diff options
Diffstat (limited to 'vendor/github.com/ugorji/go/codec/helper.go')
-rw-r--r-- | vendor/github.com/ugorji/go/codec/helper.go | 3004 |
1 files changed, 0 insertions, 3004 deletions
diff --git a/vendor/github.com/ugorji/go/codec/helper.go b/vendor/github.com/ugorji/go/codec/helper.go deleted file mode 100644 index ecd87ba53..000000000 --- a/vendor/github.com/ugorji/go/codec/helper.go +++ /dev/null @@ -1,3004 +0,0 @@ -// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved. -// Use of this source code is governed by a MIT license found in the LICENSE file. - -package codec - -// Contains code shared by both encode and decode. - -// Some shared ideas around encoding/decoding -// ------------------------------------------ -// -// If an interface{} is passed, we first do a type assertion to see if it is -// a primitive type or a map/slice of primitive types, and use a fastpath to handle it. -// -// If we start with a reflect.Value, we are already in reflect.Value land and -// will try to grab the function for the underlying Type and directly call that function. -// This is more performant than calling reflect.Value.Interface(). -// -// This still helps us bypass many layers of reflection, and give best performance. -// -// Containers -// ------------ -// Containers in the stream are either associative arrays (key-value pairs) or -// regular arrays (indexed by incrementing integers). -// -// Some streams support indefinite-length containers, and use a breaking -// byte-sequence to denote that the container has come to an end. -// -// Some streams also are text-based, and use explicit separators to denote the -// end/beginning of different values. -// -// Philosophy -// ------------ -// On decode, this codec will update containers appropriately: -// - If struct, update fields from stream into fields of struct. -// If field in stream not found in struct, handle appropriately (based on option). -// If a struct field has no corresponding value in the stream, leave it AS IS. -// If nil in stream, set value to nil/zero value. -// - If map, update map from stream. -// If the stream value is NIL, set the map to nil. -// - if slice, try to update up to length of array in stream. -// if container len is less than stream array length, -// and container cannot be expanded, handled (based on option). -// This means you can decode 4-element stream array into 1-element array. -// -// ------------------------------------ -// On encode, user can specify omitEmpty. This means that the value will be omitted -// if the zero value. The problem may occur during decode, where omitted values do not affect -// the value being decoded into. This means that if decoding into a struct with an -// int field with current value=5, and the field is omitted in the stream, then after -// decoding, the value will still be 5 (not 0). -// omitEmpty only works if you guarantee that you always decode into zero-values. -// -// ------------------------------------ -// We could have truncated a map to remove keys not available in the stream, -// or set values in the struct which are not in the stream to their zero values. -// We decided against it because there is no efficient way to do it. -// We may introduce it as an option later. -// However, that will require enabling it for both runtime and code generation modes. -// -// To support truncate, we need to do 2 passes over the container: -// map -// - first collect all keys (e.g. in k1) -// - for each key in stream, mark k1 that the key should not be removed -// - after updating map, do second pass and call delete for all keys in k1 which are not marked -// struct: -// - for each field, track the *typeInfo s1 -// - iterate through all s1, and for each one not marked, set value to zero -// - this involves checking the possible anonymous fields which are nil ptrs. -// too much work. -// -// ------------------------------------------ -// Error Handling is done within the library using panic. -// -// This way, the code doesn't have to keep checking if an error has happened, -// and we don't have to keep sending the error value along with each call -// or storing it in the En|Decoder and checking it constantly along the way. -// -// We considered storing the error is En|Decoder. -// - once it has its err field set, it cannot be used again. -// - panicing will be optional, controlled by const flag. -// - code should always check error first and return early. -// -// We eventually decided against it as it makes the code clumsier to always -// check for these error conditions. -// -// ------------------------------------------ -// We use sync.Pool only for the aid of long-lived objects shared across multiple goroutines. -// Encoder, Decoder, enc|decDriver, reader|writer, etc do not fall into this bucket. -// -// Also, GC is much better now, eliminating some of the reasons to use a shared pool structure. -// Instead, the short-lived objects use free-lists that live as long as the object exists. -// -// ------------------------------------------ -// Performance is affected by the following: -// - Bounds Checking -// - Inlining -// - Pointer chasing -// This package tries hard to manage the performance impact of these. -// -// ------------------------------------------ -// To alleviate performance due to pointer-chasing: -// - Prefer non-pointer values in a struct field -// - Refer to these directly within helper classes -// e.g. json.go refers directly to d.d.decRd -// -// We made the changes to embed En/Decoder in en/decDriver, -// but we had to explicitly reference the fields as opposed to using a function -// to get the better performance that we were looking for. -// For example, we explicitly call d.d.decRd.fn() instead of d.d.r().fn(). -// -// ------------------------------------------ -// Bounds Checking -// - Allow bytesDecReader to incur "bounds check error", and recover that as an io error. -// This allows the bounds check branch to always be taken by the branch predictor, -// giving better performance (in theory), while ensuring that the code is shorter. -// -// ------------------------------------------ -// Escape Analysis -// - Prefer to return non-pointers if the value is used right away. -// Newly allocated values returned as pointers will be heap-allocated as they escape. -// -// Prefer functions and methods that -// - take no parameters and -// - return no results and -// - do not allocate. -// These are optimized by the runtime. -// For example, in json, we have dedicated functions for ReadMapElemKey, etc -// which do not delegate to readDelim, as readDelim takes a parameter. -// The difference in runtime was as much as 5%. -// -// ------------------------------------------ -// Handling Nil -// - In dynamic (reflection) mode, decodeValue and encodeValue handle nil at the top -// - Consequently, methods used with them as a parent in the chain e.g. kXXX -// methods do not handle nil. -// - Fastpath methods also do not handle nil. -// The switch called in (en|de)code(...) handles it so the dependent calls don't have to. -// - codecgen will handle nil before calling into the library for further work also. -// -// ------------------------------------------ -// Passing reflect.Kind to functions that take a reflect.Value -// - Note that reflect.Value.Kind() is very cheap, as its fundamentally a binary AND of 2 numbers -// -// ------------------------------------------ -// Transient values during decoding -// -// With reflection, the stack is not used. Consequently, values which may be stack-allocated in -// normal use will cause a heap allocation when using reflection. -// -// There are cases where we know that a value is transient, and we just need to decode into it -// temporarily so we can right away use its value for something else. -// -// In these situations, we can elide the heap allocation by being deliberate with use of a pre-cached -// scratch memory or scratch value. -// -// We