diff options
Diffstat (limited to 'vendor/golang.org/x/exp/slices/slices.go')
-rw-r--r-- | vendor/golang.org/x/exp/slices/slices.go | 353 |
1 files changed, 297 insertions, 56 deletions
diff --git a/vendor/golang.org/x/exp/slices/slices.go b/vendor/golang.org/x/exp/slices/slices.go index 2540bd682..5e8158bba 100644 --- a/vendor/golang.org/x/exp/slices/slices.go +++ b/vendor/golang.org/x/exp/slices/slices.go @@ -3,23 +3,20 @@ // license that can be found in the LICENSE file. // Package slices defines various functions useful with slices of any type. -// Unless otherwise specified, these functions all apply to the elements -// of a slice at index 0 <= i < len(s). -// -// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a -// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings), -// or the sorting may fail to sort correctly. A common case is when sorting slices of -// floating-point numbers containing NaN values. package slices -import "golang.org/x/exp/constraints" +import ( + "unsafe" + + "golang.org/x/exp/constraints" +) // Equal reports whether two slices are equal: the same length and all // elements equal. If the lengths are different, Equal returns false. // Otherwise, the elements are compared in increasing index order, and the // comparison stops at the first unequal pair. // Floating point NaNs are not considered equal. -func Equal[E comparable](s1, s2 []E) bool { +func Equal[S ~[]E, E comparable](s1, s2 S) bool { if len(s1) != len(s2) { return false } @@ -31,12 +28,12 @@ func Equal[E comparable](s1, s2 []E) bool { return true } -// EqualFunc reports whether two slices are equal using a comparison +// EqualFunc reports whether two slices are equal using an equality // function on each pair of elements. If the lengths are different, // EqualFunc returns false. Otherwise, the elements are compared in // increasing index order, and the comparison stops at the first index // for which eq returns false. -func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool { +func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool { if len(s1) != len(s2) { return false } @@ -49,45 +46,37 @@ func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool { return true } -// Compare compares the elements of s1 and s2. -// The elements are compared sequentially, starting at index 0, +// Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair +// of elements. The elements are compared sequentially, starting at index 0, // until one element is not equal to the other. // The result of comparing the first non-matching elements is returned. // If both slices are equal until one of them ends, the shorter slice is // considered less than the longer one. // The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2. -// Comparisons involving floating point NaNs are ignored. -func Compare[E constraints.Ordered](s1, s2 []E) int { - s2len := len(s2) +func Compare[S ~[]E, E constraints.Ordered](s1, s2 S) int { for i, v1 := range s1 { - if i >= s2len { + if i >= len(s2) { return +1 } v2 := s2[i] - switch { - case v1 < v2: - return -1 - case v1 > v2: - return +1 + if c := cmpCompare(v1, v2); c != 0 { + return c } } - if len(s1) < s2len { + if len(s1) < len(s2) { return -1 } return 0 } -// CompareFunc is like Compare but uses a comparison function -// on each pair of elements. The elements are compared in increasing -// index order, and the comparisons stop after the first time cmp -// returns non-zero. +// CompareFunc is like [Compare] but uses a custom comparison function on each +// pair of elements. // The result is the first non-zero result of cmp; if cmp always // returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2), // and +1 if len(s1) > len(s2). -func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int { - s2len := len(s2) +func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int { for i, v1 := range s1 { - if i >= s2len { + if i >= len(s2) { return +1 } v2 := s2[i] @@ -95,7 +84,7 @@ func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int { return c } } - if len(s1) < s2len { + if len(s1) < len(s2) { return -1 } return 0 @@ -103,7 +92,7 @@ func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int { // Index returns the index of the first occurrence of v in s, // or -1 if not present. -func Index[E comparable](s []E, v E) int { +func Index[S ~[]E, E comparable](s S, v E) int { for i := range s { if v == s[i] { return i @@ -114,7 +103,7 @@ func Index[E comparable](s []E, v E) int { // IndexFunc returns the first index i satisfying f(s[i]), // or -1 if none do. -func IndexFunc[E any](s []E, f func(E) bool) int { +func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int { for i := range s { if f(s[i]) { return i @@ -124,39 +113,104 @@ func IndexFunc[E any](s []E, f func(E) bool) int { } // Contains reports whether v is present in s. -func Contains[E comparable](s []E, v E) bool { +func Contains[S ~[]E, E comparable](s S, v