summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/exp/slices/slices.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/exp/slices/slices.go')
-rw-r--r--vendor/golang.org/x/exp/slices/slices.go353
1 files changed, 297 insertions, 56 deletions
diff --git a/vendor/golang.org/x/exp/slices/slices.go b/vendor/golang.org/x/exp/slices/slices.go
index 2540bd682..5e8158bba 100644
--- a/vendor/golang.org/x/exp/slices/slices.go
+++ b/vendor/golang.org/x/exp/slices/slices.go
@@ -3,23 +3,20 @@
// license that can be found in the LICENSE file.
// Package slices defines various functions useful with slices of any type.
-// Unless otherwise specified, these functions all apply to the elements
-// of a slice at index 0 <= i < len(s).
-//
-// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
-// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
-// or the sorting may fail to sort correctly. A common case is when sorting slices of
-// floating-point numbers containing NaN values.
package slices
-import "golang.org/x/exp/constraints"
+import (
+ "unsafe"
+
+ "golang.org/x/exp/constraints"
+)
// Equal reports whether two slices are equal: the same length and all
// elements equal. If the lengths are different, Equal returns false.
// Otherwise, the elements are compared in increasing index order, and the
// comparison stops at the first unequal pair.
// Floating point NaNs are not considered equal.
-func Equal[E comparable](s1, s2 []E) bool {
+func Equal[S ~[]E, E comparable](s1, s2 S) bool {
if len(s1) != len(s2) {
return false
}
@@ -31,12 +28,12 @@ func Equal[E comparable](s1, s2 []E) bool {
return true
}
-// EqualFunc reports whether two slices are equal using a comparison
+// EqualFunc reports whether two slices are equal using an equality
// function on each pair of elements. If the lengths are different,
// EqualFunc returns false. Otherwise, the elements are compared in
// increasing index order, and the comparison stops at the first index
// for which eq returns false.
-func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
+func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool {
if len(s1) != len(s2) {
return false
}
@@ -49,45 +46,37 @@ func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
return true
}
-// Compare compares the elements of s1 and s2.
-// The elements are compared sequentially, starting at index 0,
+// Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair
+// of elements. The elements are compared sequentially, starting at index 0,
// until one element is not equal to the other.
// The result of comparing the first non-matching elements is returned.
// If both slices are equal until one of them ends, the shorter slice is
// considered less than the longer one.
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
-// Comparisons involving floating point NaNs are ignored.
-func Compare[E constraints.Ordered](s1, s2 []E) int {
- s2len := len(s2)
+func Compare[S ~[]E, E constraints.Ordered](s1, s2 S) int {
for i, v1 := range s1 {
- if i >= s2len {
+ if i >= len(s2) {
return +1
}
v2 := s2[i]
- switch {
- case v1 < v2:
- return -1
- case v1 > v2:
- return +1
+ if c := cmpCompare(v1, v2); c != 0 {
+ return c
}
}
- if len(s1) < s2len {
+ if len(s1) < len(s2) {
return -1
}
return 0
}
-// CompareFunc is like Compare but uses a comparison function
-// on each pair of elements. The elements are compared in increasing
-// index order, and the comparisons stop after the first time cmp
-// returns non-zero.
+// CompareFunc is like [Compare] but uses a custom comparison function on each
+// pair of elements.
// The result is the first non-zero result of cmp; if cmp always
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
// and +1 if len(s1) > len(s2).
-func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
- s2len := len(s2)
+func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int {
for i, v1 := range s1 {
- if i >= s2len {
+ if i >= len(s2) {
return +1
}
v2 := s2[i]
@@ -95,7 +84,7 @@ func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
return c
}
}
- if len(s1) < s2len {
+ if len(s1) < len(s2) {
return -1
}
return 0
@@ -103,7 +92,7 @@ func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
// Index returns the index of the first occurrence of v in s,
// or -1 if not present.
