DCLeft, +	predFunc8DCTopLeft, +} + +var predFunc16 = [...]func(*Decoder, int, int){ +	predFunc16DC, +	predFunc16TM, +	predFunc16VE, +	predFunc16HE, +	nil, +	nil, +	nil, +	nil, +	nil, +	nil, +	predFunc16DCTop, +	predFunc16DCLeft, +	predFunc16DCTopLeft, +} + +func predFunc4DC(z *Decoder, y, x int) { +	sum := uint32(4) +	for i := 0; i < 4; i++ { +		sum += uint32(z.ybr[y-1][x+i]) +	} +	for j := 0; j < 4; j++ { +		sum += uint32(z.ybr[y+j][x-1]) +	} +	avg := uint8(sum / 8) +	for j := 0; j < 4; j++ { +		for i := 0; i < 4; i++ { +			z.ybr[y+j][x+i] = avg +		} +	} +} + +func predFunc4TM(z *Decoder, y, x int) { +	delta0 := -int32(z.ybr[y-1][x-1]) +	for j := 0; j < 4; j++ { +		delta1 := delta0 + int32(z.ybr[y+j][x-1]) +		for i := 0; i < 4; i++ { +			delta2 := delta1 + int32(z.ybr[y-1][x+i]) +			z.ybr[y+j][x+i] = uint8(clip(delta2, 0, 255)) +		} +	} +} + +func predFunc4VE(z *Decoder, y, x int) { +	a := int32(z.ybr[y-1][x-1]) +	b := int32(z.ybr[y-1][x+0]) +	c := int32(z.ybr[y-1][x+1]) +	d := int32(z.ybr[y-1][x+2]) +	e := int32(z.ybr[y-1][x+3]) +	f := int32(z.ybr[y-1][x+4]) +	abc := uint8((a + 2*b + c + 2) / 4) +	bcd := uint8((b + 2*c + d + 2) / 4) +	cde := uint8((c + 2*d + e + 2) / 4) +	def := uint8((d + 2*e + f + 2) / 4) +	for j := 0; j < 4; j++ { +		z.ybr[y+j][x+0] = abc +		z.ybr[y+j][x+1] = bcd +		z.ybr[y+j][x+2] = cde +		z.ybr[y+j][x+3] = def +	} +} + +func predFunc4HE(z *Decoder, y, x int) { +	s := int32(z.ybr[y+3][x-1]) +	r := int32(z.ybr[y+2][x-1]) +	q := int32(z.ybr[y+1][x-1]) +	p := int32(z.ybr[y+0][x-1]) +	a := int32(z.ybr[y-1][x-1]) +	ssr := uint8((s + 2*s + r + 2) / 4) +	srq := uint8((s + 2*r + q + 2) / 4) +	rqp := uint8((r + 2*q + p + 2) / 4) +	apq := uint8((a + 2*p + q + 2) / 4) +	for i := 0; i < 4; i++ { +		z.ybr[y+0][x+i] = apq +		z.ybr[y+1][x+i] = rqp +		z.ybr[y+2][x+i] = srq +		z.ybr[y+3][x+i] = ssr +	} +} + +func predFunc4RD(z *Decoder, y, x int) { +	s := int32(z.ybr[y+3][x-1]) +	r := int32(z.ybr[y+2][x-1]) +	q := int32(z.ybr[y+1][x-1]) +	p := int32(z.ybr[y+0][x-1]) +	a := int32(z.ybr[y-1][x-1]) +	b := int32(z.ybr[y-1][x+0]) +	c := int32(z.ybr[y-1][x+1]) +	d := int32(z.ybr[y-1][x+2]) +	e := int32(z.ybr[y-1][x+3]) +	srq := uint8((s + 2*r + q + 2) / 4) +	rqp := uint8((r + 2*q + p + 2) / 4) +	qpa := uint8((q + 2*p + a + 2) / 4) +	pab := uint8((p + 2*a + b + 2) / 4) +	abc := uint8((a + 2*b + c + 2) / 4) +	bcd := uint8((b + 2*c + d + 2) / 4) +	cde := uint8((c + 2*d + e + 2) / 4) +	z.ybr[y+0][x+0] = pab +	z.ybr[y+0][x+1] = abc +	z.ybr[y+0][x+2] = bcd +	z.ybr[y+0][x+3] = cde +	z.ybr[y+1][x+0] = qpa +	z.ybr[y+1][x+1] = pab +	z.ybr[y+1][x+2] = abc +	z.ybr[y+1][x+3] = bcd +	z.ybr[y+2][x+0] = rqp +	z.ybr[y+2][x+1] = qpa +	z.ybr[y+2][x+2] = pab +	z.ybr[y+2][x+3] = abc +	z.ybr[y+3][x+0] = srq +	z.ybr[y+3][x+1] = rqp +	z.ybr[y+3][x+2] = qpa +	z.ybr[y+3][x+3] = pab +} + +func predFunc4VR(z *Decoder, y, x int) { +	r := int32(z.ybr[y+2][x-1]) +	q := int32(z.ybr[y+1][x-1]) +	p := int32(z.ybr[y+0][x-1]) +	a := int32(z.ybr[y-1][x-1]) +	b := int32(z.ybr[y-1][x+0]) +	c := int32(z.ybr[y-1][x+1]) +	d := int32(z.ybr[y-1][x+2]) +	e := int32(z.ybr[y-1][x+3]) +	ab := uint8((a + b + 1) / 2) +	bc := uint8((b + c + 1) / 2) +	cd := uint8((c + d + 1) / 2) +	de := uint8((d + e + 1) / 2) +	rqp := uint8((r + 2*q + p + 2) / 4) +	qpa := uint8((q + 2*p + a + 2) / 4) +	pab := uint8((p + 2*a + b + 2) / 4) +	abc := uint8((a + 2*b + c + 2) / 4) +	bcd := uint8((b + 2*c + d + 2) / 4) +	cde := uint8((c + 2*d + e + 2) / 4) +	z.ybr[y+0][x+0] = ab +	z.ybr[y+0][x+1] = bc +	z.ybr[y+0][x+2] = cd +	z.ybr[y+0][x+3] = de +	z.ybr[y+1][x+0] = pab +	z.ybr[y+1][x+1] = abc +	z.ybr[y+1][x+2] = bcd +	z.ybr[y+1][x+3] = cde +	z.ybr[y+2][x+0] = qpa +	z.ybr[y+2][x+1] = ab +	z.ybr[y+2][x+2] = bc +	z.ybr[y+2][x+3] = cd +	z.ybr[y+3][x+0] = rqp +	z.ybr[y+3][x+1] = pab +	z.ybr[y+3][x+2] = abc +	z.ybr[y+3][x+3] = bcd +} + +func predFunc4LD(z *Decoder, y, x int) { +	a := int32(z.ybr[y-1][x+0]) +	b := int32(z.ybr[y-1][x+1]) +	c := int32(z.ybr[y-1][x+2]) +	d := int32(z.ybr[y-1][x+3]) +	e := int32(z.ybr[y-1][x+4]) +	f := int32(z.ybr[y-1][x+5]) +	g := int32(z.ybr[y-1][x+6]) +	h := int32(z.ybr[y-1][x+7]) +	abc := uint8((a + 2*b + c + 2) / 4) +	bcd := uint8((b + 2*c + d + 2) / 4) +	cde := uint8((c + 2*d + e + 2) / 4) +	def := uint8((d + 2*e + f + 2) / 4) +	efg := uint8((e + 2*f + g + 2) / 4) +	fgh := uint8((f + 2*g + h + 2) / 4) +	ghh := uint8((g + 2*h + h + 2) / 4) +	z.ybr[y+0][x+0] = abc +	z.ybr[y+0][x+1] = bcd +	z.ybr[y+0][x+2] = cde +	z.ybr[y+0][x+3] = def +	z.ybr[y+1][x+0] = bcd +	z.ybr[y+1][x+1] = cde +	z.ybr[y+1][x+2] = def +	z.ybr[y+1][x+3] = efg +	z.ybr[y+2][x+0] = cde +	z.ybr[y+2][x+1] = def +	z.ybr[y+2][x+2] = efg +	z.ybr[y+2][x+3] = fgh +	z.ybr[y+3][x+0] = def +	z.ybr[y+3][x+1] = efg +	z.ybr[y+3][x+2] = fgh +	z.ybr[y+3][x+3] = ghh +} + +func predFunc4VL(z *Decoder, y, x int) { +	a := int32(z.ybr[y-1][x+0]) +	b := int32(z.ybr[y-1][x+1]) +	c := int32(z.ybr[y-1][x+2]) +	d := int32(z.ybr[y-1][x+3]) +	e := int32(z.ybr[y-1][x+4]) +	f := int32(z.ybr[y-1][x+5]) +	g := int32(z.ybr[y-1][x+6]) +	h := int32(z.ybr[y-1][x+7]) +	ab := uint8((a + b + 1) / 2) +	bc := uint8((b + c + 1) / 2) +	cd := uint8((c + d + 1) / 2) +	de := uint8((d + e + 1) / 2) +	abc := uint8((a + 2*b + c + 2) / 4) +	bcd := uint8((b + 2*c + d + 2) / 4) +	cde := uint8((c + 2*d + e + 2) / 4) +	def := uint8((d + 2*e + f + 2) / 4) +	efg := uint8((e + 2*f + g + 2) / 4) +	fgh := uint8((f + 2*g + h + 2) / 4) +	z.ybr[y+0][x+0] = ab +	z.ybr[y+0][x+1] = bc +	z.ybr[y+0][x+2] = cd +	z.ybr[y+0][x+3] = de +	z.ybr[y+1][x+0] = abc +	z.ybr[y+1][x+1] = bcd +	z.ybr[y+1][x+2] = cde +	z.ybr[y+1][x+3] = def +	z.ybr[y+2][x+0] = bc +	z.ybr[y+2][x+1] = cd +	z.ybr[y+2][x+2] = de +	z.ybr[y+2][x+3] = efg +	z.ybr[y+3][x+0] = bcd +	z.ybr[y+3][x+1] = cde +	z.ybr[y+3][x+2] = def +	z.ybr[y+3][x+3] = fgh +} + +func predFunc4HD(z *Decoder, y, x int) { +	s := int32(z.ybr[y+3][x-1]) +	r := int32(z.ybr[y+2][x-1]) +	q := int32(z.ybr[y+1][x-1]) +	p := int32(z.ybr[y+0][x-1]) +	a := int32(z.ybr[y-1][x-1]) +	b := int32(z.ybr[y-1][x+0]) +	c := int32(z.ybr[y-1][x+1]) +	d := int32(z.ybr[y-1][x+2]) +	sr := uint8((s + r + 1) / 2) +	rq := uint8((r + q + 1) / 2) +	qp := uint8((q + p + 1) / 2) +	pa := uint8((p + a + 1) / 2) +	srq := uint8((s + 2*r + q + 2) / 4) +	rqp := uint8((r + 2*q + p + 2) / 4) +	qpa := uint8((q + 2*p + a + 2) / 4) +	pab := uint8((p + 2*a + b + 2) / 4) +	abc := uint8((a + 2*b + c + 2) / 4) +	bcd := uint8((b + 2*c + d + 2) / 4) +	z.ybr[y+0][x+0] = pa +	z.ybr[y+0][x+1] = pab +	z.ybr[y+0][x+2] = abc +	z.ybr[y+0][x+3] = bcd +	z.ybr[y+1][x+0] = qp +	z.ybr[y+1][x+1] = qpa +	z.ybr[y+1][x+2] = pa +	z.ybr[y+1][x+3] = pab +	z.ybr[y+2][x+0] = rq +	z.ybr[y+2][x+1] = rqp +	z.ybr[y+2][x+2] = qp +	z.ybr[y+2][x+3] = qpa +	z.ybr[y+3][x+0] = sr +	z.ybr[y+3][x+1] = srq +	z.ybr[y+3][x+2] = rq +	z.ybr[y+3][x+3] = rqp +} + +func predFunc4HU(z *Decoder, y, x int) { +	s := int32(z.ybr[y+3][x-1]) +	r := int32(z.ybr[y+2][x-1]) +	q := int32(z.ybr[y+1][x-1]) +	p := int32(z.ybr[y+0][x-1]) +	pq := uint8((p + q + 1) / 2) +	qr := uint8((q + r + 1) / 2) +	rs := uint8((r + s + 1) / 2) +	pqr := uint8((p + 2*q + r + 2) / 4) +	qrs := uint8((q + 2*r + s + 2) / 4) +	rss := uint8((r + 2*s + s + 2) / 4) +	sss := uint8(s) +	z.ybr[y+0][x+0] = pq +	z.ybr[y+0][x+1] = pqr +	z.ybr[y+0][x+2] = qr +	z.ybr[y+0][x+3] = qrs +	z.ybr[y+1][x+0] = qr +	z.ybr[y+1][x+1] = qrs +	z.ybr[y+1][x+2] = rs +	z.ybr[y+1][x+3] = rss +	z.ybr[y+2][x+0] = rs +	z.ybr[y+2][x+1] = rss +	z.ybr[y+2][x+2] = sss +	z.ybr[y+2][x+3] = sss +	z.ybr[y+3][x+0] = sss +	z.ybr[y+3][x+1] = sss +	z.ybr[y+3][x+2] = sss +	z.ybr[y+3][x+3] = sss +} + +func predFunc8DC(z *Decoder, y, x int) { +	sum := uint32(8) +	for i := 0; i < 8; i++ { +		sum += uint32(z.ybr[y-1][x+i]) +	} +	for j := 0; j < 8; j++ { +		sum += uint32(z.ybr[y+j][x-1]) +	} +	avg := uint8(sum / 16) +	for j := 0; j < 8; j++ { +		for i := 0; i < 8; i++ { +			z.ybr[y+j][x+i] = avg +		} +	} +} + +func predFunc8TM(z *Decoder, y, x int) { +	delta0 := -int32(z.ybr[y-1][x-1]) +	for j := 0; j < 8; j++ { +		delta1 := delta0 + int32(z.ybr[y+j][x-1]) +		for i := 0; i < 8; i++ { +			delta2 := delta1 + int32(z.ybr[y-1][x+i]) +			z.ybr[y+j][x+i] = uint8(clip(delta2, 0, 255)) +		} +	} +} + +func predFunc8VE(z *Decoder, y, x int) { +	for j := 0; j < 8; j++ { +		for i := 0; i < 8; i++ { +			z.ybr[y+j][x+i] = z.ybr[y-1][x+i] +		} +	} +} + +func predFunc8HE(z *Decoder, y, x int) { +	for j := 0; j < 8; j++ { +		for i := 0; i < 8; i++ { +			z.ybr[y+j][x+i] = z.ybr[y+j][x-1] +		} +	} +} + +func predFunc8DCTop(z *Decoder, y, x int) { +	sum := uint32(4) +	for j := 0; j < 8; j++ { +		sum += uint32(z.ybr[y+j][x-1]) +	} +	avg := uint8(sum / 8) +	for j := 0; j < 8; j++ { +		for i := 0; i < 8; i++ { +			z.ybr[y+j][x+i] = avg +		} +	} +} + +func predFunc8DCLeft(z *Decoder, y, x int) { +	sum := uint32(4) +	for i := 0; i < 8; i++ { +		sum += uint32(z.ybr[y-1][x+i]) +	} +	avg := uint8(sum / 8) +	for j := 0; j < 8; j++ { +		for i := 0; i < 8; i++ { +			z.ybr[y+j][x+i] = avg +		} +	} +} + +func predFunc8DCTopLeft(z *Decoder, y, x int) { +	for j := 0; j < 8; j++ { +		for i := 0; i < 8; i++ { +			z.ybr[y+j][x+i] = 0x80 +		} +	} +} + +func predFunc16DC(z *Decoder, y, x int) { +	sum := uint32(16) +	for i := 0; i < 16; i++ { +		sum += uint32(z.ybr[y-1][x+i]) +	} +	for j := 0; j < 16; j++ { +		sum += uint32(z.ybr[y+j][x-1]) +	} +	avg := uint8(sum / 32) +	for j := 0; j < 16; j++ { +		for i := 0; i < 16; i++ { +			z.ybr[y+j][x+i] = avg +		} +	} +} + +func predFunc16TM(z *Decoder, y, x int) { +	delta0 := -int32(z.ybr[y-1][x-1]) +	for j := 0; j < 16; j++ { +		delta1 := delta0 + int32(z.ybr[y+j][x-1]) +		for i := 0; i < 16; i++ { +			delta2 := delta1 + int32(z.ybr[y-1][x+i]) +			z.ybr[y+j][x+i] = uint8(clip(delta2, 0, 255)) +		} +	} +} + +func predFunc16VE(z *Decoder, y, x int) { +	for j := 0; j < 16; j++ { +		for i := 0; i < 16; i++ { +			z.ybr[y+j][x+i] = z.ybr[y-1][x+i] +		} +	} +} + +func predFunc16HE(z *Decoder, y, x int) { +	for j := 0; j < 16; j++ { +		for i := 0; i < 16; i++ { +			z.ybr[y+j][x+i] = z.ybr[y+j][x-1] +		} +	} +} + +func predFunc16DCTop(z *Decoder, y, x int) { +	sum := uint32(8) +	for j := 0; j < 16; j++ { +		sum += uint32(z.ybr[y+j][x-1]) +	} +	avg := uint8(sum / 16) +	for j := 0; j < 16; j++ { +		for i := 0; i < 16; i++ { +			z.ybr[y+j][x+i] = avg +		} +	} +} + +func predFunc16DCLeft(z *Decoder, y, x int) { +	sum := uint32(8) +	for i := 0; i < 16; i++ { +		sum += uint32(z.ybr[y-1][x+i]) +	} +	avg := uint8(sum / 16) +	for j := 0; j < 16; j++ { +		for i := 0; i < 16; i++ { +			z.ybr[y+j][x+i] = avg +		} +	} +} + +func predFunc16DCTopLeft(z *Decoder, y, x int) { +	for j := 0; j < 16; j++ { +		for i := 0; i < 16; i++ { +			z.ybr[y+j][x+i] = 0x80 +		} +	} +} diff --git a/vendor/golang.org/x/image/vp8/quant.go b/vendor/golang.org/x/image/vp8/quant.go new file mode 100644 index 000000000..da4361604 --- /dev/null +++ b/vendor/golang.org/x/image/vp8/quant.go @@ -0,0 +1,98 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// This file implements parsing the quantization factors. + +// quant are DC/AC quantization factors. +type quant struct { +	y1 [2]uint16 +	y2 [2]uint16 +	uv [2]uint16 +} + +// clip clips x to the range [min, max] inclusive. +func clip(x, min, max int32) int32 { +	if x < min { +		return min +	} +	if x > max { +		return max +	} +	return x +} + +// parseQuant parses the quantization factors, as specified in section 9.6. +func (d *Decoder) parseQuant() { +	baseQ0 := d.fp.readUint(uniformProb, 7) +	dqy1DC := d.fp.readOptionalInt(uniformProb, 4) +	const dqy1AC = 0 +	dqy2DC := d.fp.readOptionalInt(uniformProb, 4) +	dqy2AC := d.fp.readOptionalInt(uniformProb, 4) +	dquvDC := d.fp.readOptionalInt(uniformProb, 4) +	dquvAC := d.fp.readOptionalInt(uniformProb, 4) +	for i := 0; i < nSegment; i++ { +		q := int32(baseQ0) +		if d.segmentHeader.useSegment { +			if d.segmentHeader.relativeDelta { +				q += int32(d.segmentHeader.quantizer[i]) +			} else { +				q = int32(d.segmentHeader.quantizer[i]) +			} +		} +		d.quant[i].y1[0] = dequantTableDC[clip(q+dqy1DC, 0, 127)] +		d.quant[i].y1[1] = dequantTableAC[clip(q+dqy1AC, 0, 127)] +		d.quant[i].y2[0] = dequantTableDC[clip(q+dqy2DC, 0, 127)] * 2 +		d.quant[i].y2[1] = dequantTableAC[clip(q+dqy2AC, 0, 127)] * 155 / 100 +		if d.quant[i].y2[1] < 8 { +			d.quant[i].y2[1] = 8 +		} +		// The 117 is not a typo. The dequant_init function in the spec's Reference +		// Decoder Source Code (http://tools.ietf.org/html/rfc6386#section-9.6 Page 145) +		// says to clamp the LHS value at 132, which is equal to dequantTableDC[117]. +		d.quant[i].uv[0] = dequantTableDC[clip(q+dquvDC, 0, 117)] +		d.quant[i].uv[1] = dequantTableAC[clip(q+dquvAC, 0, 127)] +	} +} + +// The dequantization tables are specified in section 14.1. +var ( +	dequantTableDC = [128]uint16{ +		4, 5, 6, 7, 8, 9, 10, 10, +		11, 12, 13, 14, 15, 16, 17, 17, +		18, 19, 20, 20, 21, 21, 22, 22, +		23, 23, 24, 25, 25, 26, 27, 28, +		29, 30, 31, 32, 33, 34, 35, 36, +		37, 37, 38, 39, 40, 41, 42, 43, +		44, 45, 46, 46, 47, 48, 49, 50, +		51, 52, 53, 54, 55, 56, 57, 58, +		59, 60, 61, 62, 63, 64, 65, 66, +		67, 68, 69, 70, 71, 72, 73, 74, +		75, 76, 76, 77, 78, 79, 80, 81, +		82, 83, 84, 85, 86, 87, 88, 89, +		91, 93, 95, 96, 98, 100, 101, 102, +		104, 106, 108, 110, 112, 114, 116, 118, +		122, 124, 126, 128, 130, 132, 134, 136, +		138, 140, 143, 145, 148, 151, 154, 157, +	} +	dequantTableAC = [128]uint16{ +		4, 5, 6, 7, 8, 9, 10, 11, +		12, 13, 14, 15, 16, 17, 18, 19, +		20, 21, 22, 23, 24, 25, 26, 27, +		28, 29, 30, 31, 32, 33, 34, 35, +		36, 37, 38, 39, 40, 41, 42, 43, +		44, 45, 46, 47, 48, 49, 50, 51, +		52, 53, 54, 55, 56, 57, 58, 60, +		62, 64, 66, 68, 70, 72, 74, 76, +		78, 80, 82, 84, 86, 88, 90, 92, +		94, 96, 98, 100, 102, 104, 106, 108, +		110, 112, 114, 116, 119, 122, 125, 128, +		131, 134, 137, 140, 143, 146, 149, 152, +		155, 158, 161, 164, 167, 170, 173, 177, +		181, 185, 189, 193, 197, 201, 205, 209, +		213, 217, 221, 225, 229, 234, 239, 245, +		249, 254, 259, 264, 269, 274, 279, 284, +	} +) diff --git a/vendor/golang.org/x/image/vp8/reconstruct.go b/vendor/golang.org/x/image/vp8/reconstruct.go new file mode 100644 index 000000000..c1cc4b532 --- /dev/null +++ b/vendor/golang.org/x/image/vp8/reconstruct.go @@ -0,0 +1,442 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// This file implements decoding DCT/WHT residual coefficients and +// reconstructing YCbCr data equal to predicted values plus residuals. +// +// There are 1*16*16 + 2*8*8 + 1*4*4 coefficients per macroblock: +//	- 1*16*16 luma DCT coefficients, +//	- 2*8*8 chroma DCT coefficients, and +//	- 1*4*4 luma WHT coefficients. +// Coefficients are read in lots of 16, and the later coefficients in each lot +// are often zero. +// +// The YCbCr data consists of 1*16*16 luma values and 2*8*8 chroma values, +// plus previously decoded values along the top and left borders. The combined +// values are laid out as a [1+16+1+8][32]uint8 so that vertically adjacent +// samples are 32 bytes apart. In detail, the layout is: +// +//	0 1 2 3 4 5 6 7  8 9 0 1 2 3 4 5  6 7 8 9 0 1 2 3  4 5 6 7 8 9 0 1 +//	. . . . . . . a  b b b b b b b b  b b b b b b b b  c c c c . . . .	0 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	1 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	2 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	3 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  c c c c . . . .	4 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	5 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	6 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	7 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  c c c c . . . .	8 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	9 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	10 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	11 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  c c c c . . . .	12 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	13 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	14 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	15 +//	. . . . . . . d  Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y  . . . . . . . .	16 +//	. . . . . . . e  f f f f f f f f  . . . . . . . g  h h h h h h h h	17 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	18 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	19 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	20 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	21 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	22 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	23 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	24 +//	. . . . . . . i  B B B B B B B B  . . . . . . . j  R R R R R R R R	25 +// +// Y, B and R are the reconstructed luma (Y) and chroma (B, R) values. +// The Y values are predicted (either as one 16x16 region or 16 4x4 regions) +// based on the row above's Y values (some combination of {abc} or {dYC}) and +// the column left's Y values (either {ad} or {bY}). Similarly, B and R values +// are predicted on the row above and column left of their respective 8x8 +// region: {efi} for B, {ghj} for R. +// +// For uppermost macroblocks (i.e. those with mby == 0), the {abcefgh} values +// are initialized to 0x81. Otherwise, they are copied from the bottom row of +// the macroblock above. The {c} values are then duplicated from row 0 to rows +// 4, 8 and 12 of the ybr workspace. +// Similarly, for leftmost macroblocks (i.e. those with mbx == 0), the {adeigj} +// values are initialized to 0x7f. Otherwise, they are copied from the right +// column of the macroblock to the left. +// For the top-left macroblock (with mby == 0 && mbx == 0), {aeg} is 0x81. +// +// When moving from one macroblock to the next horizontally, the {adeigj} +// values can simply be copied from the workspace to itself, shifted by 8 or +// 16 columns. When moving from one macroblock to the next vertically, +// filtering can occur and hence the row values have to be copied from the +// post-filtered image instead of the pre-filtered workspace. + +const ( +	bCoeffBase   = 1*16*16 + 0*8*8 +	rCoeffBase   = 1*16*16 + 1*8*8 +	whtCoeffBase = 1*16*16 + 2*8*8 +) + +const ( +	ybrYX = 8 +	ybrYY = 1 +	ybrBX = 8 +	ybrBY = 18 +	ybrRX = 24 +	ybrRY = 18 +) + +// prepareYBR prepares the {abcdefghij} elements of ybr. +func (d *Decoder) prepareYBR(mbx, mby int) { +	if mbx == 0 { +		for y := 0; y < 17; y++ { +			d.ybr[y][7] = 0x81 +		} +		for y := 17; y < 26; y++ { +			d.ybr[y][7] = 0x81 +			d.ybr[y][23] = 0x81 +		} +	} else { +		for y := 0; y < 17; y++ { +			d.ybr[y][7] = d.ybr[y][7+16] +		} +		for y := 17; y < 26; y++ { +			d.ybr[y][7] = d.ybr[y][15] +			d.ybr[y][23] = d.ybr[y][31] +		} +	} +	if mby == 0 { +		for x := 7; x < 28; x++ { +			d.ybr[0][x] = 0x7f +		} +		for x := 7; x < 16; x++ { +			d.ybr[17][x] = 0x7f +		} +		for x := 23; x < 32; x++ { +			d.ybr[17][x] = 0x7f +		} +	} else { +		for i := 0; i < 16; i++ { +			d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i] +		} +		for i := 0; i < 8; i++ { +			d.ybr[17][8+i] = d.img.Cb[(8*mby-1)*d.img.CStride+8*mbx+i] +		} +		for i := 0; i < 8; i++ { +			d.ybr[17][24+i] = d.img.Cr[(8*mby-1)*d.img.CStride+8*mbx+i] +		} +		if mbx == d.mbw-1 { +			for i := 16; i < 20; i++ { +				d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+15] +			} +		