E) bool { return Index(s, v) >= 0 } // ContainsFunc reports whether at least one // element e of s satisfies f(e). -func ContainsFunc[E any](s []E, f func(E) bool) bool { +func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool { return IndexFunc(s, f) >= 0 } // Insert inserts the values v... into s at index i, // returning the modified slice. -// In the returned slice r, r[i] == v[0]. +// The elements at s[i:] are shifted up to make room. +// In the returned slice r, r[i] == v[0], +// and r[i+len(v)] == value originally at r[i]. // Insert panics if i is out of range. // This function is O(len(s) + len(v)). func Insert[S ~[]E, E any](s S, i int, v ...E) S { - tot := len(s) + len(v) - if tot <= cap(s) { - s2 := s[:tot] - copy(s2[i+len(v):], s[i:]) + m := len(v) + if m == 0 { + return s + } + n := len(s) + if i == n { + return append(s, v...) + } + if n+m > cap(s) { + // Use append rather than make so that we bump the size of + // the slice up to the next storage class. + // This is what Grow does but we don't call Grow because + // that might copy the values twice. + s2 := append(s[:i], make(S, n+m-i)...) copy(s2[i:], v) + copy(s2[i+m:], s[i:]) return s2 } - s2 := make(S, tot) - copy(s2, s[:i]) - copy(s2[i:], v) - copy(s2[i+len(v):], s[i:]) - return s2 + s = s[:n+m] + + // before: + // s: aaaaaaaabbbbccccccccdddd + // ^ ^ ^ ^ + // i i+m n n+m + // after: + // s: aaaaaaaavvvvbbbbcccccccc + // ^ ^ ^ ^ + // i i+m n n+m + // + // a are the values that don't move in s. + // v are the values copied in from v. + // b and c are the values from s that are shifted up in index. + // d are the values that get overwritten, never to be seen again. + + if !overlaps(v, s[i+m:]) { + // Easy case - v does not overlap either the c or d regions. + // (It might be in some of a or b, or elsewhere entirely.) + // The data we copy up doesn't write to v at all, so just do it. + + copy(s[i+m:], s[i:]) + + // Now we have + // s: aaaaaaaabbbbbbbbcccccccc + // ^ ^ ^ ^ + // i i+m n n+m + // Note the b values are duplicated. + + copy(s[i:], v) + + // Now we have + // s: aaaaaaaavvvvbbbbcccccccc + // ^ ^ ^ ^ + // i i+m n n+m + // That's the result we want. + return s + } + + // The hard case - v overlaps c or d. We can't just shift up + // the data because we'd move or clobber the values we're trying + // to insert. + // So instead, write v on top of d, then rotate. + copy(s[n:], v) + + // Now we have + // s: aaaaaaaabbbbccccccccvvvv + // ^ ^ ^ ^ + // i i+m n n+m + + rotateRight(s[i:], m) + + // Now we have + // s: aaaaaaaavvvvbbbbcccccccc + // ^ ^ ^ ^ + // i i+m n n+m + // That's the result we want. + return s } // Delete removes the elements s[i:j] from s, returning the modified slice. // Delete panics if s[i:j] is not a valid slice of s. -// Delete modifies the contents of the slice s; it does not create a new slice. // Delete is O(len(s)-j), so if many items must be deleted, it is better to // make a single call deleting them all together than to delete one at a time. // Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those @@ -168,22 +222,113 @@ func Delete[S ~[]E, E any](s S, i, j int) S { return append(s[:i], s[j:]...) } +// DeleteFunc removes any elements from s for which del returns true, +// returning the modified slice. +// When DeleteFunc removes m elements, it might not modify the elements +// s[len(s)-m:len(s)]. If those elements contain pointers you might consider +// zeroing those elements so that objects they reference can be garbage +// collected. +func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S { + i := IndexFunc(s, del) + if i == -1 { + return s + } + // Don't start copying elements until we find one to delete. + for j := i + 1; j < len(s); j++ { + if v := s[j]; !del(v) { + s[i] = v + i++ + } + } + return s[:i] +} + // Replace replaces the elements s[i:j] by the given v, and returns the // modified slice. Replace panics if s[i:j] is not a valid slice of s. func Replace[S ~[]E, E any](s S, i, j int, v ...E) S { _ = s[i:j] // verify that i:j is a valid subslice + + if i == j { + return Insert(s, i, v...) + } + if j == len(s) { + return append(s[:i], v...) + } + tot := len(s[:i]) + len(v) + len(s[j:]) - if tot <= cap(s) { - s2 := s[:tot] - copy(s2[i+len(v):], s[j:]) + if tot > cap(s) { + // Too big to fit, allocate and copy over. + s2 := append(s[:i], make(S, tot-i)...) // See Insert copy(s2[i:], v) + copy(s2[i+len(v):], s[j:]) return s2 } - s2 := make(S, tot) - copy(s2, s[:i]) - copy(s2[i:], v) - copy(s2[i+len(v):], s[j:]) - return s2 + + r := s[:tot] + + if i+len(v) <= j { + // Easy, as v fits in the deleted portion. + copy(r[i:], v) + if i+len(v) != j { + copy(r[i+len(v):], s[j:]) + } + return r + } + + // We are expanding (v is bigger than j-i). + // The situation is something like this: + // (example has i=4,j=8,len(s)=16,len(v)=6) + // s: aaaaxxxxbbbbbbbbyy + // ^ ^ ^ ^ + // i j len(s) tot + // a: prefix of s + // x: deleted