-func Index[E comparable](s []E, v E) int {
+func Index[S ~[]E, E comparable](s S, v E) int {
for i := range s {
if v == s[i] {
return i
@@ -114,7 +103,7 @@ func Index[E comparable](s []E, v E) int {
// IndexFunc returns the first index i satisfying f(s[i]),
// or -1 if none do.
-func IndexFunc[E any](s []E, f func(E) bool) int {
+func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int {
for i := range s {
if f(s[i]) {
return i
@@ -124,39 +113,104 @@ func IndexFunc[E any](s []E, f func(E) bool) int {
}
// Contains reports whether v is present in s.
-func Contains[E comparable](s []E, v E) bool {
+func Contains[S ~[]E, E comparable](s S, v E) bool {
return Index(s, v) >= 0
}
// ContainsFunc reports whether at least one
// element e of s satisfies f(e).
-func ContainsFunc[E any](s []E, f func(E) bool) bool {
+func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
return IndexFunc(s, f) >= 0
}
// Insert inserts the values v... into s at index i,
// returning the modified slice.
-// In the returned slice r, r[i] == v[0].
+// The elements at s[i:] are shifted up to make room.
+// In the returned slice r, r[i] == v[0],
+// and r[i+len(v)] == value originally at r[i].
// Insert panics if i is out of range.
// This function is O(len(s) + len(v)).
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
- tot := len(s) + len(v)
- if tot <= cap(s) {
- s2 := s[:tot]
- copy(s2[i+len(v):], s[i:])
+ m := len(v)
+ if m == 0 {
+ return s
+ }
+ n := len(s)
+ if i == n {
+ return append(s, v...)
+ }
+ if n+m > cap(s) {
+ // Use append rather than make so that we bump the size of
+ // the slice up to the next storage class.
+ // This is what Grow does but we don't call Grow because
+ // that might copy the values twice.
+ s2 := append(s[:i], make(S, n+m-i)...)
copy(s2[i:], v)
+ copy(s2[i+m:], s[i:])
return s2
}
- s2 := make(S, tot)
- copy(s2, s[:i])
- copy(s2[i:], v)
- copy(s2[i+len(v):], s[i:])
- return s2
+ s = s[:n+m]
+
+ // before:
+ // s: aaaaaaaabbbbccccccccdddd
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // after:
+ // s: aaaaaaaavvvvbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ //
+ // a are the values that don't move in s.
+ // v are the values copied in from v.
+ // b and c are the values from s that are shifted up in index.
+ // d are the values that get overwritten, never to be seen again.
+
+ if !overlaps(v, s[i+m:]) {
+ // Easy case - v does not overlap either the c or d regions.
+ // (It might be in some of a or b, or elsewhere entirely.)
+ // The data we copy up doesn't write to v at all, so just do it.
+
+ copy(s[i+m:], s[i:])
+
+ // Now we have
+ // s: aaaaaaaabbbbbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // Note the b values are duplicated.
+
+ copy(s[i:], v)
+
+ // Now we have
+ // s: aaaaaaaavvvvbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // That's the result we want.
+ return s
+ }
+
+ // The hard case - v overlaps c or d. We can't just shift up
+ // the data because we'd move or clobber the values we're trying
+ // to insert.
+ // So instead, write v on top of d, then rotate.
+ copy(s[n:], v)
+
+ // Now we have
+ // s: aaaaaaaabbbbccccccccvvvv
+ // ^ ^ ^ ^
+ // i i+m n n+m
+
+ rotateRight(s[i:], m)
+
+ // Now we have
+ // s: aaaaaaaavvvvbbbbcccccccc
+ // ^ ^ ^ ^
+ // i i+m n n+m
+ // That's the result we want.
+ return s
}
// Delete removes the elements s[i:j] from s, returning the modified slice.
// Delete panics if s[i:j] is not a valid slice of s.
-// Delete modifies the contents of the slice s; it does not create a new slice.