} else { +			for i := 16; i < 20; i++ { +				d.ybr[0][8+i] = d.img.Y[(16*mby-1)*d.img.YStride+16*mbx+i] +			} +		} +	} +	for y := 4; y < 16; y += 4 { +		d.ybr[y][24] = d.ybr[0][24] +		d.ybr[y][25] = d.ybr[0][25] +		d.ybr[y][26] = d.ybr[0][26] +		d.ybr[y][27] = d.ybr[0][27] +	} +} + +// btou converts a bool to a 0/1 value. +func btou(b bool) uint8 { +	if b { +		return 1 +	} +	return 0 +} + +// pack packs four 0/1 values into four bits of a uint32. +func pack(x [4]uint8, shift int) uint32 { +	u := uint32(x[0])<<0 | uint32(x[1])<<1 | uint32(x[2])<<2 | uint32(x[3])<<3 +	return u << uint(shift) +} + +// unpack unpacks four 0/1 values from a four-bit value. +var unpack = [16][4]uint8{ +	{0, 0, 0, 0}, +	{1, 0, 0, 0}, +	{0, 1, 0, 0}, +	{1, 1, 0, 0}, +	{0, 0, 1, 0}, +	{1, 0, 1, 0}, +	{0, 1, 1, 0}, +	{1, 1, 1, 0}, +	{0, 0, 0, 1}, +	{1, 0, 0, 1}, +	{0, 1, 0, 1}, +	{1, 1, 0, 1}, +	{0, 0, 1, 1}, +	{1, 0, 1, 1}, +	{0, 1, 1, 1}, +	{1, 1, 1, 1}, +} + +var ( +	// The mapping from 4x4 region position to band is specified in section 13.3. +	bands = [17]uint8{0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0} +	// Category probabilties are specified in section 13.2. +	// Decoding categories 1 and 2 are done inline. +	cat3456 = [4][12]uint8{ +		{173, 148, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0}, +		{176, 155, 140, 135, 0, 0, 0, 0, 0, 0, 0, 0}, +		{180, 157, 141, 134, 130, 0, 0, 0, 0, 0, 0, 0}, +		{254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0}, +	} +	// The zigzag order is: +	//	0  1  5  6 +	//	2  4  7 12 +	//	3  8 11 13 +	//	9 10 14 15 +	zigzag = [16]uint8{0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15} +) + +// parseResiduals4 parses a 4x4 region of residual coefficients, as specified +// in section 13.3, and returns a 0/1 value indicating whether there was at +// least one non-zero coefficient. +// r is the partition to read bits from. +// plane and context describe which token probability table to use. context is +// either 0, 1 or 2, and equals how many of the macroblock left and macroblock +// above have non-zero coefficients. +// quant are the DC/AC quantization factors. +// skipFirstCoeff is whether the DC coefficient has already been parsed. +// coeffBase is the base index of d.coeff to write to. +func (d *Decoder) parseResiduals4(r *partition, plane int, context uint8, quant [2]uint16, skipFirstCoeff bool, coeffBase int) uint8 { +	prob, n := &d.tokenProb[plane], 0 +	if skipFirstCoeff { +		n = 1 +	} +	p := prob[bands[n]][context] +	if !r.readBit(p[0]) { +		return 0 +	} +	for n != 16 { +		n++ +		if !r.readBit(p[1]) { +			p = prob[bands[n]][0] +			continue +		} +		var v uint32 +		if !r.readBit(p[2]) { +			v = 1 +			p = prob[bands[n]][1] +		} else { +			if !r.readBit(p[3]) { +				if !r.readBit(p[4]) { +					v = 2 +				} else { +					v = 3 + r.readUint(p[5], 1) +				} +			} else if !r.readBit(p[6]) { +				if !r.readBit(p[7]) { +					// Category 1. +					v = 5 + r.readUint(159, 1) +				} else { +					// Category 2. +					v = 7 + 2*r.readUint(165, 1) + r.readUint(145, 1) +				} +			} else { +				// Categories 3, 4, 5 or 6. +				b1 := r.readUint(p[8], 1) +				b0 := r.readUint(p[9+b1], 1) +				cat := 2*b1 + b0 +				tab := &cat3456[cat] +				v = 0 +				for i := 0; tab[i] != 0; i++ { +					v *= 2 +					v += r.readUint(tab[i], 1) +				} +				v += 3 + (8 << cat) +			} +			p = prob[bands[n]][2] +		} +		z := zigzag[n-1] +		c := int32(v) * int32(quant[btou(z > 0)]) +		if r.readBit(uniformProb) { +			c = -c +		} +		d.coeff[coeffBase+int(z)] = int16(c) +		if n == 16 || !r.readBit(p[0]) { +			return 1 +		} +	} +	return 1 +} + +// parseResiduals parses the residuals and returns whether inner loop filtering +// should be skipped for this macroblock. +func (d *Decoder) parseResiduals(mbx, mby int) (skip bool) { +	partition := &d.op[mby&(d.nOP-1)] +	plane := planeY1SansY2 +	quant := &d.quant[d.segment] + +	// Parse the DC coefficient of each 4x4 luma region. +	if d.usePredY16 { +		nz := d.parseResiduals4(partition, planeY2, d.leftMB.nzY16+d.upMB[mbx].nzY16, quant.y2, false, whtCoeffBase) +		d.leftMB.nzY16 = nz +		d.upMB[mbx].nzY16 = nz +		d.inverseWHT16() +		plane = planeY1WithY2 +	} + +	var ( +		nzDC, nzAC         [4]uint8 +		nzDCMask, nzACMask uint32 +		coeffBase          int +	) + +	// Parse the luma coefficients. +	lnz := unpack[d.leftMB.nzMask&0x0f] +	unz := unpack[d.upMB[mbx].nzMask&0x0f] +	for y := 0; y < 4; y++ { +		nz := lnz[y] +		for x := 0; x < 4; x++ { +			nz = d.parseResiduals4(partition, plane, nz+unz[x], quant.y1, d.usePredY16, coeffBase) +			unz[x] = nz +			nzAC[x] = nz +			nzDC[x] = btou(d.coeff[coeffBase] != 0) +			coeffBase += 16 +		} +		lnz[y] = nz +		nzDCMask |= pack(nzDC, y*4) +		nzACMask |= pack(nzAC, y*4) +	} +	lnzMask := pack(lnz, 0) +	unzMask := pack(unz, 0) + +	// Parse the chroma coefficients. +	lnz = unpack[d.leftMB.nzMask>>4] +	unz = unpack[d.upMB[mbx].nzMask>>4] +	for c := 0; c < 4; c += 2 { +		for y := 0; y < 2; y++ { +			nz := lnz[y+c] +			for x := 0; x < 2; x++ { +				nz = d.parseResiduals4(partition, planeUV, nz+unz[x+c], quant.uv, false, coeffBase) +				unz[x+c] = nz +				nzAC[y*2+x] = nz +				nzDC[y*2+x] = btou(d.coeff[coeffBase] != 0) +				coeffBase += 16 +			} +			lnz[y+c] = nz +		} +		nzDCMask |= pack(nzDC, 16+c*2) +		nzACMask |= pack(nzAC, 16+c*2) +	} +	lnzMask |= pack(lnz, 4) +	unzMask |= pack(unz, 4) + +	// Save decoder state. +	d.leftMB.nzMask = uint8(lnzMask) +	d.upMB[mbx].nzMask = uint8(unzMask) +	d.nzDCMask = nzDCMask +	d.nzACMask = nzACMask + +	// Section 15.1 of the spec says that "Steps 2 and 4 [of the loop filter] +	// are skipped... [if] there is no DCT coefficient coded for the whole +	// macroblock." +	return nzDCMask == 0 && nzACMask == 0 +} + +// reconstructMacroblock applies the predictor functions and adds the inverse- +// DCT transformed residuals to recover the YCbCr data. +func (d *Decoder) reconstructMacroblock(mbx, mby int) { +	if d.usePredY16 { +		p := checkTopLeftPred(mbx, mby, d.predY16) +		predFunc16[p](d, 1, 8) +		for j := 0; j < 4; j++ { +			for i := 0; i < 4; i++ { +				n := 4*j + i +				y := 4*j + 1 +				x := 4*i + 8 +				mask := uint32(1) << uint(n) +				if d.nzACMask&mask != 0 { +					d.inverseDCT4(y, x, 16*n) +				} else if d.nzDCMask&mask != 0 { +					d.inverseDCT4DCOnly(y, x, 16*n) +				} +			} +		} +	} else { +		for j := 0; j < 4; j++ { +			for i := 0; i < 4; i++ { +				n := 4*j + i +				y := 4*j + 1 +				x := 4*i + 8 +				predFunc4[d.predY4[j][i]](d, y, x) +				mask := uint32(1) << uint(n) +				if d.nzACMask&mask != 0 { +					d.inverseDCT4(y, x, 16*n) +				} else if d.nzDCMask&mask != 0 { +					d.inverseDCT4DCOnly(y, x, 16*n) +				} +			} +		} +	} +	p := checkTopLeftPred(mbx, mby, d.predC8) +	predFunc8[p](d, ybrBY, ybrBX) +	if d.nzACMask&0x0f0000 != 0 { +		d.inverseDCT8(ybrBY, ybrBX, bCoeffBase) +	} else if d.nzDCMask&0x0f0000 != 0 { +		d.inverseDCT8DCOnly(ybrBY, ybrBX, bCoeffBase) +	} +	predFunc8[p](d, ybrRY, ybrRX) +	if d.nzACMask&0xf00000 != 0 { +		d.inverseDCT8(ybrRY, ybrRX, rCoeffBase) +	} else if d.nzDCMask&0xf00000 != 0 { +		d.inverseDCT8DCOnly(ybrRY, ybrRX, rCoeffBase) +	} +} + +// reconstruct reconstructs one macroblock and returns whether inner loop +// filtering should be skipped for it. +func (d *Decoder) reconstruct(mbx, mby int) (skip bool) { +	if d.segmentHeader.updateMap { +		if !d.fp.readBit(d.segmentHeader.prob[0]) { +			d.segment = int(d.fp.readUint(d.segmentHeader.prob[1], 1)) +		} else { +			d.segment = int(d.fp.readUint(d.segmentHeader.prob[2], 1)) + 2 +		} +	} +	if d.useSkipProb { +		skip = d.fp.readBit(d.skipProb) +	} +	// Prepare the workspace. +	for i := range d.coeff { +		d.coeff[i] = 0 +	} +	d.prepareYBR(mbx, mby) +	// Parse the predictor modes. +	d.usePredY16 = d.fp.readBit(145) +	if d.usePredY16 { +		d.parsePredModeY16(mbx) +	} else { +		d.parsePredModeY4(mbx) +	} +	d.parsePredModeC8() +	// Parse the residuals. +	if !skip { +		skip = d.parseResiduals(mbx, mby) +	} else { +		if d.usePredY16 { +			d.leftMB.nzY16 = 0 +			d.upMB[mbx].nzY16 = 0 +		} +		d.leftMB.nzMask = 0 +		d.upMB[mbx].nzMask = 0 +		d.nzDCMask = 0 +		d.nzACMask = 0 +	} +	// Reconstruct the YCbCr data and copy it to the image. +	d.reconstructMacroblock(mbx, mby) +	for i, y := (mby*d.img.YStride+mbx)*16, 0; y < 16; i, y = i+d.img.YStride, y+1 { +		copy(d.img.Y[i:i+16], d.ybr[ybrYY+y][ybrYX:ybrYX+16]) +	} +	for i, y := (mby*d.img.CStride+mbx)*8, 0; y < 8; i, y = i+d.img.CStride, y+1 { +		copy(d.img.Cb[i:i+8], d.ybr[ybrBY+y][ybrBX:ybrBX+8]) +		copy(d.img.Cr[i:i+8], d.ybr[ybrRY+y][ybrRX:ybrRX+8]) +	} +	return skip +} diff --git a/vendor/golang.org/x/image/vp8/token.go b/vendor/golang.org/x/image/vp8/token.go new file mode 100644 index 000000000..da99cf0f9 --- /dev/null +++ b/vendor/golang.org/x/image/vp8/token.go @@ -0,0 +1,381 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8 + +// This file contains token probabilities for decoding DCT/WHT coefficients, as +// specified in chapter 13. + +func (d *Decoder) parseTokenProb() { +	for i := range d.tokenProb { +		for j := range d.tokenProb[i] { +			for k := range d.tokenProb[i][j] { +				for l := range d.tokenProb[i][j][k] { +					if d.fp.readBit(tokenProbUpdateProb[i][j][k][l]) { +						d.tokenProb[i][j][k][l] = uint8(d.fp.readUint(uniformProb, 8)) +					} +				} +			} +		} +	} +} + +// The plane enumeration is specified in section 13.3. +const ( +	planeY1WithY2 = iota +	planeY2 +	planeUV +	planeY1SansY2 +	nPlane +) + +const ( +	nBand    = 8 +	nContext = 3 +	nProb    = 11 +) + +// Token probability update probabilities are specified in section 13.4. +var tokenProbUpdateProb = [nPlane][nBand][nContext][nProb]uint8{ +	{ +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255}, +			{249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255}, +			{234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255}, +			{250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255}, +			{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +	}, +	{ +		{ +			{217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255}, +			{234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255}, +		}, +		{ +			{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255}, +			{250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +	}, +	{ +		{ +			{186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255}, +			{234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255}, +			{251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255}, +		}, +		{ +			{255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +	}, +	{ +		{ +			{248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255}, +			{248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}, +			{246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255}, +			{252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255}, +			{248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255}, +			{253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255}, +			{252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255}, +			{250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +		{ +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +			{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}, +		}, +	}, +} + +// Default token probabilities are specified in section 13.5. +var defaultTokenProb = [nPlane][nBand][nContext][nProb]uint8{ +	{ +		{ +			{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}, +			{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}, +			{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}, +		}, +		{ +			{253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128}, +			{189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128}, +			{106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128}, +		}, +		{ +			{1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128}, +			{181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128}, +			{78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128}, +		}, +		{ +			{1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128}, +			{184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128}, +			{77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128}, +		}, +		{ +			{1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128}, +			{170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128}, +			{37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128}, +		}, +		{ +			{1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128}, +			{207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128}, +			{102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128}, +		}, +		{ +			{1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128}, +			{177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128}, +			{80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128}, +		}, +		{ +			{1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +			{246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +			{255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}, +		}, +	}, +	{ +		{ +			{198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62}, +			{131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1}, +			{68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128}, +		}, +		{ +			{1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128}, +			{184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128}, +			{81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128}, +		}, +		{ +			{1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128}, +			{99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128}, +			{23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128}, +		}, +		{ +			{1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128}, +			{109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128}, +			{44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128}, +		}, +		{ +			{1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128}, +			{94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128}, +			{22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128}, +		}, +		{ +			{1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128}, +			{124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128}, +			{35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128}, +		}, +		{ +			{1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128}, +			{121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128}, +			{45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128}, +		}, +		{ +			{1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128}, +			{203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128}, +			{137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128}, +		}, +	}, +	{ +		{ +			{253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128}, +			{175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128}, +			{73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128}, +		}, +		{ +			{1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128}, +			{239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128}, +			{155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128}, +		}, +		{ +			{1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128}, +			{201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128}, +			{69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128}, +		}, +		{ +			{1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128}, +			{223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128}, +			{141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128}, +		}, +		{ +			{1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128}, +			{190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128}, +			{149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +		}, +		{ +			{1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +			{247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +			{240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +		}, +		{ +			{1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128}, +			{213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128}, +			{55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +		}, +		{ +			{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}, +			{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}, +			{128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}, +		}, +	}, +	{ +		{ +			{202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255}, +			{126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128}, +			{61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128}, +		}, +		{ +			{1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128}, +			{166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128}, +			{39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128}, +		}, +		{ +			{1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128}, +			{124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128}, +			{24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128}, +		}, +		{ +			{1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128}, +			{149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128}, +			{28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128}, +		}, +		{ +			{1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128}, +			{123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128}, +			{20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128}, +		}, +		{ +			{1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128}, +			{168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128}, +			{47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128}, +		}, +		{ +			{1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128}, +			{141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128}, +			{42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128}, +		}, +		{ +			{1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +			{244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +			{238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128}, +		}, +	}, +} diff --git a/vendor/golang.org/x/image/vp8l/decode.go b/vendor/golang.org/x/image/vp8l/decode.go new file mode 100644 index 000000000..431948701 --- /dev/null +++ b/vendor/golang.org/x/image/vp8l/decode.go @@ -0,0 +1,603 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package vp8l implements a decoder for the VP8L lossless image format. +// +// The VP8L specification is at: +// https://developers.google.com/speed/webp/docs/riff_container +package vp8l // import "golang.org/x/image/vp8l" + +import ( +	"bufio" +	"errors" +	"image" +	"image/color" +	"io" +) + +var ( +	errInvalidCodeLengths = errors.New("vp8l: invalid code lengths") +	errInvalidHuffmanTree = errors.New("vp8l: invalid Huffman tree") +) + +// colorCacheMultiplier is the multiplier used for the color cache hash +// function, specified in section 4.2.3. +const colorCacheMultiplier = 0x1e35a7bd + +// distanceMapTable is the look-up table for distanceMap. +var distanceMapTable = [120]uint8{ +	0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a, +	0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a, +	0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b, +	0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03, +	0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c, +	0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e, +	