use this for situations: -// - decode into a temp value x, and then set x into an interface -// - decode into a temp value, for use as a map key, to lookup up a map value -// - decode into a temp value, for use as a map value, to set into a map -// - decode into a temp value, for sending into a channel -// -// By definition, Transient values are NEVER pointer-shaped values, -// like pointer, func, map, chan. Using transient for pointer-shaped values -// can lead to data corruption when GC tries to follow what it saw as a pointer at one point. -// -// In general, transient values are values which can be decoded as an atomic value -// using a single call to the decDriver. This naturally includes bool or numeric types. -// -// Note that some values which "contain" pointers, specifically string and slice, -// can also be transient. In the case of string, it is decoded as an atomic value. -// In the case of a slice, decoding into its elements always uses an addressable -// value in memory ie we grow the slice, and then decode directly into the memory -// address corresponding to that index in the slice. -// -// To handle these string and slice values, we have to use a scratch value -// which has the same shape of a string or slice. -// -// Consequently, the full range of types which can be transient is: -// - numbers -// - bool -// - string -// - slice -// -// and whbut we MUST use a scratch space with that element -// being defined as an unsafe.Pointer to start with. -// -// We have to be careful with maps. Because we iterate map keys and values during a range, -// we must have 2 variants of the scratch space/value for maps and keys separately. -// -// These are the TransientAddrK and TransientAddr2K methods of decPerType. - -import ( - "encoding" - "encoding/binary" - "errors" - "fmt" - "io" - "math" - "reflect" - "runtime" - "sort" - "strconv" - "strings" - "sync" - "sync/atomic" - "time" - "unicode/utf8" -) - -// if debugging is true, then -// - within Encode/Decode, do not recover from panic's -// - etc -// -// Note: Negative tests that check for errors will fail, so only use this -// when debugging, and run only one test at a time preferably. -// -// Note: RPC tests depend on getting the error from an Encode/Decode call. -// Consequently, they will always fail if debugging = true. -const debugging = false - -const ( - // containerLenUnknown is length returned from Read(Map|Array)Len - // when a format doesn't know apiori. - // For example, json doesn't pre-determine the length of a container (sequence/map). - containerLenUnknown = -1 - - // containerLenNil is length returned from Read(Map|Array)Len - // when a 'nil' was encountered in the stream. - containerLenNil = math.MinInt32 - - // [N]byte is handled by converting to []byte first, - // and sending to the dedicated fast-path function for []byte. - // - // Code exists in case our understanding is wrong. - // keep the defensive code behind this flag, so we can remove/hide it if needed. - // For now, we enable the defensive code (ie set it to true). - handleBytesWithinKArray = true - - // Support encoding.(Binary|Text)(Unm|M)arshaler. - // This constant flag will enable or disable it. - supportMarshalInterfaces = true - - // bytesFreeListNoCache is used for debugging, when we want to skip using a cache of []byte. - bytesFreeListNoCache = false - - // size of the cacheline: defaulting to value for archs: amd64, arm64, 386 - // should use "runtime/internal/sys".CacheLineSize, but that is not exposed. - cacheLineSize = 64 - - wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize - wordSize = wordSizeBits / 8 - - // MARKER: determines whether to skip calling fastpath(En|De)codeTypeSwitch. - // Calling the fastpath switch in encode() or decode() could be redundant, - // as we still have to introspect it again within fnLoad - // to determine the function to use for values of that type. - skipFastpathTypeSwitchInDirectCall = false -) - -const cpu32Bit = ^uint(0)>>32 == 0 - -type rkind byte - -const ( - rkindPtr = rkind(reflect.Ptr) - rkindString = rkind(reflect.String) - rkindChan = rkind(reflect.Chan) -) - -type mapKeyFastKind uint8 - -const ( - mapKeyFastKind32 = iota + 1 - mapKeyFastKind32ptr - mapKeyFastKind64 - mapKeyFastKind64ptr - mapKeyFastKindStr -) - -var ( - // use a global mutex to ensure each Handle is initialized. - // We do this, so we don't have to store the basicHandle mutex - // directly in BasicHandle, so it can be shallow-copied. - handleInitMu sync.Mutex - - must mustHdl - halt panicHdl - - digitCharBitset bitset256 - numCharBitset bitset256 - whitespaceCharBitset bitset256 - asciiAlphaNumBitset bitset256 - - // numCharWithExpBitset64 bitset64 - // numCharNoExpBitset64 bitset64 - // whitespaceCharBitset64 bitset64 - // - // // hasptrBitset sets bit for all kinds which always have internal pointers - // hasptrBitset bitset32 - - // refBitset sets bit for all kinds which are direct internal references - refBitset bitset32 - - // isnilBitset sets bit for all kinds which can be compared to nil - isnilBitset bitset32 - - // numBoolBitset sets bit for all number and bool kinds - numBoolBitset bitset32 - - // numBoolStrSliceBitset sets bits for all kinds which are numbers, bool, strings and slices - numBoolStrSliceBitset bitset32 - - // scalarBitset sets bit for all kinds which are scalars/primitives and thus immutable - scalarBitset bitset32 - - mapKeyFastKindVals [32]mapKeyFastKind - - // codecgen is set to true by codecgen, so that tests, etc can use this information as needed. - codecgen bool - - oneByteArr [1]byte - zeroByteSlice = oneByteArr[:0:0] - - eofReader devNullReader -) - -var ( - errMapTypeNotMapKind = errors.New("MapType MUST be of Map Kind") - errSliceTypeNotSliceKind = errors.New("SliceType MUST be of Slice Kind") - - errExtFnWriteExtUnsupported = errors.New("BytesExt.WriteExt is not supported") - errExtFnReadExtUnsupported = errors.New("BytesExt.ReadExt is not supported") - errExtFnConvertExtUnsupported = errors.New("InterfaceExt.ConvertExt is not supported") - errExtFnUpdateExtUnsupported = errors.New("InterfaceExt.UpdateExt is not supported") - - errPanicUndefined = errors.New("panic: undefined error") - - errHandleInited = errors.New("cannot modify initialized Handle") - - errNoFormatHandle = errors.New("no handle (cannot identify format)") -) - -var pool4tiload = sync.Pool{ - New: func() interface{} { - return &typeInfoLoad{ - etypes: make([]uintptr, 0, 4), - sfis: make([]structFieldInfo, 0, 4), - sfiNames: make(map[string]uint16, 4), - } - }, -} - -func init() { - xx := func(f mapKeyFastKind, k ...reflect.Kind) { - for _, v := range k { - mapKeyFastKindVals[byte(v)&31] = f // 'v % 32' equal to 'v & 31' - } - } - - var f mapKeyFastKind - - f = mapKeyFastKind64 - if wordSizeBits == 32 { - f = mapKeyFastKind32 - } - xx(f, reflect.Int, reflect.Uint, reflect.Uintptr) - - f = mapKeyFastKind64ptr - if wordSizeBits == 32 { - f = mapKeyFastKind32ptr - } - xx(f, reflect.Ptr) - - xx(mapKeyFastKindStr, reflect.String) - xx(mapKeyFastKind32, reflect.Uint32, reflect.Int32, reflect.Float32) - xx(mapKeyFastKind64, reflect.Uint64, reflect.Int64, reflect.Float64) - - numBoolBitset. - set(byte(reflect.Bool)). - set(byte(reflect.Int)). - set(byte(reflect.Int8)). - set(byte(reflect.Int16)). - set(byte(reflect.Int32)). - set(byte(reflect.Int64)). - set(byte(reflect.Uint)). - set(byte(reflect.Uint8)). - set(byte(reflect.Uint16)). - set(byte(reflect.Uint32)). - set(byte(reflect.Uint64)). - set(byte(reflect.Uintptr)). - set(byte(reflect.Float32)). - set(byte(reflect.Float64)). - set(byte(reflect.Complex64)). - set(byte(reflect.Complex128)) - - numBoolStrSliceBitset = numBoolBitset - - numBoolStrSliceBitset. - set(byte(reflect.String)). - set(byte(reflect.Slice)) - - scalarBitset = numBoolBitset - - scalarBitset. - set(byte(reflect.String)) - - // MARKER: reflect.Array is not a scalar, as its contents can be