// Delete is O(len(s)-j), so if many items must be deleted, it is better to
// make a single call deleting them all together than to delete one at a time.
// Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those
@@ -168,22 +222,113 @@ func Delete[S ~[]E, E any](s S, i, j int) S {
return append(s[:i], s[j:]...)
}
+// DeleteFunc removes any elements from s for which del returns true,
+// returning the modified slice.
+// When DeleteFunc removes m elements, it might not modify the elements
+// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
+// zeroing those elements so that objects they reference can be garbage
+// collected.
+func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
+ i := IndexFunc(s, del)
+ if i == -1 {
+ return s
+ }
+ // Don't start copying elements until we find one to delete.
+ for j := i + 1; j < len(s); j++ {
+ if v := s[j]; !del(v) {
+ s[i] = v
+ i++
+ }
+ }
+ return s[:i]
+}
+
// Replace replaces the elements s[i:j] by the given v, and returns the
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
_ = s[i:j] // verify that i:j is a valid subslice
+
+ if i == j {
+ return Insert(s, i, v...)
+ }
+ if j == len(s) {
+ return append(s[:i], v...)
+ }
+
tot := len(s[:i]) + len(v) + len(s[j:])
- if tot <= cap(s) {
- s2 := s[:tot]
- copy(s2[i+len(v):], s[j:])
+ if tot > cap(s) {
+ // Too big to fit, allocate and copy over.
+ s2 := append(s[:i], make(S, tot-i)...) // See Insert
copy(s2[i:], v)
+ copy(s2[i+len(v):], s[j:])
return s2
}
- s2 := make(S, tot)
- copy(s2, s[:i])
- copy(s2[i:], v)
- copy(s2[i+len(v):], s[j:])
- return s2
+
+ r := s[:tot]
+
+ if i+len(v) <= j {
+ // Easy, as v fits in the deleted portion.
+ copy(r[i:], v)
+ if i+len(v) != j {
+ copy(r[i+len(v):], s[j:])
+ }
+ return r
+ }
+
+ // We are expanding (v is bigger than j-i).
+ // The situation is something like this:
+ // (example has i=4,j=8,len(s)=16,len(v)=6)
+ // s: aaaaxxxxbbbbbbbbyy
+ // ^ ^ ^ ^
+ // i j len(s) tot
+ // a: prefix of s
+ // x: deleted range
+ // b: more of s
+ // y: area to expand into
+
+ if !overlaps(r[i+len(v):], v) {
+ // Easy, as v is not clobbered by the first copy.
+ copy(r[i+len(v):], s[j:])
+ copy(r[i:], v)
+ return r
+ }
+
+ // This is a situation where we don't have a single place to which
+ // we can copy v. Parts of it need to go to two different places.
+ // We want to copy the prefix of v into y and the suffix into x, then
+ // rotate |y| spots to the right.
+ //
+ // v[2:] v[:2]
+ // | |
+ // s: aaaavvvvbbbbbbbbvv
+ // ^ ^ ^ ^
+ // i j len(s) tot
+ //
+ // If either of those two destinations don't alias v, then we're good.
+ y := len(v) - (j - i) // length of y portion
+
+ if !overlaps(r[i:j], v) {
+ copy(r[i:j], v[y:])
+ copy(r[len(s):], v[:y])
+ rotateRight(r[i:], y)
+ return r
+ }
+ if !overlaps(r[len(s):], v) {
+ copy(r[len(s):], v[:y])
+ copy(r[i:j], v[y:])
+ rotateRight(r[i:], y)
+ return r
+ }
+
+ // Now we know that v overlaps both x and y.
+ // That means that the entirety of b is *inside* v.
+ // So we don't need to preserve b at all; instead we
+ // can copy v first, then copy the b part of v out of
+ // v to the right destination.
+ k := startIdx(v, s[j:])
+ copy(r[i:], v)
+ copy(r[i+len(v):], r[i+k:])
+ return r
}
// Clone returns a copy of the slice.