0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b, +	0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f, +	0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b, +	0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41, +	0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f, +	0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70, +} + +// distanceMap maps a LZ77 backwards reference distance to a two-dimensional +// pixel offset, specified in section 4.2.2. +func distanceMap(w int32, code uint32) int32 { +	if int32(code) > int32(len(distanceMapTable)) { +		return int32(code) - int32(len(distanceMapTable)) +	} +	distCode := int32(distanceMapTable[code-1]) +	yOffset := distCode >> 4 +	xOffset := 8 - distCode&0xf +	if d := yOffset*w + xOffset; d >= 1 { +		return d +	} +	return 1 +} + +// decoder holds the bit-stream for a VP8L image. +type decoder struct { +	r     io.ByteReader +	bits  uint32 +	nBits uint32 +} + +// read reads the next n bits from the decoder's bit-stream. +func (d *decoder) read(n uint32) (uint32, error) { +	for d.nBits < n { +		c, err := d.r.ReadByte() +		if err != nil { +			if err == io.EOF { +				err = io.ErrUnexpectedEOF +			} +			return 0, err +		} +		d.bits |= uint32(c) << d.nBits +		d.nBits += 8 +	} +	u := d.bits & (1<<n - 1) +	d.bits >>= n +	d.nBits -= n +	return u, nil +} + +// decodeTransform decodes the next transform and the width of the image after +// transformation (or equivalently, before inverse transformation), specified +// in section 3. +func (d *decoder) decodeTransform(w int32, h int32) (t transform, newWidth int32, err error) { +	t.oldWidth = w +	t.transformType, err = d.read(2) +	if err != nil { +		return transform{}, 0, err +	} +	switch t.transformType { +	case transformTypePredictor, transformTypeCrossColor: +		t.bits, err = d.read(3) +		if err != nil { +			return transform{}, 0, err +		} +		t.bits += 2 +		t.pix, err = d.decodePix(nTiles(w, t.bits), nTiles(h, t.bits), 0, false) +		if err != nil { +			return transform{}, 0, err +		} +	case transformTypeSubtractGreen: +		// No-op. +	case transformTypeColorIndexing: +		nColors, err := d.read(8) +		if err != nil { +			return transform{}, 0, err +		} +		nColors++ +		t.bits = 0 +		switch { +		case nColors <= 2: +			t.bits = 3 +		case nColors <= 4: +			t.bits = 2 +		case nColors <= 16: +			t.bits = 1 +		} +		w = nTiles(w, t.bits) +		pix, err := d.decodePix(int32(nColors), 1, 4*256, false) +		if err != nil { +			return transform{}, 0, err +		} +		for p := 4; p < len(pix); p += 4 { +			pix[p+0] += pix[p-4] +			pix[p+1] += pix[p-3] +			pix[p+2] += pix[p-2] +			pix[p+3] += pix[p-1] +		} +		// The spec says that "if the index is equal or larger than color_table_size, +		// the argb color value should be set to 0x00000000 (transparent black)." +		// We re-slice up to 256 4-byte pixels. +		t.pix = pix[:4*256] +	} +	return t, w, nil +} + +// repeatsCodeLength is the minimum code length for repeated codes. +const repeatsCodeLength = 16 + +// These magic numbers are specified at the end of section 5.2.2. +// The 3-length arrays apply to code lengths >= repeatsCodeLength. +var ( +	codeLengthCodeOrder = [19]uint8{ +		17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, +	} +	repeatBits    = [3]uint8{2, 3, 7} +	repeatOffsets = [3]uint8{3, 3, 11} +) + +// decodeCodeLengths decodes a Huffman tree's code lengths which are themselves +// encoded via a Huffman tree, specified in section 5.2.2. +func (d *decoder) decodeCodeLengths(dst []uint32, codeLengthCodeLengths []uint32) error { +	h := hTree{} +	if err := h.build(codeLengthCodeLengths); err != nil { +		return err +	} + +	maxSymbol := len(dst) +	useLength, err := d.read(1) +	if err != nil { +		return err +	} +	if useLength != 0 { +		n, err := d.read(3) +		if err != nil { +			return err +		} +		n = 2 + 2*n +		ms, err := d.read(n) +		if err != nil { +			return err +		} +		maxSymbol = int(ms) + 2 +		if maxSymbol > len(dst) { +			return errInvalidCodeLengths +		} +	} + +	// The spec says that "if code 16 [meaning repeat] is used before +	// a non-zero value has been emitted, a value of 8 is repeated." +	prevCodeLength := uint32(8) + +	for symbol := 0; symbol < len(dst); { +		if maxSymbol == 0 { +			break +		} +		maxSymbol-- +		codeLength, err := h.next(d) +		if err != nil { +			return err +		} +		if codeLength < repeatsCodeLength { +			dst[symbol] = codeLength +			symbol++ +			if codeLength != 0 { +				prevCodeLength = codeLength +			} +			continue +		} + +		repeat, err := d.read(uint32(repeatBits[codeLength-repeatsCodeLength])) +		if err != nil { +			return err +		} +		repeat += uint32(repeatOffsets[codeLength-repeatsCodeLength]) +		if symbol+int(repeat) > len(dst) { +			return errInvalidCodeLengths +		} +		// A code length of 16 repeats the previous non-zero code. +		// A code length of 17 or 18 repeats zeroes. +		cl := uint32(0) +		if codeLength == 16 { +			cl = prevCodeLength +		} +		for ; repeat > 0; repeat-- { +			dst[symbol] = cl +			symbol++ +		} +	} +	return nil +} + +// decodeHuffmanTree decodes a Huffman tree into h. +func (d *decoder) decodeHuffmanTree(h *hTree, alphabetSize uint32) error { +	useSimple, err := d.read(1) +	if err != nil { +		return err +	} +	if useSimple != 0 { +		nSymbols, err := d.read(1) +		if err != nil { +			return err +		} +		nSymbols++ +		firstSymbolLengthCode, err := d.read(1) +		if err != nil { +			return err +		} +		firstSymbolLengthCode = 7*firstSymbolLengthCode + 1 +		var symbols [2]uint32 +		symbols[0], err = d.read(firstSymbolLengthCode) +		if err != nil { +			return err +		} +		if nSymbols == 2 { +			symbols[1], err = d.read(8) +			if err != nil { +				return err +			} +		} +		return h.buildSimple(nSymbols, symbols, alphabetSize) +	} + +	nCodes, err := d.read(4) +	if err != nil { +		return err +	} +	nCodes += 4 +	if int(nCodes) > len(codeLengthCodeOrder) { +		return errInvalidHuffmanTree +	} +	codeLengthCodeLengths := [len(codeLengthCodeOrder)]uint32{} +	for i := uint32(0); i < nCodes; i++ { +		codeLengthCodeLengths[codeLengthCodeOrder[i]], err = d.read(3) +		if err != nil { +			return err +		} +	} +	codeLengths := make([]uint32, alphabetSize) +	if err = d.decodeCodeLengths(codeLengths, codeLengthCodeLengths[:]); err != nil { +		return err +	} +	return h.build(codeLengths) +} + +const ( +	huffGreen    = 0 +	huffRed      = 1 +	huffBlue     = 2 +	huffAlpha    = 3 +	huffDistance = 4 +	nHuff        = 5 +) + +// hGroup is an array of 5 Huffman trees. +type hGroup [nHuff]hTree + +// decodeHuffmanGroups decodes the one or more hGroups used to decode the pixel +// data. If one hGroup is used for the entire image, then hPix and hBits will +// be zero. If more than one hGroup is used, then hPix contains the meta-image +// that maps tiles to hGroup index, and hBits contains the log-2 tile size. +func (d *decoder) decodeHuffmanGroups(w int32, h int32, topLevel bool, ccBits uint32) ( +	hGroups []hGroup, hPix []byte, hBits uint32, err error) { + +	maxHGroupIndex := 0 +	if topLevel { +		useMeta, err := d.read(1) +		if err != nil { +			return nil, nil, 0, err +		} +		if useMeta != 0 { +			hBits, err = d.read(3) +			if err != nil { +				return nil, nil, 0, err +			} +			hBits += 2 +			hPix, err = d.decodePix(nTiles(w, hBits), nTiles(h, hBits), 0, false) +			if err != nil { +				return nil, nil, 0, err +			} +			for p := 0; p < len(hPix); p += 4 { +				i := int(hPix[p])<<8 | int(hPix[p+1]) +				if maxHGroupIndex < i { +					maxHGroupIndex = i +				} +			} +		} +	} +	hGroups = make([]hGroup, maxHGroupIndex+1) +	for i := range hGroups { +		for j, alphabetSize := range alphabetSizes { +			if j == 0 && ccBits > 0 { +				alphabetSize += 1 << ccBits +			} +			if err := d.decodeHuffmanTree(&hGroups[i][j], alphabetSize); err != nil { +				return nil, nil, 0, err +			} +		} +	} +	return hGroups, hPix, hBits, nil +} + +const ( +	nLiteralCodes  = 256 +	nLengthCodes   = 24 +	nDistanceCodes = 40 +) + +var alphabetSizes = [nHuff]uint32{ +	nLiteralCodes + nLengthCodes, +	nLiteralCodes, +	nLiteralCodes, +	nLiteralCodes, +	nDistanceCodes, +} + +// decodePix decodes pixel data, specified in section 5.2.2. +func (d *decoder) decodePix(w int32, h int32, minCap int32, topLevel bool) ([]byte, error) { +	// Decode the color cache parameters. +	ccBits, ccShift, ccEntries := uint32(0), uint32(0), ([]uint32)(nil) +	useColorCache, err := d.read(1) +	if err != nil { +		return nil, err +	} +	if useColorCache != 0 { +		ccBits, err = d.read(4) +		if err != nil { +			return nil, err +		} +		if ccBits < 1 || 11 < ccBits { +			return nil, errors.New("vp8l: invalid color cache parameters") +		} +		ccShift = 32 - ccBits +		ccEntries = make([]uint32, 1<<ccBits) +	} + +	// Decode the Huffman groups. +	hGroups, hPix, hBits, err := d.decodeHuffmanGroups(w, h, topLevel, ccBits) +	if err != nil { +		return nil, err +	} +	hMask, tilesPerRow := int32(0), int32(0) +	if hBits != 0 { +		hMask, tilesPerRow = 1<<hBits-1, nTiles(w, hBits) +	} + +	// Decode the pixels. +	if minCap < 4*w*h { +		minCap = 4 * w * h +	} +	pix := make([]byte, 4*w*h, minCap) +	p, cachedP := 0, 0 +	x, y := int32(0), int32(0) +	hg, lookupHG := &hGroups[0], hMask != 0 +	for p < len(pix) { +		if lookupHG { +			i := 4 * (tilesPerRow*(y>>hBits) + (x >> hBits)) +			hg = &hGroups[uint32(hPix[i])<<8|uint32(hPix[i+1])] +		} + +		green, err := hg[huffGreen].next(d) +		if err != nil { +			return nil, err +		} +		switch { +		case green < nLiteralCodes: +			// We have a literal pixel. +			red, err := hg[huffRed].next(d) +			if err != nil { +				return nil, err +			} +			blue, err := hg[huffBlue].next(d) +			if err != nil { +				return nil, err +			} +			