modified. - - refBitset. - set(byte(reflect.Map)). - set(byte(reflect.Ptr)). - set(byte(reflect.Func)). - set(byte(reflect.Chan)). - set(byte(reflect.UnsafePointer)) - - isnilBitset = refBitset - - isnilBitset. - set(byte(reflect.Interface)). - set(byte(reflect.Slice)) - - // hasptrBitset = isnilBitset - // - // hasptrBitset. - // set(byte(reflect.String)) - - for i := byte(0); i <= utf8.RuneSelf; i++ { - if (i >= '0' && i <= '9') || (i >= 'a' && i <= 'z') || (i >= 'A' && i <= 'Z') { - asciiAlphaNumBitset.set(i) - } - switch i { - case ' ', '\t', '\r', '\n': - whitespaceCharBitset.set(i) - case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': - digitCharBitset.set(i) - numCharBitset.set(i) - case '.', '+', '-': - numCharBitset.set(i) - case 'e', 'E': - numCharBitset.set(i) - } - } -} - -// driverStateManager supports the runtime state of an (enc|dec)Driver. -// -// During a side(En|De)code call, we can capture the state, reset it, -// and then restore it later to continue the primary encoding/decoding. -type driverStateManager interface { - resetState() - captureState() interface{} - restoreState(state interface{}) -} - -type bdAndBdread struct { - bdRead bool - bd byte -} - -func (x bdAndBdread) captureState() interface{} { return x } -func (x *bdAndBdread) resetState() { x.bd, x.bdRead = 0, false } -func (x *bdAndBdread) reset() { x.resetState() } -func (x *bdAndBdread) restoreState(v interface{}) { *x = v.(bdAndBdread) } - -type clsErr struct { - err error // error on closing - closed bool // is it closed? -} - -type charEncoding uint8 - -const ( - _ charEncoding = iota // make 0 unset - cUTF8 - cUTF16LE - cUTF16BE - cUTF32LE - cUTF32BE - // Deprecated: not a true char encoding value - cRAW charEncoding = 255 -) - -// valueType is the stream type -type valueType uint8 - -const ( - valueTypeUnset valueType = iota - valueTypeNil - valueTypeInt - valueTypeUint - valueTypeFloat - valueTypeBool - valueTypeString - valueTypeSymbol - valueTypeBytes - valueTypeMap - valueTypeArray - valueTypeTime - valueTypeExt - - // valueTypeInvalid = 0xff -) - -var valueTypeStrings = [...]string{ - "Unset", - "Nil", - "Int", - "Uint", - "Float", - "Bool", - "String", - "Symbol", - "Bytes", - "Map", - "Array", - "Timestamp", - "Ext", -} - -func (x valueType) String() string { - if int(x) < len(valueTypeStrings) { - return valueTypeStrings[x] - } - return strconv.FormatInt(int64(x), 10) -} - -// note that containerMapStart and containerArraySend are not sent. -// This is because the ReadXXXStart and EncodeXXXStart already does these. -type containerState uint8 - -const ( - _ containerState = iota - - containerMapStart - containerMapKey - containerMapValue - containerMapEnd - containerArrayStart - containerArrayElem - containerArrayEnd -) - -// do not recurse if a containing type refers to an embedded type -// which refers back to its containing type (via a pointer). -// The second time this back-reference happens, break out, -// so as not to cause an infinite loop. -const rgetMaxRecursion = 2 - -// fauxUnion is used to keep track of the primitives decoded. -// -// Without it, we would have to decode each primitive and wrap it -// in an interface{}, causing an allocation. -// In this model, the primitives are decoded in a "pseudo-atomic" fashion, -// so we can rest assured that no other decoding happens while these -// primitives are being decoded. -// -// maps and arrays are not handled by this mechanism. -type fauxUnion struct { - // r RawExt // used for RawExt, uint, []byte. - - // primitives below - u uint64 - i int64 - f float64 - l []byte - s string - - // ---- cpu cache line boundary? - t time.Time - b bool - - // state - v valueType -} - -// typeInfoLoad is a transient object used while loading up a typeInfo. -type typeInfoLoad struct { - etypes []uintptr - sfis []structFieldInfo - sfiNames map[string]uint16 -} - -func (x *typeInfoLoad) reset() { - x.etypes = x.etypes[:0] - x.sfis = x.sfis[:0] - for k := range x.sfiNames { // optimized to zero the map - delete(x.sfiNames, k) - } -} - -// mirror json.Marshaler and json.Unmarshaler here, -// so we don't import the encoding/json package - -type jsonMarshaler interface { - MarshalJSON() ([]byte, error) -} -type jsonUnmarshaler interface { - UnmarshalJSON([]byte) error -} - -type isZeroer interface { - IsZero() bool -} - -type isCodecEmptyer interface { - IsCodecEmpty() bool -} - -type codecError struct { - err error - name string - pos int - encode bool -} - -func (e *codecError) Cause() error { - return e.err -} - -func (e *codecError) Unwrap() error { - return e.err -} - -func (e *codecError) Error() string { - if e.encode { - return fmt.Sprintf("%s encode error: %v", e.name, e.err) - } - return fmt.Sprintf("%s decode error [pos %d]: %v", e.name, e.pos, e.err) -} - -func wrapCodecErr(in error, name string, numbytesread int, encode bool) (out error) { - x, ok := in.(*codecError) - if ok && x.pos == numbytesread && x.name == name && x.encode == encode { - return in - } - return &codecError{in, name, numbytesread, encode} -} - -var ( - bigen bigenHelper - - bigenstd = binary.BigEndian - - structInfoFieldName = "_struct" - - mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil)) - mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil)) - intfSliceTyp = reflect.TypeOf([]interface{}(nil)) - intfTyp = intfSliceTyp.Elem() - - reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem() - - stringTyp = reflect.TypeOf("") - timeTyp = reflect.TypeOf(time.Time{}) - rawExtTyp = reflect.TypeOf(RawExt{}) - rawTyp = reflect.TypeOf(Raw{}) - uintptrTyp = reflect.TypeOf(uintptr(0)) - uint8Typ = reflect.TypeOf(uint8(0)) - uint8SliceTyp = reflect.TypeOf([]uint8(nil)) - uintTyp = reflect.TypeOf(uint(0)) - intTyp = reflect.TypeOf(int(0)) - - mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem() - - binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem() - binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem() - - textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem() - textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem() - - jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem() - jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem() - - selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem() - missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem() - iszeroTyp = reflect.TypeOf((*isZeroer)(nil)).Elem() - isCodecEmptyerTyp = reflect.TypeOf((*isCodecEmptyer)(nil)).Elem() - isSelferViaCodecgenerTyp = reflect.TypeOf((*isSelferViaCodecgener)(nil)).Elem() - - uint8TypId = rt2id(uint8Typ) - uint8SliceTypId = rt2id(uint8SliceTyp) - rawExtTypId = rt2id(rawExtTyp) - rawTypId = rt2id(rawTyp) - intfTypId = rt2id(intfTyp) - timeTypId = rt2id(timeTyp) - stringTypId = rt2id(stringTyp) - - mapStrIntfTypId = rt2id(mapStrIntfTyp) - mapIntfIntfTypId = rt2id(mapIntfIntfTyp) - intfSliceTypId = rt2id(intfSliceTyp) - // mapBySliceTypId = rt2id(mapBySliceTyp) - - intBitsize = uint8(intTyp.Bits()) - uintBitsize = uint8(uintTyp.Bits()) - - // bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0} - bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} - - chkOvf checkOverflow -) - -var defTypeInfos = NewTypeInfos([]string{"codec", "json"}) - -// SelfExt is a sentinel extension signifying that types -// registered with it SHOULD be encoded and decoded -// based on the native mode of the format. -// -// This allows users to define a tag for an extension, -// but signify that the types should be encoded/decoded as the native encoding. -// This way, users need not also define how to encode or decode the extension. -var SelfExt = &extFailWrapper{} - -// Selfer defines methods by which a value can encode or decode itself. -// -// Any type which implements Selfer will be able to encode or decode itself. -// Consequently, during (en|de)code, this takes precedence over -// (text|binary)(M|Unm)arshal or extension support. -// -// By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself. -// If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error. -// For