@@ -198,7 +343,8 @@ func Clone[S ~[]E, E any](s S) S {
// Compact replaces consecutive runs of equal elements with a single copy.
// This is like the uniq command found on Unix.
-// Compact modifies the contents of the slice s; it does not create a new slice.
+// Compact modifies the contents of the slice s and returns the modified slice,
+// which may have a smaller length.
// When Compact discards m elements in total, it might not modify the elements
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
// zeroing those elements so that objects they reference can be garbage collected.
@@ -218,7 +364,8 @@ func Compact[S ~[]E, E comparable](s S) S {
return s[:i]
}
-// CompactFunc is like Compact but uses a comparison function.
+// CompactFunc is like [Compact] but uses an equality function to compare elements.
+// For runs of elements that compare equal, CompactFunc keeps the first one.
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
if len(s) < 2 {
return s
@@ -256,3 +403,97 @@ func Grow[S ~[]E, E any](s S, n int) S {
func Clip[S ~[]E, E any](s S) S {
return s[:len(s):len(s)]
}
+
+// Rotation algorithm explanation:
+//
+// rotate left by 2
+// start with
+// 0123456789
+// split up like this
+// 01 234567 89
+// swap first 2 and last 2
+// 89 234567 01
+// join first parts
+// 89234567 01
+// recursively rotate first left part by 2
+// 23456789 01
+// join at the end
+// 2345678901
+//
+// rotate left by 8
+// start with
+// 0123456789
+// split up like this
+// 01 234567 89
+// swap first 2 and last 2
+// 89 234567 01
+// join last parts
+// 89 23456701
+// recursively rotate second part left by 6
+// 89 01234567
+// join at the end
+// 8901234567
+
+// TODO: There are other rotate algorithms.
+// This algorithm has the desirable property that it moves each element exactly twice.
+// The triple-reverse algorithm is simpler and more cache friendly, but takes more writes.
+// The follow-cycles algorithm can be 1-write but it is not very cache friendly.
+
+// rotateLeft rotates b left by n spaces.
+// s_final[i] = s_orig[i+r], wrapping around.
+func rotateLeft[E any](s []E, r int) {
+ for r != 0 && r != len(s) {
+ if r*2 <= len(s) {
+ swap(s[:r], s[len(s)-r:])
+ s = s[:len(s)-r]
+ } else {
+ swap(s[:len(s)-r], s[r:])
+ s, r = s[len(s)-r:], r*2-len(s)
+ }
+ }
+}
+func rotateRight[E any](s []E, r int) {
+ rotateLeft(s, len(s)-r)
+}
+
+// swap swaps the contents of x and y. x and y must be equal length and disjoint.
+func swap[E any](x, y []E) {
+ for i := 0; i < len(x); i++ {
+ x[i], y[i] = y[i], x[i]
+ }
+}
+
+// overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap.
+func overlaps[E any](a, b []E) bool {
+ if len(a) == 0 || len(b) == 0 {
+ return false
+ }
+ elemSize := unsafe.Sizeof(a[0])
+ if elemSize == 0 {
+ return false
+ }
+ // TODO: use a runtime/unsafe facility once one becomes available. See issue 12445.
+ // Also see crypto/internal/alias/alias.go:AnyOverlap
+ return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) &&
+ uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1)
+}
+
+// startIdx returns the index in haystack where the needle starts.
+// prerequisite: the needle must be aliased entirely inside the haystack.
+func startIdx[E any](haystack, needle []E) int {
+ p := &needle[0]
+ for i := range haystack {
+ if p == &haystack[i] {
+ return i
+ }
+ }
+ // TODO: what if the overlap is by a non-integral number of Es?
+ panic("needle not found")
+}
+
+// Reverse reverses the elements of the slice in place.
+func Reverse[S ~[]E, E any](s S) {
+ for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
+ s[i], s[j] = s[j], s[i]
+ }
+}