alpha, err := hg[huffAlpha].next(d) +			if err != nil { +				return nil, err +			} +			pix[p+0] = uint8(red) +			pix[p+1] = uint8(green) +			pix[p+2] = uint8(blue) +			pix[p+3] = uint8(alpha) +			p += 4 + +			x++ +			if x == w { +				x, y = 0, y+1 +			} +			lookupHG = hMask != 0 && x&hMask == 0 + +		case green < nLiteralCodes+nLengthCodes: +			// We have a LZ77 backwards reference. +			length, err := d.lz77Param(green - nLiteralCodes) +			if err != nil { +				return nil, err +			} +			distSym, err := hg[huffDistance].next(d) +			if err != nil { +				return nil, err +			} +			distCode, err := d.lz77Param(distSym) +			if err != nil { +				return nil, err +			} +			dist := distanceMap(w, distCode) +			pEnd := p + 4*int(length) +			q := p - 4*int(dist) +			qEnd := pEnd - 4*int(dist) +			if p < 0 || len(pix) < pEnd || q < 0 || len(pix) < qEnd { +				return nil, errors.New("vp8l: invalid LZ77 parameters") +			} +			for ; p < pEnd; p, q = p+1, q+1 { +				pix[p] = pix[q] +			} + +			x += int32(length) +			for x >= w { +				x, y = x-w, y+1 +			} +			lookupHG = hMask != 0 + +		default: +			// We have a color cache lookup. First, insert previous pixels +			// into the cache. Note that VP8L assumes ARGB order, but the +			// Go image.RGBA type is in RGBA order. +			for ; cachedP < p; cachedP += 4 { +				argb := uint32(pix[cachedP+0])<<16 | +					uint32(pix[cachedP+1])<<8 | +					uint32(pix[cachedP+2])<<0 | +					uint32(pix[cachedP+3])<<24 +				ccEntries[(argb*colorCacheMultiplier)>>ccShift] = argb +			} +			green -= nLiteralCodes + nLengthCodes +			if int(green) >= len(ccEntries) { +				return nil, errors.New("vp8l: invalid color cache index") +			} +			argb := ccEntries[green] +			pix[p+0] = uint8(argb >> 16) +			pix[p+1] = uint8(argb >> 8) +			pix[p+2] = uint8(argb >> 0) +			pix[p+3] = uint8(argb >> 24) +			p += 4 + +			x++ +			if x == w { +				x, y = 0, y+1 +			} +			lookupHG = hMask != 0 && x&hMask == 0 +		} +	} +	return pix, nil +} + +// lz77Param returns the next LZ77 parameter: a length or a distance, specified +// in section 4.2.2. +func (d *decoder) lz77Param(symbol uint32) (uint32, error) { +	if symbol < 4 { +		return symbol + 1, nil +	} +	extraBits := (symbol - 2) >> 1 +	offset := (2 + symbol&1) << extraBits +	n, err := d.read(extraBits) +	if err != nil { +		return 0, err +	} +	return offset + n + 1, nil +} + +// decodeHeader decodes the VP8L header from r. +func decodeHeader(r io.Reader) (d *decoder, w int32, h int32, err error) { +	rr, ok := r.(io.ByteReader) +	if !ok { +		rr = bufio.NewReader(r) +	} +	d = &decoder{r: rr} +	magic, err := d.read(8) +	if err != nil { +		return nil, 0, 0, err +	} +	if magic != 0x2f { +		return nil, 0, 0, errors.New("vp8l: invalid header") +	} +	width, err := d.read(14) +	if err != nil { +		return nil, 0, 0, err +	} +	width++ +	height, err := d.read(14) +	if err != nil { +		return nil, 0, 0, err +	} +	height++ +	_, err = d.read(1) // Read and ignore the hasAlpha hint. +	if err != nil { +		return nil, 0, 0, err +	} +	version, err := d.read(3) +	if err != nil { +		return nil, 0, 0, err +	} +	if version != 0 { +		return nil, 0, 0, errors.New("vp8l: invalid version") +	} +	return d, int32(width), int32(height), nil +} + +// DecodeConfig decodes the color model and dimensions of a VP8L image from r. +func DecodeConfig(r io.Reader) (image.Config, error) { +	_, w, h, err := decodeHeader(r) +	if err != nil { +		return image.Config{}, err +	} +	return image.Config{ +		ColorModel: color.NRGBAModel, +		Width:      int(w), +		Height:     int(h), +	}, nil +} + +// Decode decodes a VP8L image from r. +func Decode(r io.Reader) (image.Image, error) { +	d, w, h, err := decodeHeader(r) +	if err != nil { +		return nil, err +	} +	// Decode the transforms. +	var ( +		nTransforms    int +		transforms     [nTransformTypes]transform +		transformsSeen [nTransformTypes]bool +		originalW      = w +	) +	for { +		more, err := d.read(1) +		if err != nil { +			return nil, err +		} +		if more == 0 { +			break +		} +		var t transform +		t, w, err = d.decodeTransform(w, h) +		if err != nil { +			return nil, err +		} +		if transformsSeen[t.transformType] { +			return nil, errors.New("vp8l: repeated transform") +		} +		transformsSeen[t.transformType] = true +		transforms[nTransforms] = t +		nTransforms++ +	} +	// Decode the transformed pixels. +	pix, err := d.decodePix(w, h, 0, true) +	if err != nil { +		return nil, err +	} +	// Apply the inverse transformations. +	for i := nTransforms - 1; i >= 0; i-- { +		t := &transforms[i] +		pix = inverseTransforms[t.transformType](t, pix, h) +	} +	return &image.NRGBA{ +		Pix:    pix, +		Stride: 4 * int(originalW), +		Rect:   image.Rect(0, 0, int(originalW), int(h)), +	}, nil +} diff --git a/vendor/golang.org/x/image/vp8l/huffman.go b/vendor/golang.org/x/image/vp8l/huffman.go new file mode 100644 index 000000000..36368a872 --- /dev/null +++ b/vendor/golang.org/x/image/vp8l/huffman.go @@ -0,0 +1,245 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8l + +import ( +	"io" +) + +// reverseBits reverses the bits in a byte. +var reverseBits = [256]uint8{ +	0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, +	0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, +	0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, +	0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, +	0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, +	0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, +	0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, +	0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, +	0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, +	0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, +	0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, +	0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, +	0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, +	0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, +	0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, +	0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, +} + +// hNode is a node in a Huffman tree. +type hNode struct { +	// symbol is the symbol held by this node. +	symbol uint32 +	// children, if positive, is the hTree.nodes index of the first of +	// this node's two children. Zero means an uninitialized node, +	// and -1 means a leaf node. +	children int32 +} + +const leafNode = -1 + +// lutSize is the log-2 size of an hTree's look-up table. +const lutSize, lutMask = 7, 1<<7 - 1 + +// hTree is a Huffman tree. +type hTree struct { +	// nodes are the nodes of the Huffman tree. During construction, +	// len(nodes) grows from 1 up to cap(nodes) by steps of two. +	// After construction, len(nodes) == cap(nodes), and both equal +	// 2*theNumberOfSymbols - 1. +	nodes []hNode +	// lut is a look-up table for walking the nodes. The x in lut[x] is +	// the next lutSize bits in the bit-stream. The low 8 bits of lut[x] +	// equals 1 plus the number of bits in the next code, or 0 if the +	// next code requires more than lutSize bits. The high 24 bits are: +	//   - the symbol, if the code requires lutSize or fewer bits, or +	//   - the hTree.nodes index to start the tree traversal from, if +	//     the next code requires more than lutSize bits. +	lut [1 << lutSize]uint32 +} + +// insert inserts into the hTree a symbol whose encoding is the least +// significant codeLength bits of code. +func (h *hTree) insert(symbol uint32, code uint32, codeLength uint32) error { +	if symbol > 0xffff || codeLength > 0xfe { +		return errInvalidHuffmanTree +	} +	baseCode := uint32(0) +	if codeLength > lutSize { +		baseCode = uint32(reverseBits[(code>>(codeLength-lutSize))&0xff]) >> (8 - lutSize) +	} else { +		baseCode = uint32(reverseBits[code&0xff]) >> (8 - codeLength) +		for i := 0; i < 1<<(lutSize-codeLength); i++ { +			h.lut[baseCode|uint32(i)<<codeLength] = symbol<<8 | (codeLength + 1) +		} +	} + +	n := uint32(0) +	for jump := lutSize; codeLength > 0; { +		codeLength-- +		if int(n) > len(h.nodes) { +			return errInvalidHuffmanTree +		} +		switch h.nodes[n].children { +		case leafNode: +			return errInvalidHuffmanTree +		case 0: +			if len(h.nodes) == cap(h.nodes) { +				return errInvalidHuffmanTree +			} +			// Create two empty child nodes. +			h.nodes[n].children = int32(len(h.nodes)) +			h.nodes = h.nodes[:len(h.nodes)+2] +		} +		n = uint32(h.nodes[n].children) + 1&(code>>codeLength) +		jump-- +		if jump == 0 && h.lut[baseCode] == 0 { +			h.lut[baseCode] = n << 8 +		} +	} + +	switch h.nodes[n].children { +	case leafNode: +		// No-op. +	case 0: +		// Turn the uninitialized node into a leaf. +		h.nodes[n].children = leafNode +	default: +		return errInvalidHuffmanTree +	} +	h.nodes[n].symbol = symbol +	return nil +} + +// codeLengthsToCodes returns the canonical Huffman codes implied by the +// sequence of code lengths. +func codeLengthsToCodes(codeLengths []uint32) ([]uint32, error) { +	maxCodeLength := uint32(0) +	for _, cl := range codeLengths { +		if maxCodeLength < cl { +			maxCodeLength = cl +		} +	} +	const maxAllowedCodeLength = 15 +	if len(codeLengths) == 0 || maxCodeLength > maxAllowedCodeLength { +		return nil, errInvalidHuffmanTree +	} +	histogram := [maxAllowedCodeLength + 1]uint32{} +	for _, cl := range codeLengths { +		histogram[cl]++ +	} +	currCode, nextCodes := uint32(0), [maxAllowedCodeLength + 1]uint32{} +	for cl := 1; cl < len(nextCodes); cl++ { +		currCode = (currCode + histogram[cl-1]) << 1 +		nextCodes[cl] = currCode +	} +	codes := make([]uint32, len(codeLengths)) +	for symbol, cl := range codeLengths { +		if cl > 0 { +			codes[symbol] = nextCodes[cl] +			nextCodes[cl]++ +		} +	} +	return codes, nil +} + +// build