range + // b: more of s + // y: area to expand into + + if !overlaps(r[i+len(v):], v) { + // Easy, as v is not clobbered by the first copy. + copy(r[i+len(v):], s[j:]) + copy(r[i:], v) + return r + } + + // This is a situation where we don't have a single place to which + // we can copy v. Parts of it need to go to two different places. + // We want to copy the prefix of v into y and the suffix into x, then + // rotate |y| spots to the right. + // + // v[2:] v[:2] + // | | + // s: aaaavvvvbbbbbbbbvv + // ^ ^ ^ ^ + // i j len(s) tot + // + // If either of those two destinations don't alias v, then we're good. + y := len(v) - (j - i) // length of y portion + + if !overlaps(r[i:j], v) { + copy(r[i:j], v[y:]) + copy(r[len(s):], v[:y]) + rotateRight(r[i:], y) + return r + } + if !overlaps(r[len(s):], v) { + copy(r[len(s):], v[:y]) + copy(r[i:j], v[y:]) + rotateRight(r[i:], y) + return r + } + + // Now we know that v overlaps both x and y. + // That means that the entirety of b is *inside* v. + // So we don't need to preserve b at all; instead we + // can copy v first, then copy the b part of v out of + // v to the right destination. + k := startIdx(v, s[j:]) + copy(r[i:], v) + copy(r[i+len(v):], r[i+k:]) + return r } // Clone returns a copy of the slice. @@ -198,7 +343,8 @@ func Clone[S ~[]E, E any](s S) S { // Compact replaces consecutive runs of equal elements with a single copy. // This is like the uniq command found on Unix. -// Compact modifies the contents of the slice s; it does not create a new slice. +// Compact modifies the contents of the slice s and returns the modified slice, +// which may have a smaller length. // When Compact discards m elements in total, it might not modify the elements // s[len(s)-m:len(s)]. If those elements contain pointers you might consider // zeroing those elements so that objects they reference can be garbage collected. @@ -218,7 +364,8 @@ func Compact[S ~[]E, E comparable](s S) S { return s[:i] } -// CompactFunc is like Compact but uses a comparison function. +// CompactFunc is like [Compact] but uses an equality function to compare elements. +// For runs of elements that compare equal, CompactFunc keeps the first one. func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S { if len(s) < 2 { return s @@ -256,3 +403,97 @@ func Grow[S ~[]E, E any](s S, n int) S { func Clip[S ~[]E, E any](s S) S { return s[:len(s):len(s)] } + +// Rotation algorithm explanation: +// +// rotate left by 2 +// start with +// 0123456789 +// split up like this +// 01 234567 89 +// swap first 2 and last 2 +// 89 234567 01 +// join first parts +// 89234567 01 +// recursively rotate first left part by 2 +// 23456789 01 +// join at the end +// 2345678901 +// +// rotate left by 8 +// start with +// 0123456789 +// split up like this +// 01 234567 89 +// swap first 2 and last 2 +// 89 234567 01 +// join last parts +// 89 23456701 +// recursively rotate second part left by 6 +// 89 01234567 +// join at the end +// 8901234567 + +// TODO: There are other rotate algorithms. +// This algorithm has the desirable property that it moves each element exactly twice. +// The triple-reverse algorithm is simpler and more cache friendly, but takes more writes. +// The follow-cycles algorithm can be 1-write but it is not very cache friendly. + +// rotateLeft rotates b left by n spaces. +// s_final[i] = s_orig[i+r], wrapping around. +func rotateLeft[E any](s []E, r int) { + for r != 0 && r != len(s) { + if r*2 <= len(s) { + swap(s[:r], s[len(s)-r:]) + s = s[:len(s)-r] + } else { + swap(s[:len(s)-r], s[r:]) + s, r = s[len(s)-r:], r*2-len(s) + } + } +} +func rotateRight[E any](s []E, r int) { + rotateLeft(s, len(s)-r) +} + +// swap swaps the contents of x and y. x and y must be equal length and disjoint. +func swap[E any](x, y []E) { + for i := 0; i < len(x); i++ { + x[i], y[i] = y[i], x[i] + } +} + +// overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap. +func overlaps[E any](a, b []E) bool { + if len(a) == 0 || len(b) == 0 { + return false + } + elemSize := unsafe.Sizeof(a[0]) + if elemSize == 0 { + return false + } + // TODO: use a runtime/unsafe facility once one becomes available. See issue 12445. + // Also see crypto/internal/alias/alias.go:AnyOverlap + return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) && + uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1) +} + +// startIdx returns the index in haystack where the needle starts. +// prerequisite: the needle must be aliased entirely inside the haystack. +func startIdx[E any](haystack, needle []E) int { + p := &needle[0] + for i := range haystack { + if p == &haystack[i] { + return i + } + } + // TODO: what if the overlap is by a non-integral number of Es? + panic("needle not found") +} + +// Reverse reverses the elements of the slice in place. +func Reverse[S ~[]E, E any](s S) { + for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 { + s[i], s[j] = s[j], s[i] + } +} |