example, the snippet below will cause such an error. -// -// type testSelferRecur struct{} -// func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) } -// func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) } -// -// Note: *the first set of bytes of any value MUST NOT represent nil in the format*. -// This is because, during each decode, we first check the the next set of bytes -// represent nil, and if so, we just set the value to nil. -type Selfer interface { - CodecEncodeSelf(*Encoder) - CodecDecodeSelf(*Decoder) -} - -type isSelferViaCodecgener interface { - codecSelferViaCodecgen() -} - -// MissingFielder defines the interface allowing structs to internally decode or encode -// values which do not map to struct fields. -// -// We expect that this interface is bound to a pointer type (so the mutation function works). -// -// A use-case is if a version of a type unexports a field, but you want compatibility between -// both versions during encoding and decoding. -// -// Note that the interface is completely ignored during codecgen. -type MissingFielder interface { - // CodecMissingField is called to set a missing field and value pair. - // - // It returns true if the missing field was set on the struct. - CodecMissingField(field []byte, value interface{}) bool - - // CodecMissingFields returns the set of fields which are not struct fields. - // - // Note that the returned map may be mutated by the caller. - CodecMissingFields() map[string]interface{} -} - -// MapBySlice is a tag interface that denotes the slice or array value should encode as a map -// in the stream, and can be decoded from a map in the stream. -// -// The slice or array must contain a sequence of key-value pairs. -// The length of the slice or array must be even (fully divisible by 2). -// -// This affords storing a map in a specific sequence in the stream. -// -// Example usage: -// -// type T1 []string // or []int or []Point or any other "slice" type -// func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map -// type T2 struct { KeyValues T1 } -// -// var kvs = []string{"one", "1", "two", "2", "three", "3"} -// var v2 = T2{ KeyValues: T1(kvs) } -// // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} } -// -// The support of MapBySlice affords the following: -// - A slice or array type which implements MapBySlice will be encoded as a map -// - A slice can be decoded from a map in the stream -type MapBySlice interface { - MapBySlice() -} - -// basicHandleRuntimeState holds onto all BasicHandle runtime and cached config information. -// -// Storing this outside BasicHandle allows us create shallow copies of a Handle, -// which can be used e.g. when we need to modify config fields temporarily. -// Shallow copies are used within tests, so we can modify some config fields for a test -// temporarily when running tests in parallel, without running the risk that a test executing -// in parallel with other tests does not see a transient modified values not meant for it. -type basicHandleRuntimeState struct { - // these are used during runtime. - // At init time, they should have nothing in them. - rtidFns atomicRtidFnSlice - rtidFnsNoExt atomicRtidFnSlice - - // Note: basicHandleRuntimeState is not comparable, due to these slices here (extHandle, intf2impls). - // If *[]T is used instead, this becomes comparable, at the cost of extra indirection. - // Thses slices are used all the time, so keep as slices (not pointers). - - extHandle - - intf2impls - - mu sync.Mutex - - jsonHandle bool - binaryHandle bool - - // timeBuiltin is initialized from TimeNotBuiltin, and used internally. - // once initialized, it cannot be changed, as the function for encoding/decoding time.Time - // will have been cached and the TimeNotBuiltin value will not be consulted thereafter. - timeBuiltin bool - _ bool // padding -} - -// BasicHandle encapsulates the common options and extension functions. -// -// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED. -type BasicHandle struct { - // BasicHandle is always a part of a different type. - // It doesn't have to fit into it own cache lines. - - // TypeInfos is used to get the type info for any type. - // - // If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json - TypeInfos *TypeInfos - - *basicHandleRuntimeState - - // ---- cache line - - DecodeOptions - - // ---- cache line - - EncodeOptions - - RPCOptions - - // TimeNotBuiltin configures whether time.Time should be treated as a builtin type. - // - // All Handlers should know how to encode/decode time.Time as part of the core - // format specification, or as a standard extension defined by the format. - // - // However, users can elect to handle time.Time as a custom extension, or via the - // standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface. - // To elect this behavior, users can set TimeNotBuiltin=true. - // - // Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior - // (for Cbor and Msgpack), where time.Time was not a builtin supported type. - // - // Note: DO NOT CHANGE AFTER FIRST USE. - // - // Once a Handle has been initialized (used), do not modify this option. It will be ignored. - TimeNotBuiltin bool - - // ExplicitRelease is ignored and has no effect. - // - // Deprecated: Pools are only used for long-lived objects shared across goroutines. - // It is maintained for backward compatibility. - ExplicitRelease bool - - // ---- cache line - inited uint32 // holds if inited, and also handle flags (binary encoding, json handler, etc) - -} - -// initHandle does a one-time initialization of the handle. -// After this is run, do not modify the Handle, as some modifications are ignored -// e.g. extensions, registered interfaces, TimeNotBuiltIn, etc -func initHandle(hh Handle) { - x := hh.getBasicHandle() - - // MARKER: We need to simulate once.Do, to ensure no data race within the block. - // Consequently, below would not work. - // - // if atomic.CompareAndSwapUint32(&x.inited, 0, 1) { - // x.be = hh.isBinary() - // x.js = hh.isJson - // x.n = hh.Name()[0] - // } - - // simulate once.Do using our own stored flag and mutex as a CompareAndSwap - // is not sufficient, since a race condition can occur within init(Handle) function. - // init is made noinline, so that this function can be inlined by its caller. - if atomic.LoadUint32(&x.inited) == 0 { - x.initHandle(hh) - } -} - -func (x *BasicHandle) basicInit() { - x.rtidFns.store(nil) - x.rtidFnsNoExt.store(nil) - x.timeBuiltin = !x.TimeNotBuiltin -} - -func (x *BasicHandle) init() {} - -func (x *BasicHandle) isInited() bool { - return atomic.LoadUint32(&x.inited) != 0 -} - -// clearInited: DANGEROUS - only use in testing, etc -func (x *BasicHandle) clearInited() { - atomic.StoreUint32(&x.inited, 0) -} - -// TimeBuiltin returns whether time.Time OOTB support is used, -// based on the initial configuration of TimeNotBuiltin -func (x *basicHandleRuntimeState) TimeBuiltin() bool { - return x.timeBuiltin -} - -func (x *basicHandleRuntimeState) isJs() bool { - return x.jsonHandle -} - -func (x *basicHandleRuntimeState) isBe() bool { - return x.binaryHandle -} - -func (x *basicHandleRuntimeState) setExt(rt reflect.Type, tag uint64, ext Ext) (err error) { - rk := rt.Kind() - for rk == reflect.Ptr { - rt = rt.Elem() - rk = rt.Kind() - } - - if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr { - return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt) - } - - rtid := rt2id(rt) - // handle all natively supported type appropriately, so they cannot have an extension. - // However, we do not return an error for these, as we do not document that. - // Instead, we silently treat as a no-op, and return. - switch rtid { - case rawTypId, rawExtTypId: - return - case timeTypId: - if x.timeBuiltin { - return - } - } - - for i := range x.extHandle { - v := &x.extHandle[i] - if v.rtid == rtid { - v.tag, v.ext = tag, ext - return - } - } - rtidptr := rt2id(reflect.PtrTo(rt)) - x.extHandle = append(x.extHandle, extTypeTagFn{rtid, rtidptr, rt, tag, ext}) - return -} - -// initHandle should be called only from codec.initHandle global function. -// make it uninlineable, as it is called at most once for each handle. -// -//go:noinline -func (x *BasicHandle) initHandle(hh Handle) { - handleInitMu.Lock() - defer handleInitMu.Unlock() // use defer, as halt may panic below - if x.inited == 0 { - if x.basicHandleRuntimeState == nil { - x.basicHandleRuntimeState = new(basicHandleRuntimeState) - } - x.jsonHandle = hh.isJson() - x.binaryHandle = hh.isBinary() - // ensure MapType and SliceType are of correct type - if x.MapType != nil && x.MapType.Kind() != reflect.Map { - halt.onerror(errMapTypeNotMapKind) - } - if x.SliceType != nil && x.SliceType.Kind() != reflect.Slice { - halt.onerror(errSliceTypeNotSliceKind) - } - x.basicInit() - hh.init() - atomic.StoreUint32(&x.inited, 1) - } -} - -func (x *BasicHandle) getBasicHandle() *BasicHandle { - return x -} - -func (x *BasicHandle) typeInfos() *TypeInfos { - if x.TypeInfos != nil { - return x.TypeInfos - } - return defTypeInfos -} - -func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) { - return x.typeInfos().get(rtid, rt) -} - -func findRtidFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) { - // binary search. adapted from sort/search.go. - // Note: we use goto (instead of for loop) so this can be inlined. - - // h, i, j := 0, 0, len(s) - var h uint // var h, i uint - var j = uint(len(s)) -LOOP: - if i < j { - h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2 - if s[h].rtid < rtid { - i = h + 1 - } else { - j = h - } - goto LOOP - } - if i < uint(len(s)) && s[i].rtid == rtid { - fn = s[i].fn - } - return -} - -func (x *BasicHandle) fn(rt reflect.Type) (fn *codecFn) { - return x.fnVia(rt, x.typeInfos(), &x.rtidFns, x.CheckCircularRef, true) -} - -func (x *BasicHandle) fnNoExt(rt reflect.Type) (fn *codecFn) { - return x.fnVia(rt, x.typeInfos(), &x.rtidFnsNoExt, x.CheckCircularRef, false) -} - -func (x *basicHandleRuntimeState) fnVia(rt reflect.Type, tinfos *TypeInfos, fs *atomicRtidFnSlice, checkCircularRef, checkExt bool) (fn *codecFn) { - rtid := rt2id(rt) - sp := fs.load() - if sp != nil { - if _, fn = findRtidFn(sp, rtid); fn != nil { - return - } - } - - fn = x.fnLoad(rt, rtid, tinfos, checkCircularRef, checkExt) - x.mu.Lock() - sp = fs.load() - // since this is an atomic load/store, we MUST use a different array each time, - // else we have a data race when a store is happening simultaneously with a findRtidFn call. - if sp == nil { - sp = []codecRtidFn{{rtid, fn}} - fs.store(sp) - } else { - idx, fn2 := findRtidFn(sp, rtid) - if fn2 == nil { - sp2 := make([]codecRtidFn, len(sp)+1) - copy(sp2[idx+1:], sp[idx:]) - copy(sp2, sp[:idx]) - sp2[idx] = codecRtidFn{rtid, fn} - fs.store(sp2) - } - } - x.mu.Unlock() - return -} - -func fnloadFastpathUnderlying(ti *typeInfo) (f *fastpathE, u reflect.Type) { - var rtid uintptr - var idx int - rtid = rt2id(ti.fastpathUnderlying) - idx = fastpathAvIndex(rtid) - if idx == -1 { - return - } - f = &fastpathAv[idx] - if uint8(reflect.Array) == ti.kind { - u = reflectArrayOf(ti.rt.Len(), ti.elem) - } else { - u = f.rt - } - return -} - -func (x *basicHandleRuntimeState) fnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos, checkCircularRef, checkExt bool) (fn *codecFn) { - fn = new(codecFn) - fi := &(fn.i) - ti := tinfos.get(rtid, rt) - fi.ti = ti - rk := reflect.Kind(ti.kind) - - // anything can be an extension except the built-in ones: time, raw and rawext. - // ensure we check for these types, then if extension, before checking if - // it implementes one of the pre-declared interfaces. - - fi.addrDf = true - // fi.addrEf = true - - if rtid == timeTypId && x.timeBuiltin { - fn.fe = (*Encoder).kTime - fn.fd = (*Decoder).kTime - } else if rtid == rawTypId { - fn.fe = (*Encoder).raw - fn.fd = (*Decoder).raw - } else if rtid == rawExtTypId { - fn.fe = (*Encoder).rawExt - fn.fd = (*Decoder).rawExt - fi.addrD = true - fi.addrE = true - } else if xfFn := x.getExt(rtid, checkExt); xfFn != nil { - fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext - fn.fe = (*Encoder).ext - fn.fd = (*Decoder).ext - fi.addrD = true - if rk == reflect.Struct || rk == reflect.Array { - fi.addrE = true - } - } else if (ti.flagSelfer || ti.flagSelferPtr) && - !(checkCircularRef && ti.flagSelferViaCodecgen && ti.kind == byte(reflect.Struct)) { - // do not use Selfer generated by codecgen if it is a struct and CheckCircularRef=true - fn.fe = (*Encoder).selferMarshal - fn.fd = (*Decoder).selferUnmarshal - fi.addrD = ti.flagSelferPtr - fi.addrE = ti.flagSelferPtr - } else if supportMarshalInterfaces && x.isBe() && - (ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) && - (ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) { - fn.fe = (*Encoder).binaryMarshal - fn.fd = (*Decoder).binaryUnmarshal - fi.addrD = ti.flagBinaryUnmarshalerPtr - fi.addrE = ti.flagBinaryMarshalerPtr - } else if supportMarshalInterfaces && !x.isBe() && x.isJs() && - (ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) && - (ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) { - //If JSON, we should check JSONMarshal before textMarshal - fn.fe = (*Encoder).jsonMarshal - fn.fd = (*Decoder).jsonUnmarshal - fi.addrD = ti.flagJsonUnmarshalerPtr - fi.addrE = ti.flagJsonMarshalerPtr - } else if supportMarshalInterfaces && !x.isBe() && - (ti.flagTextMarshaler || ti.flagTextMarshalerPtr) && - (ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) { - fn.fe = (*Encoder).textMarshal - fn.fd = (*Decoder).textUnmarshal - fi.addrD = ti.flagTextUnmarshalerPtr - fi.addrE = ti.flagTextMarshalerPtr - } else { - if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) { - // by default (without using unsafe), - // if an array is not addressable, converting from an array to a slice - // requires an allocation (see helper_not_unsafe.go: func rvGetSlice4Array). - // - // (Non-addressable arrays mostly occur as keys/values from a map). - // - // However, fastpath functions are mostly for slices of numbers or strings, - // which are small by definition and thus allocation should be fast/cheap in time. - // - // Consequently, the value of doing this quick allocation to elide the overhead cost of - // non-optimized (not-unsafe) reflection is a fair price. - var rtid2 uintptr - if !ti.flagHasPkgPath { // un-named type (slice or mpa or array) - rtid2 = rtid - if rk == reflect.Array { - rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem) - } - if idx := fastpathAvIndex(rtid2); idx != -1 { - fn.fe = fastpathAv[idx].encfn - fn.fd = fastpathAv[idx].decfn - fi.addrD = true - fi.addrDf = false - if rk == reflect.Array { - fi.addrD = false // decode directly into array value (slice made from it) - } - } - } else { // named type (with underlying type of map or slice or array) - // try to use mapping for underlying type - xfe, xrt := fnloadFastpathUnderlying(ti) - if xfe != nil { - xfnf := xfe.encfn - xfnf2 := xfe.decfn - if rk == reflect.Array { - fi.addrD = false // decode directly into array value (slice made from it) - fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) { - xfnf2(d, xf, rvConvert(xrv, xrt)) - } - } else { - fi.addrD = true - fi.addrDf = false // meaning it can be an address(ptr) or a value - xptr2rt := reflect.PtrTo(xrt) - fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) { - if xrv.Kind() == reflect.Ptr { - xfnf2(d, xf, rvConvert(xrv, xptr2rt)) - } else { - xfnf2(d, xf, rvConvert(xrv, xrt)) - } - } - } - fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) { - xfnf(e, xf, rvConvert(xrv, xrt)) - } - } - } - } - if fn.fe == nil && fn.fd == nil { - switch rk { - case reflect.Bool: - fn.fe = (*Encoder).kBool - fn.fd = (*Decoder).kBool - case reflect.String: - // Do not use different functions based on StringToRaw option, as that will statically - // set the function for a string type, and if the Handle is modified thereafter, - // behaviour is non-deterministic - // i.e. DO NOT DO: - // if x.StringToRaw { - // fn.fe = (*Encoder).kStringToRaw - // } else { - // fn.fe = (*Encoder).kStringEnc - // } - - fn.fe = (*Encoder).kString - fn.fd = (*Decoder).kString - case reflect.Int: - fn.fd = (*Decoder).kInt - fn.fe = (*Encoder).kInt - case reflect.Int8: - fn.fe = (*Encoder).kInt8 - fn.fd = (*Decoder).kInt8 - case reflect.Int16: - fn.fe = (*Encoder).kInt16 - fn.fd = (*Decoder).kInt16 - case reflect.Int32: - fn.fe = (*Encoder).kInt32 - fn.fd = (*Decoder).kInt32 - case reflect.Int64: - fn.fe = (*Encoder).kInt64 - fn.fd = (*Decoder).kInt64 - case reflect.Uint: - fn.fd = (*Decoder).kUint - fn.fe = (*Encoder).kUint - case reflect.Uint8: - fn.fe = (*Encoder).kUint8 - fn.fd = (*Decoder).kUint8 - case reflect.Uint16: - fn.fe = (*Encoder).kUint16 - fn.fd = (*Decoder).kUint16 - case reflect.Uint32: - fn.fe = (*Encoder).kUint32 - fn.fd = (*Decoder).kUint32 - case reflect.Uint64: - fn.fe = (*Encoder).kUint64 - fn.fd = (*Decoder).kUint64 - case reflect.Uintptr: - fn.fe = (*Encoder).kUintptr - fn.fd = (*Decoder).kUintptr - case reflect.Float32: - fn.fe = (*Encoder).kFloat32 - fn.fd = (*Decoder).kFloat32 - case reflect.Float64: - fn.fe = (*Encoder).kFloat64 - fn.fd = (*Decoder).kFloat64 - case reflect.Complex64: - fn.fe = (*Encoder).kComplex64 - fn.fd = (*Decoder).kComplex64 - case reflect.Complex128: - fn.fe = (*Encoder).kComplex128 - fn.fd = (*Decoder).kComplex128 - case reflect.Chan: - fn.fe = (*Encoder).kChan - fn.fd = (*Decoder).kChan - case reflect.Slice: - fn.fe = (*Encoder).kSlice - fn.fd = (*Decoder).kSlice - case reflect.Array: - fi.addrD = false // decode directly into array value (slice made from it) - fn.fe = (*Encoder).kArray - fn.fd = (*Decoder).kArray - case reflect.Struct: - if ti.anyOmitEmpty || - ti.flagMissingFielder || - ti.flagMissingFielderPtr { - fn.fe = (*Encoder).kStruct - } else { - fn.fe = (*Encoder).kStructNoOmitempty - } - fn.fd = (*Decoder).kStruct - case reflect.Map: - fn.fe = (*Encoder).kMap - fn.fd = (*Decoder).kMap - case reflect.Interface: - // encode: reflect.Interface are handled already by preEncodeValue - fn.fd = (*Decoder).kInterface - fn.fe = (*Encoder).kErr - default: - // reflect.Ptr and reflect.Interface are handled already by preEncodeValue - fn.fe = (*Encoder).kErr - fn.fd = (*Decoder).kErr - } - } - } - return -} - -// Handle defines a specific encoding format. It also stores any runtime state -// used during an Encoding or Decoding session e.g. stored state about Types, etc. -// -// Once a handle is configured, it can be shared across multiple Encoders and Decoders. -// -// Note that a Handle is NOT safe for concurrent modification. -// -// A Handle also should not be modified after it is configured and has -// been used at least once. This is because stored state may be out of sync with the -// new configuration, and a data race can occur when multiple goroutines access it. -// i.e. multiple Encoders or Decoders in different goroutines. -// -// Consequently, the typical usage model is that a Handle is pre-configured -// before first time use, and not modified while in use. -// Such a pre-configured Handle is safe for concurrent access. -type Handle interface { - Name() string - getBasicHandle() *BasicHandle - newEncDriver() encDriver - newDecDriver() decDriver - isBinary() bool - isJson() bool // json is special for now, so track it - // desc describes the current byte descriptor, or returns "unknown[XXX]" if not understood. - desc(bd byte) string - // init initializes the handle based on handle-specific info (beyond what is in BasicHandle) - init() -} - -// Raw represents raw formatted bytes. -// We "blindly" store it during encode and retrieve the raw bytes during decode. -// Note: it is dangerous during encode, so we may gate the behaviour -// behind an Encode flag which must be explicitly set. -type Raw []byte - -// RawExt represents raw unprocessed extension data. -// Some codecs will decode extension data as a *RawExt -// if there is no registered extension for the tag. -// -// Only one of Data or Value is nil. -// If Data is nil, then the content of the RawExt is in the Value. -type RawExt struct { - Tag uint64 - // Data is the []byte which represents the raw ext. If nil, ext is exposed in Value. - // Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types - Data []byte - // Value represents the extension, if Data is nil. - // Value is used by codecs (e.g. cbor, json) which leverage the format to do - // custom serialization of the types. - Value interface{} -} - -func (re *RawExt) setData(xbs []byte, zerocopy bool) { - if zerocopy { - re.Data = xbs - } else { - re.Data = append(re.Data[:0], xbs...) - } -} - -// BytesExt handles custom (de)serialization of types to/from []byte. -// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types. -type BytesExt interface { - // WriteExt converts a value to a []byte. - // - // Note: v is a pointer iff the registered extension type is a struct or array kind. - WriteExt(v interface{}) []byte - - // ReadExt updates a value from a []byte. - // - // Note: dst is always a pointer kind to the registered extension type. - ReadExt(dst interface{}, src []byte) -} - -// InterfaceExt handles custom (de)serialization of types to/from another interface{} value. -// The Encoder or Decoder will then handle the further (de)serialization of that known type. -// -// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types. -type InterfaceExt interface { - // ConvertExt converts a value into a simpler interface for easy encoding - // e.g. convert time.Time to int64. - // - // Note: v is a pointer iff the registered extension type is a struct or array kind. - ConvertExt(v interface{}) interface{} - - // UpdateExt updates a value from a simpler interface for easy decoding - // e.g. convert int64 to time.Time. - // - // Note: dst is always a pointer kind to the registered extension type. - UpdateExt(dst interface{}, src interface{}) -} - -// Ext handles custom (de)serialization of custom types / extensions. -type Ext interface { - BytesExt - InterfaceExt -} - -// addExtWrapper is a wrapper implementation to support former AddExt exported method. -type addExtWrapper struct { - encFn func(reflect.Value) ([]byte, error) - decFn func(reflect.Value, []byte) error -} - -func (x addExtWrapper) WriteExt(v interface{}) []byte { - bs, err := x.encFn(reflect.ValueOf(v)) - halt.onerror(err) - return bs -} - -func (x addExtWrapper) ReadExt(v interface{}, bs []byte) { - halt.onerror(x.decFn(reflect.ValueOf(v), bs)) -} - -func (x addExtWrapper) ConvertExt(v interface{}) interface{} { - return x.WriteExt(v) -} - -func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) { - x.ReadExt(dest, v.