builds a canonical Huffman tree from the given code lengths. +func (h *hTree) build(codeLengths []uint32) error { +	// Calculate the number of symbols. +	var nSymbols, lastSymbol uint32 +	for symbol, cl := range codeLengths { +		if cl != 0 { +			nSymbols++ +			lastSymbol = uint32(symbol) +		} +	} +	if nSymbols == 0 { +		return errInvalidHuffmanTree +	} +	h.nodes = make([]hNode, 1, 2*nSymbols-1) +	// Handle the trivial case. +	if nSymbols == 1 { +		if len(codeLengths) <= int(lastSymbol) { +			return errInvalidHuffmanTree +		} +		return h.insert(lastSymbol, 0, 0) +	} +	// Handle the non-trivial case. +	codes, err := codeLengthsToCodes(codeLengths) +	if err != nil { +		return err +	} +	for symbol, cl := range codeLengths { +		if cl > 0 { +			if err := h.insert(uint32(symbol), codes[symbol], cl); err != nil { +				return err +			} +		} +	} +	return nil +} + +// buildSimple builds a Huffman tree with 1 or 2 symbols. +func (h *hTree) buildSimple(nSymbols uint32, symbols [2]uint32, alphabetSize uint32) error { +	h.nodes = make([]hNode, 1, 2*nSymbols-1) +	for i := uint32(0); i < nSymbols; i++ { +		if symbols[i] >= alphabetSize { +			return errInvalidHuffmanTree +		} +		if err := h.insert(symbols[i], i, nSymbols-1); err != nil { +			return err +		} +	} +	return nil +} + +// next returns the next Huffman-encoded symbol from the bit-stream d. +func (h *hTree) next(d *decoder) (uint32, error) { +	var n uint32 +	// Read enough bits so that we can use the look-up table. +	if d.nBits < lutSize { +		c, err := d.r.ReadByte() +		if err != nil { +			if err == io.EOF { +				// There are no more bytes of data, but we may still be able +				// to read the next symbol out of the previously read bits. +				goto slowPath +			} +			return 0, err +		} +		d.bits |= uint32(c) << d.nBits +		d.nBits += 8 +	} +	// Use the look-up table. +	n = h.lut[d.bits&lutMask] +	if b := n & 0xff; b != 0 { +		b-- +		d.bits >>= b +		d.nBits -= b +		return n >> 8, nil +	} +	n >>= 8 +	d.bits >>= lutSize +	d.nBits -= lutSize + +slowPath: +	for h.nodes[n].children != leafNode { +		if d.nBits == 0 { +			c, err := d.r.ReadByte() +			if err != nil { +				if err == io.EOF { +					err = io.ErrUnexpectedEOF +				} +				return 0, err +			} +			d.bits = uint32(c) +			d.nBits = 8 +		} +		n = uint32(h.nodes[n].children) + 1&d.bits +		d.bits >>= 1 +		d.nBits-- +	} +	return h.nodes[n].symbol, nil +} diff --git a/vendor/golang.org/x/image/vp8l/transform.go b/vendor/golang.org/x/image/vp8l/transform.go new file mode 100644 index 000000000..06543dacb --- /dev/null +++ b/vendor/golang.org/x/image/vp8l/transform.go @@ -0,0 +1,299 @@ +// Copyright 2014 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package vp8l + +// This file deals with image transforms, specified in section 3. + +// nTiles returns the number of tiles needed to cover size pixels, where each +// tile's side is 1<<bits pixels long. +func nTiles(size int32, bits uint32) int32 { +	return (size + 1<<bits - 1) >> bits +} + +const ( +	transformTypePredictor     = 0 +	transformTypeCrossColor    = 1 +	transformTypeSubtractGreen = 2 +	transformTypeColorIndexing = 3 +	nTransformTypes            = 4 +) + +// transform holds the parameters for an invertible transform. +type transform struct { +	// transformType is the type of the transform. +	transformType uint32 +	// oldWidth is the width of the image before transformation (or +	// equivalently, after inverse transformation). The color-indexing +	// transform can reduce the width. For example, a 50-pixel-wide +	// image that only needs 4 bits (half a byte) per color index can +	// be transformed into a 25-pixel-wide image. +	oldWidth int32 +	// bits is the log-2 size of the transform's tiles, for the predictor +	// and cross-color transforms. 8>>bits is the number of bits per +	// color index, for the color-index transform. +	bits uint32 +	// pix is the tile values, for the predictor and cross-color +	// transforms, and the color palette, for the color-index transform. +	pix []byte +} + +var inverseTransforms = [nTransformTypes]func(*transform, []byte, int32) []byte{ +	transformTypePredictor:     inversePredictor, +	transformTypeCrossColor:    inverseCrossColor, +	transformTypeSubtractGreen: inverseSubtractGreen, +	transformTypeColorIndexing: inverseColorIndexing, +} + +func inversePredictor(t *transform, pix []byte, h int32) []byte { +	if t.oldWidth == 0 || h == 0 { +		return pix +	} +	// The first pixel's predictor is mode 0 (opaque black). +	pix[3] += 0xff +	p, mask := int32(4), int32(1)<<t.bits-1 +	for x := int32(1); x < t.oldWidth; x++ { +		// The rest of the first row's predictor is mode 1 (L). +		pix[p+0] += pix[p-4] +		pix[p+1] += pix[p-3] +		pix[p+2] += pix[p-2] +		pix[p+3] += pix[p-1] +		p += 4 +	} +	top, tilesPerRow := 0, nTiles(t.oldWidth, t.bits) +	for y := int32(1); y < h; y++ { +		// The first column's predictor is mode 2 (T). +		pix[p+0] += pix[top+0] +		pix[p+1] += pix[top+1] +		pix[p+2] += pix[top+2] +		pix[p+3] += pix[top+3] +		p, top = p+4, top+4 + +		q := 4 * (y >> t.bits) * tilesPerRow +		predictorMode := t.pix[q+1] & 0x0f +		q += 4 +		for x := int32(1); x < t.oldWidth; x++ { +			if x&mask == 0 { +				predictorMode = t.pix[q+1] & 0x0f +				q += 4 +			} +			switch predictorMode { +			case 0: // Opaque black. +				pix[p+3] += 0xff + +			case 1: // L. +				pix[p+0] += pix[p-4] +				pix[p+1] += pix[p-3] +				pix[p+2] += pix[p-2] +				pix[p+3] += pix[p-1] + +			case 2: // T. +				pix[p+0] += pix[top+0] +				pix[p+1] += pix[top+1] +				pix[p+2] += pix[top+2] +				pix[p+3] += pix[top+3] + +			case 3: // TR. +				pix[p+0] += pix[top+4] +				pix[p+1] += pix[top+5] +				pix[p+2] += pix[top+6] +				pix[p+3] += pix[top+7] + +			case 4: // TL. +				pix[p+0] += pix[top-4] +				pix[p+1] += pix[top-3] +				pix[p+2] += pix[top-2] +				pix[p+3] += pix[top-1] + +			case 5: // Average2(Average2(L, TR), T). +				pix[p+0] += avg2(avg2(pix[p-4], pix[top+4]), pix[top+0]) +				pix[p+1] += avg2(avg2(pix[p-3], pix[top+5]), pix[top+1]) +				pix[p+2] += avg2(avg2(pix[p-2], pix[top+6]), pix[top+2]) +				pix[p+3] += avg2(avg2(pix[p-1], pix[top+7]), pix[top+3]) + +			case 6: // Average2(L, TL). +				pix[p+0] += avg2(pix[p-4], pix[top-4]) +				pix[p+1] += avg2(pix[p-3], pix[top-3]) +				pix[p+2] += avg2(pix[p-2], pix[top-2]) +				pix[p+3] += avg2(pix[p-1], pix[top-1]) + +			case 7: // Average2(L, T). +				pix[p+0] += avg2(pix[p-4], pix[top+0]) +				pix[p+1] += avg2(pix[p-3], pix[top+1]) +				pix[p+2] += avg2(pix[p-2], pix[top+2]) +				pix[p+3] += avg2(pix[p-1], pix[top+3]) + +			case 8: // Average2(TL, T). +				pix[p+0] += avg2(pix[top-4], pix[top+0]) +				pix[p+1] += avg2(pix[top-3], pix[top+1]) +				pix[p+2] += avg2(pix[top-2], pix[top+2]) +				pix[p+3] += avg2(pix[top-1], pix[top+3]) + +			case 9: // Average2(T, TR). +				pix[p+0] += avg2(pix[top+0], pix[top+4]) +				pix[p+1] += avg2(pix[top+1], pix[top+5]) +				pix[p+2] += avg2(pix[top+2], pix[top+6]) +				pix[p+3] += avg2(pix[top+3], pix[top+7]) + +			case 10: // Average2(Average2(L, TL), Average2(T, TR)). +				pix[p+0] += avg2(avg2(pix[p-4], pix[top-4]), avg2(pix[top+0], pix[top+4])) +				pix[p+1] += avg2(avg2(pix[p-3], pix[top-3]), avg2(pix[top+1], pix[top+5])) +				pix[p+2] += avg2(avg2(pix[p-2], pix[top-2]), avg2(pix[top+2], pix[top+6])) +				pix[p+3] += avg2(avg2(pix[p-1], pix[top-1]), avg2(pix[top+3], pix[top+7])) + +			case 11: // Select(L, T, TL). +				l0 := int32(pix[p-4]) +				l1 := int32(pix[p-3]) +				l2 := int32(pix[p-2]) +				l3 := int32(pix[p-1]) +				c0 := int32(pix[top-4]) +				c1 := int32(pix[top-3]) +				c2 := int32(pix[top-2]) +				c3 := int32(pix[top-1]) +				t0 := int32(pix[top+0]) +				t1 := int32(pix[top+1]) +				t2 := int32(pix[top+2]) +				t3 := int32(pix[top+3]) +				l := abs(c0-t0) + abs(c1-t1) + abs(c2-t2) + abs(c3-t3) +				t := abs(c0-l0) + abs(c1-l1) + abs(c2-l2) + abs(c3-l3) +				if l < t { +					pix[p+0] += uint8(l0) +					pix[p+1] += uint8(l1) +					pix[p+2] += uint8(l2) +					pix[p+3] += uint8(l3) +				} else { +					pix[p+0] += uint8(t0) +					pix[p+1] += uint8(t1) +					pix[p+2] += uint8(t2) +					pix[p+3] += uint8(t3) +				} + +			case 12: // ClampAddSubtractFull(L, T, TL). +				pix[p+0] += clampAddSubtractFull(pix[p-4], pix[top+0], pix[top-4]) +				pix[p+1] += clampAddSubtractFull(pix[p-3], pix[top+1], pix[top-3]) +				pix[p+2] += clampAddSubtractFull(pix[p-2], pix[top+2], pix[top-2]) +				pix[p+3] += clampAddSubtractFull(pix[p-1], pix[top+3], pix[top-1]) + +			case 13: // ClampAddSubtractHalf(Average2(L, T), TL). +				pix[p+0] += clampAddSubtractHalf(avg2(pix[p-4], pix[top+0]), pix[top-4]) +				pix[p+1] += clampAddSubtractHalf(avg2(pix[p-3], pix[top+1]), pix[top-3]) +				pix[p+2] += clampAddSubtractHalf(avg2(pix[p-2], pix[top+2]), pix[top-2]) +				pix[p+3] += clampAddSubtractHalf(avg2(pix[p-1], pix[top+3]), pix[top-1]) +			} +			p, top = p+4, top+4 +		} +	} +	return pix +} + +func inverseCrossColor(t *transform, pix []byte, h int32) []byte { +	var greenToRed, greenToBlue, redToBlue int32 +	p, mask, tilesPerRow := int32(0), int32(1)<<t.bits-1, nTiles(t.oldWidth, t.bits) +	for y := int32(0); y < h; y++ { +		q := 4 * (y >> t.bits) * tilesPerRow +		for x := int32(0); x < t.oldWidth; x++ { +			if x&mask == 0 { +				redToBlue = int32(int8(t.pix[q+0])) +				greenToBlue = int32(int8(t.pix[q+1])) +				greenToRed = int32(int8(t.pix[q+2])) +				q += 4 +			} +			red := pix[p+0] +			green := pix[p+1] +			blue := pix[p+2] +			red += uint8(uint32(greenToRed*int32(int8(green))) >> 5) +			blue += uint8(uint32(greenToBlue*int32(int8(green))) >> 5) +			blue += uint8(uint32(redToBlue*int32(int8(red))) >> 5) +			pix[p+0] = red +			pix[p+2] = blue +			p += 4 +		} +	} +	return pix +} + +func inverseSubtractGreen(t *transform, pix []byte, h int32) []byte { +	for p := 0; p < len(pix); p += 4 { +		green := pix[p+1] +		pix[p+0] += green +		pix[p+2] += green +	} +	return pix +} + +func inverseColorIndexing(t *transform, pix []byte, h int32) []byte { +	if t.bits == 0 { +		for p := 0; p < len(pix); p += 4 { +			i := 4 * uint32(pix[p+1]) +			pix[p+0] = t.pix[i+0] +			pix[p+1] = t.pix[i+1] +			pix[p+2] = t.pix[i+2] +			pix[p+3] = t.pix[i+3] +		} +		return pix +	} + +	vMask, xMask, bitsPerPixel := uint32(0), int32(0), uint32(8>>t.bits) +	switch t.bits { +	case 1: +		vMask, xMask = 0x0f, 0x01 +	case 2: +		vMask, xMask = 0x03, 0x03 +	case 3: +		vMask, xMask = 0x01, 0x07 +	} + +	d, p, v, dst := 0, 0, uint32(0), make([]byte, 4*t.oldWidth*h) +	for y := int32(0); y < h; y++ { +		for x := int32(0); x < t.oldWidth; x++ { +			if x&xMask == 0 { +				v = uint32(pix[p+1]) +				p += 4 +			} + +			i := 4 * (v & vMask) +			dst[d+0] = t.pix[i+0] +			dst[d+1] = t.pix[i+1] +			dst[d+2] = t.pix[i+2] +			dst[d+3] = t.pix[i+3] +			d += 4 + +			v >>= bitsPerPixel +		} +	} +	return dst +} + +func abs(x int32) int32 { +	if x < 0 { +		return -x +	} +	return x +} + +func avg2(a, b uint8) uint8 { +	return uint8((int32(a) + int32(b)) / 2) +} + +func clampAddSubtractFull(a, b, c uint8) uint8 { +	x := int32(a) + int32(b) - int32(c) +	if x < 0 { +		return 0 +	} +	if x > 255 { +		return 255 +	} +	return uint8(x) +} + +func clampAddSubtractHalf(a, b uint8) uint8 { +	x := int32(a) + (int32(a)-int32(b))/2 +	if x < 0 { +		return 0 +	} +	if x > 255 { +		return 255 +	} +	return uint8(x) +} diff --git a/vendor/golang.org/x/image/webp/decode.go b/vendor/golang.org/x/image/webp/decode.go new file mode 100644 index 000000000..e211c7d57 --- /dev/null +++ b/vendor/golang.org/x/image/webp/decode.go @@ -0,0 +1,276 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package webp + +import ( +	"bytes" +	"errors" +	"image" +	"image/color" +	"io" + +	"golang.org/x/image/riff" +	"golang.org/x/image/vp8" +	"golang.org/x/image/vp8l" +) + +var errInvalidFormat = errors.New("webp: invalid format") + +var ( +	fccALPH = riff.FourCC{'A', 'L', 'P', 'H'} +	fccVP8  = riff.FourCC{'V', 'P', '8', ' '} +	fccVP8L = riff.FourCC{'V', 'P', '8', 'L'} +	fccVP8X = riff.FourCC{'V', 'P', '8', 'X'} +	fccWEBP = riff.FourCC{'W', 'E', 'B', 'P'} +) + +func decode(r io.Reader, configOnly bool) (image.Image, image.Config, error) { +	formType, riffReader, err := riff.NewReader(r) +	if err != nil { +		return nil, image.Config{}, err +	} +	if formType != fccWEBP { +		return nil, image.Config{}, errInvalidFormat +	} + +	var ( +		alpha          []byte +		alphaStride    int +		wantAlpha      bool +		seenVP8X       bool +		widthMinusOne  uint32 +		heightMinusOne uint32 +		buf            [10]byte +	) +	for { +		chunkID, chunkLen, chunkData, err := riffReader.Next() +		if err == io.EOF { +			err = errInvalidFormat +		} +		if err != nil { +			return nil, image.Config{}, err +		} + +		switch chunkID { +		case fccALPH: +			if !wantAlpha { +				return nil, image.Config{}, errInvalidFormat +			} +			wantAlpha = false +			// Read the Pre-processing | Filter | Compression byte. +			if _, err := io.ReadFull(chunkData, buf[:1]); err != nil { +				if err == io.EOF { +					err = errInvalidFormat +				} +				return nil, image.Config{}, err +			} +			alpha, alphaStride, err = readAlpha(chunkData, widthMinusOne, heightMinusOne, buf[0]&0x03) +			if err != nil { +				return nil, image.Config{}, err +			} +			unfilterAlpha(alpha, alphaStride, (buf[0]>>2)&0x03) + +		case fccVP8: +			if wantAlpha || int32(chunkLen) < 0 { +				return nil, image.Config{}, errInvalidFormat +			} +			d := vp8.NewDecoder() +			d.Init(chunkData, int(chunkLen)) +			fh, err := d.DecodeFrameHeader() +			if err != nil { +				return nil, image.Config{}, err +			} +			if configOnly { +				return nil, image.Config{ +					ColorModel: color.YCbCrModel, +					Width:      fh.Width, +					Height:     fh.Height, +				}, nil +			} +			m, err := d.DecodeFrame() +			if err != nil { +				return nil, image.Config{}, err +			} +			if alpha != nil { +				return &image.NYCbCrA{ +					YCbCr:   *m, +					A:       alpha, +					AStride: alphaStride, +				}, image.Config{}, nil +			} +			return m, image.Config{}, nil + +		case fccVP8L: +			if wantAlpha || alpha != nil { +				return nil, image.Config{}, errInvalidFormat +			} +			if configOnly { +				c, err := vp8l.DecodeConfig(chunkData) +				return nil, c, err +			} +			m, err := vp8l.Decode(chunkData) +			return m, image.Config{}, err + +		case fccVP8X: +			if seenVP8X { +				return nil, image.Config{}, errInvalidFormat +			} +			seenVP8X = true +			if chunkLen != 10 { +				return nil, image.Config{}, errInvalidFormat +			} +			if _, err := io.ReadFull(chunkData, buf[:10]); err != nil { +				return nil, image.Config{}, err +			} +			const ( +				animationBit    = 1 << 1 +				xmpMetadataBit  = 1 << 2 +				exifMetadataBit = 1 << 3 +				alphaBit        = 1 << 4 +				iccProfileBit   = 1 << 5 +			) +			wantAlpha = (buf[0] & alphaBit) != 0 +			widthMinusOne = uint32(buf[4]) | uint32(buf[5])<<8 | uint32(buf[6])<<16 +			heightMinusOne = uint32(buf[7]) | uint32(buf[8])<<8 | uint32(buf[9])<<16 +			if configOnly { +				if wantAlpha { +					return nil, image.Config{ +						ColorModel: color.NYCbCrAModel, +						Width:      int(widthMinusOne) + 1, +						Height:     int(heightMinusOne) + 1, +					}, nil +				} +				return nil, image.Config{ +					ColorModel: color.YCbCrModel, +					Width:      int(widthMinusOne) + 1, +					Height:     int(heightMinusOne) + 1, +				}, nil +			} +		} +	} +} + +func readAlpha(chunkData io.Reader, widthMinusOne, heightMinusOne uint32, compression byte) ( +	alpha []byte, alphaStride int, err error) { + +	switch compression { +	case 0: +		w := int(widthMinusOne) + 1 +		h := int(heightMinusOne) + 1 +		alpha = make([]byte, w*h) +		if _, err := io.ReadFull(chunkData, alpha); err != nil { +			return nil, 0, err +		} +		return alpha, w, nil + +	case 1: +		// Read the VP8L-compressed alpha values. First, synthesize a 5-byte VP8L header: +		// a 1-byte magic number, a 14-bit widthMinusOne, a 14-bit heightMinusOne, +		// a 1-bit (ignored, zero) alphaIsUsed and a 3-bit (zero) version. +		// TODO(nigeltao): be more efficient than decoding an *image.NRGBA just to +		// extract the green values to a separately allocated []byte. Fixing this +		// will require changes to the vp8l package's API. +		if widthMinusOne > 0x3fff || heightMinusOne > 0x3fff { +			return nil, 0, errors.New("webp: invalid format") +		} +		alphaImage, err := vp8l.Decode(io.MultiReader( +			bytes.NewReader([]byte{ +				0x2f, // VP8L magic number. +				uint8(widthMinusOne), +				uint8(widthMinusOne>>8) | uint8(heightMinusOne<<6), +				uint8(heightMinusOne >> 2), +				uint8(heightMinusOne >> 10), +			}), +			chunkData, +		)) +		if err != nil { +			return nil, 0, err +		} +		// The green values of the inner NRGBA image are the alpha values of the +		// outer NYCbCrA image. +		pix := alphaImage.(*image.NRGBA).Pix +		alpha = make([]byte, len(pix)/4) +		for i := range alpha { +			alpha[i] = pix[4*i+1] +		} +		return alpha, int(widthMinusOne) + 1, nil +	} +	return nil, 0, errInvalidFormat +} + +func unfilterAlpha(alpha []byte, alphaStride int, filter byte) { +	if len(alpha) == 0 || alphaStride == 0 { +		return +	} +	switch filter { +	case 1: // Horizontal filter. +		for i := 1; i < alphaStride; i++ { +			alpha[i] += alpha[i-1] +		} +		for i := alphaStride; i < len(alpha); i += alphaStride { +			// The first column is equivalent to the vertical filter. +			alpha[i] += alpha[i-alphaStride] + +			for j := 1; j < alphaStride; j++ { +				alpha[i+j] += alpha[i+j-1] +			} +		} + +	case 2: // Vertical filter. +		// The first row is equivalent to the horizontal filter. +		for i := 1; i < alphaStride; i++ { +			alpha[i] += alpha[i-1] +		} + +		for i := alphaStride; i < len(alpha); i++ { +			alpha[i] += alpha[i-alphaStride] +		} + +	case 3: // Gradient filter. +		// The first row is equivalent to the horizontal filter. +		for i := 1; i < alphaStride; i++ { +			alpha[i] += alpha[i-1] +		} + +		for i := alphaStride; i < len(alpha); i += alphaStride { +			// The first column is equivalent to the vertical filter. +			alpha[i] += alpha[i-alphaStride] + +			// The interior is predicted on the three top/left pixels. +			for j := 1; j < alphaStride; j++ { +				c := int(alpha[i+j-alphaStride-1]) +				b := int(alpha[i+j-alphaStride]) +				a := int(alpha[i+j-1]) +				x := a + b - c +				if x < 0 { +					x = 0 +				} else if x > 255 { +					x = 255 +				} +				alpha[i+j] += uint8(x) +			} +		} +	} +} + +// Decode reads a WEBP image from r and returns it as an image.Image. +func Decode(r io.Reader) (image.Image, error) { +	m, _, err := decode(r, false) +	if err != nil { +		return nil, err +	} +	return m, err +} + +// DecodeConfig returns the color model and dimensions of a WEBP image without +// decoding the entire image. +func DecodeConfig(r io.Reader) (image.Config, error) { +	_, c, err := decode(r, true) +	return c, err +} + +func init() { +	image.RegisterFormat("webp", "RIFF????WEBPVP8", Decode, DecodeConfig) +} diff --git a/vendor/golang.org/x/image/webp/doc.go b/vendor/golang.org/x/image/webp/doc.go new file mode 100644 index 000000000..e321c8542 --- /dev/null +++ b/vendor/golang.org/x/image/webp/doc.go @@ -0,0 +1,9 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package webp implements a decoder for WEBP images. +// +// WEBP is defined at: +// https://developers.google.com/speed/webp/docs/riff_container +package webp // import "golang.org/x/image/webp"  | 