([]byte)) -} - -type bytesExtFailer struct{} - -func (bytesExtFailer) WriteExt(v interface{}) []byte { - halt.onerror(errExtFnWriteExtUnsupported) - return nil -} -func (bytesExtFailer) ReadExt(v interface{}, bs []byte) { - halt.onerror(errExtFnReadExtUnsupported) -} - -type interfaceExtFailer struct{} - -func (interfaceExtFailer) ConvertExt(v interface{}) interface{} { - halt.onerror(errExtFnConvertExtUnsupported) - return nil -} -func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) { - halt.onerror(errExtFnUpdateExtUnsupported) -} - -type bytesExtWrapper struct { - interfaceExtFailer - BytesExt -} - -type interfaceExtWrapper struct { - bytesExtFailer - InterfaceExt -} - -type extFailWrapper struct { - bytesExtFailer - interfaceExtFailer -} - -type binaryEncodingType struct{} - -func (binaryEncodingType) isBinary() bool { return true } -func (binaryEncodingType) isJson() bool { return false } - -type textEncodingType struct{} - -func (textEncodingType) isBinary() bool { return false } -func (textEncodingType) isJson() bool { return false } - -type notJsonType struct{} - -func (notJsonType) isJson() bool { return false } - -// noBuiltInTypes is embedded into many types which do not support builtins -// e.g. msgpack, simple, cbor. - -type noBuiltInTypes struct{} - -func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {} -func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {} - -// bigenHelper handles ByteOrder operations directly using -// arrays of bytes (not slice of bytes). -// -// Since byteorder operations are very common for encoding and decoding -// numbers, lengths, etc - it is imperative that this operation is as -// fast as possible. Removing indirection (pointer chasing) to look -// at up to 8 bytes helps a lot here. -// -// For times where it is expedient to use a slice, delegate to the -// bigenstd (equal to the binary.BigEndian value). -// -// retrofitted from stdlib: encoding/binary/BigEndian (ByteOrder) -type bigenHelper struct{} - -func (z bigenHelper) PutUint16(v uint16) (b [2]byte) { - return [...]byte{ - byte(v >> 8), - byte(v), - } -} - -func (z bigenHelper) PutUint32(v uint32) (b [4]byte) { - return [...]byte{ - byte(v >> 24), - byte(v >> 16), - byte(v >> 8), - byte(v), - } -} - -func (z bigenHelper) PutUint64(v uint64) (b [8]byte) { - return [...]byte{ - byte(v >> 56), - byte(v >> 48), - byte(v >> 40), - byte(v >> 32), - byte(v >> 24), - byte(v >> 16), - byte(v >> 8), - byte(v), - } -} - -func (z bigenHelper) Uint16(b [2]byte) (v uint16) { - return uint16(b[1]) | - uint16(b[0])<<8 -} - -func (z bigenHelper) Uint32(b [4]byte) (v uint32) { - return uint32(b[3]) | - uint32(b[2])<<8 | - uint32(b[1])<<16 | - uint32(b[0])<<24 -} - -func (z bigenHelper) Uint64(b [8]byte) (v uint64) { - return uint64(b[7]) | - uint64(b[6])<<8 | - uint64(b[5])<<16 | - uint64(b[4])<<24 | - uint64(b[3])<<32 | - uint64(b[2])<<40 | - uint64(b[1])<<48 | - uint64(b[0])<<56 -} - -func (z bigenHelper) writeUint16(w *encWr, v uint16) { - x := z.PutUint16(v) - w.writen2(x[0], x[1]) -} - -func (z bigenHelper) writeUint32(w *encWr, v uint32) { - // w.writeb((z.PutUint32(v))[:]) - // x := z.PutUint32(v) - // w.writeb(x[:]) - // w.writen4(x[0], x[1], x[2], x[3]) - w.writen4(z.PutUint32(v)) -} - -func (z bigenHelper) writeUint64(w *encWr, v uint64) { - w.writen8(z.PutUint64(v)) -} - -type extTypeTagFn struct { - rtid uintptr - rtidptr uintptr - rt reflect.Type - tag uint64 - ext Ext -} - -type extHandle []extTypeTagFn - -// AddExt registes an encode and decode function for a reflect.Type. -// To deregister an Ext, call AddExt with nil encfn and/or nil decfn. -// -// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead. -func (x *BasicHandle) AddExt(rt reflect.Type, tag byte, - encfn func(reflect.Value) ([]byte, error), - decfn func(reflect.Value, []byte) error) (err error) { - if encfn == nil || decfn == nil { - return x.SetExt(rt, uint64(tag), nil) - } - return x.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn}) -} - -// SetExt will set the extension for a tag and reflect.Type. -// Note that the type must be a named type, and specifically not a pointer or Interface. -// An error is returned if that is not honored. -// To Deregister an ext, call SetExt with nil Ext. -// -// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead. -func (x *BasicHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) { - if x.isInited() { - return errHandleInited - } - if x.basicHandleRuntimeState == nil { - x.basicHandleRuntimeState = new(basicHandleRuntimeState) - } - return x.basicHandleRuntimeState.setExt(rt, tag, ext) -} - -func (o extHandle) getExtForI(x interface{}) (v *extTypeTagFn) { - if len(o) > 0 { - v = o.getExt(i2rtid(x), true) - } - return -} - -func (o extHandle) getExt(rtid uintptr, check bool) (v *extTypeTagFn) { - if !check { - return - } - for i := range o { - v = &o[i] - if v.rtid == rtid || v.rtidptr == rtid { - return - } - } - return nil -} - -func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) { - for i := range o { - v = &o[i] - if v.tag == tag { - return - } - } - return nil -} - -type intf2impl struct { - rtid uintptr // for intf - impl reflect.Type -} - -type intf2impls []intf2impl - -// Intf2Impl maps an interface to an implementing type. -// This allows us support infering the concrete type -// and populating it when passed an interface. -// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc. -// -// Passing a nil impl will clear the mapping. -func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) { - if impl != nil && !impl.Implements(intf) { - return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf) - } - rtid := rt2id(intf) - o2 := *o - for i := range o2 { - v := &o2[i] - if v.rtid == rtid { - v.impl = impl - return - } - } - *o = append(o2, intf2impl{rtid, impl}) - return -} - -func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) { - for i := range o { - v := &o[i] - if v.rtid == rtid { - if v.impl == nil { - return - } - vkind := v.impl.Kind() - if vkind == reflect.Ptr { - return reflect.New(v.impl.Elem()) - } - return rvZeroAddrK(v.impl, vkind) - } - } - return -} - -// structFieldinfopathNode is a node in a tree, which allows us easily -// walk the anonymous path. -// -// In the typical case, the node is not embedded/anonymous, and thus the parent -// will be nil and this information becomes a value (not needing any indirection). -type structFieldInfoPathNode struct { - parent *structFieldInfoPathNode - - offset uint16 - index uint16 - kind uint8 - numderef uint8 - - // encNameAsciiAlphaNum and omitEmpty should be in structFieldInfo, - // but are kept here for tighter packaging. - - encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers - omitEmpty bool - - typ reflect.Type -} - -// depth returns number of valid nodes in the hierachy -func (path *structFieldInfoPathNode) depth() (d int) { -TOP: - if path != nil { - d++ - path = path.parent - goto TOP - } - return -} - -// field returns the field of the struct. -func (path *structFieldInfoPathNode) field(v reflect.Value) (rv2 reflect.Value) { - if parent := path.parent; parent != nil { - v = parent.field(v) - for j, k := uint8(0), parent.numderef; j < k; j++ { - if rvIsNil(v) { - return - } - v = v.Elem() - } - } - return path.rvField(v) -} - -// fieldAlloc returns the field of the struct. -// It allocates if a nil value was seen while searching. -func (path *structFieldInfoPathNode) fieldAlloc(v reflect.Value) (rv2 reflect.Value) { - if parent := path.parent; parent != nil { - v = parent.fieldAlloc(v) - for j, k := uint8(0), parent.numderef; j < k; j++ { - if rvIsNil(v) { - rvSetDirect(v, reflect.New(v.Type().Elem())) - } - v = v.Elem() - } - } - return path.rvField(v) -} - -type structFieldInfo struct { - encName string // encode name - - // encNameHash uintptr - - // fieldName string // currently unused - - // encNameAsciiAlphaNum and omitEmpty should be here, - // but are stored in structFieldInfoPathNode for tighter packaging. - - path structFieldInfoPathNode -} - -func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) { - keytype = valueTypeString // default - if stag == "" { - return - } - ss := strings.Split(stag, ",") - if len(ss) < 2 { - return - } - for _, s := range ss[1:] { - switch s { - case "omitempty": - omitEmpty = true - case "toarray": - toArray = true - case "int": - keytype = valueTypeInt - case "uint": - keytype = valueTypeUint - case "float": - keytype = valueTypeFloat - // case "bool": - // keytype = valueTypeBool - case "string": - keytype = valueTypeString - } - } - return -} - -func (si *structFieldInfo) parseTag(stag string) { - if stag == "" { - return - } - for i, s := range strings.Split(stag, ",") { - if i == 0 { - if s != "" { - si.encName = s - } - } else { - switch s { - case "omitempty": - si.path.omitEmpty = true - } - } - } -} - -type sfiSortedByEncName []*structFieldInfo - -func (p sfiSortedByEncName) Len() int { return len(p) } -func (p sfiSortedByEncName) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] } -func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName } - -// typeInfo4Container holds information that is only available for -// containers like map, array, chan, slice. -type typeInfo4Container struct { - elem reflect.Type - // key is: - // - if map kind: map key - // - if array kind: sliceOf(elem) - // - if chan kind: sliceof(elem) - key reflect.Type - - // fastpathUnderlying is underlying type of a named slice/map/array, as defined by go spec, - // that is used by fastpath where we defined fastpath functions for the underlying type. - // - // for a map, it's a map; for a slice or array, it's a slice; else its nil. - fastpathUnderlying reflect.Type - - tikey *typeInfo - tielem *typeInfo -} - -// typeInfo keeps static (non-changing readonly)information -// about each (non-ptr) type referenced in the encode/decode sequence. -// -// During an encode/decode sequence, we work as below: -// - If base is a built in type, en/decode base value -// - If base is registered as an extension, en/decode base value -// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method -// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method -// - Else decode appropriately based on the reflect.Kind -type typeInfo struct { - rt reflect.Type - ptr reflect.Type - - // pkgpath string - - rtid uintptr - - numMeth uint16 // number of methods - kind uint8 - chandir uint8 - - anyOmitEmpty bool // true if a struct, and any of the fields are tagged "omitempty" - toArray bool // whether this (struct) type should be encoded as an array - keyType valueType // if struct, how is the field name stored in a stream? default is string - mbs bool // base type (T or *T) is a MapBySlice - - sfi4Name map[string]*structFieldInfo // map. used for finding sfi given a name - - *typeInfo4Container - - // ---- cpu cache line boundary? - - size, keysize, elemsize uint32 - - keykind, elemkind uint8 - - flagHasPkgPath bool // Type.PackagePath != "" - flagComparable bool - flagCanTransient bool - - flagMarshalInterface bool // does this have custom (un)marshal implementation? - flagSelferViaCodecgen bool - - // custom implementation flags - flagIsZeroer bool - flagIsZeroerPtr bool - - flagIsCodecEmptyer bool - flagIsCodecEmptyerPtr bool - - flagBinaryMarshaler bool - flagBinaryMarshalerPtr bool - - flagBinaryUnmarshaler bool - flagBinaryUnmarshalerPtr bool - - flagTextMarshaler bool - flagTextMarshalerPtr bool - - flagTextUnmarshaler bool - flagTextUnmarshalerPtr bool - - flagJsonMarshaler bool - flagJsonMarshalerPtr bool - - flagJsonUnmarshaler bool - flagJsonUnmarshalerPtr bool - - flagSelfer bool - flagSelferPtr bool - - flagMissingFielder bool - flagMissingFielderPtr bool - - infoFieldOmitempty bool - - sfi structFieldInfos -} - -func (ti *typeInfo) siForEncName(name []byte) (si *structFieldInfo) { - return ti.sfi4Name[string(name)] -} - -func (ti *typeInfo) resolve(x []structFieldInfo, ss map[string]uint16) (n int) { - n = len(x) - - for i := range x { - ui := uint16(i) - xn := x[i].encName - j, ok := ss[xn] - if ok { - i2clear := ui // index to be cleared - if x[i].path.depth() < x[j].path.depth() { // this one is shallower - ss[xn] = ui - i2clear = j - } - if x[i2clear].encName != "" { - x[i2clear].encName = "" - n-- - } - } else { - ss[xn] = ui - } - } - - return -} - -func (ti *typeInfo) init(x []structFieldInfo, n int) { - var anyOmitEmpty bool - - // remove all the nils (non-ready) - m := make(map[string]*structFieldInfo, n) - w := make([]structFieldInfo, n) - y := make([]*structFieldInfo, n+n) - z := y[n:] - y = y[:n] - n = 0 - for i := range x { - if x[i].encName == "" { - continue - } - if !anyOmitEmpty && x[i].path.omitEmpty { - anyOmitEmpty = true - } - w[n] = x[i] - y[n] = &w[n] - m[x[i].encName] = &w[n] - n++ - } - if n != len(y) { - halt.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d", ti.rt, len(y), len(x), n) - } - - copy(z, y) - sort.Sort(sfiSortedByEncName(z)) - - ti.anyOmitEmpty = anyOmitEmpty - ti.sfi.load(y, z) - ti.sfi4Name = m -} - -// Handling flagCanTransient -// -// We support transient optimization if the kind of the type is -// a number, bool, string, or slice (of number/bool). -// In addition, we also support if the kind is struct or array, -// and the type does not contain any pointers recursively). -// -// Noteworthy that all reference types (string, slice, func, map, ptr, interface, etc) have pointers. -// -// If using transient for a type with a pointer, there is the potential for data corruption -// when GC tries to follow a "transient" pointer which may become a non-pointer soon after. -// - -func transientBitsetFlags() *bitset32 { - if transientValueHasStringSlice { - return &numBoolStrSliceBitset - } - return &numBoolBitset -} - -func isCanTransient(t reflect.Type, k reflect.Kind) (v bool) { - var bs = transientBitsetFlags() - if bs.isset(byte(k)) { - v = true - } else if k == reflect.Slice { - elem := t.Elem() - v = numBoolBitset.isset(byte(elem.Kind())) - } else if k == reflect.Array { - elem := t.Elem() - v = isCanTransient(elem, elem.Kind()) - } else if k == reflect.Struct { - v = true - for j, jlen := 0, t.NumField(); j < jlen; j++ { - f := t.Field(j) - if !isCanTransient(f.Type, f.Type.Kind()) { - v = false - return - } - } - } else { - v = false - } - return -} - -func (ti *typeInfo) doSetFlagCanTransient() { - if transientSizeMax > 0 { - ti.flagCanTransient = ti.size <= transientSizeMax - } else { - ti.flagCanTransient = true - } - if ti.flagCanTransient { - if !transientBitsetFlags().isset(ti.kind) { - ti.flagCanTransient = isCanTransient(ti.rt, reflect.Kind(ti.kind)) - } - } -} - -type rtid2ti struct { - rtid uintptr - ti *typeInfo -} - -// TypeInfos caches typeInfo for each type on first inspection. -// -// It is configured with a set of tag keys, which are used to get -// configuration for the type. -type TypeInfos struct { - infos atomicTypeInfoSlice - mu sync.Mutex - _ uint64 // padding (cache-aligned) - tags []string - _ uint64 // padding (cache-aligned) -} - -// NewTypeInfos creates a TypeInfos given a set of struct tags keys. -// -// This allows users customize the struct tag keys which contain configuration -// of their types. -func NewTypeInfos(tags []string) *TypeInfos { - return &TypeInfos{tags: tags} -} - -func (x *TypeInfos) structTag(t reflect.StructTag) (s string) { - // check for tags: codec, json, in that order. - // this allows seamless support for many configured structs. - for _, x := range x.tags { - s = t.Get(x) - if s != "" { - return s - } - } - return -} - -func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) { - // binary search. adapted from sort/search.go. - // Note: we use goto (instead of for loop) so this can be inlined. - - var h uint - var j = uint(len(s)) -LOOP: - if i < j { - h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2 - if s[h].rtid < rtid { - i = h + 1 - } else { - j = h - } - goto LOOP - } - if i < uint(len(s)) && s[i].rtid == rtid { - ti = s[i].ti - } - return -} - -func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) { - if pti = x.find(rtid); pti == nil { - pti = x.load(rt) - } - return -} - -func (x *TypeInfos) find(rtid uintptr) (pti *typeInfo) { - sp := x.infos.load() - if sp != nil { - _, pti = findTypeInfo(sp, rtid) - } - return -} - -func (x *TypeInfos) load(rt reflect.Type) (pti *typeInfo) { - rk := rt.Kind() - - if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) { - halt.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt) - } - - rtid := rt2id(rt) - - // do not hold lock while computing this. - // it may lead to duplication, but that's ok. - ti := typeInfo{ - rt: rt, - ptr: reflect.PtrTo(rt), - rtid: rtid, - kind: uint8(rk), - size: uint32(rt.Size()), - numMeth: uint16(rt.NumMethod()), - keyType: valueTypeString, // default it - so it's never 0 - - // pkgpath: rt.PkgPath(), - flagHasPkgPath: rt.PkgPath() != "", - } - - // bset sets custom implementation flags - bset := func(when bool, b *bool) { - if when { - *b = true - } - } - - var b1, b2 bool - - b1, b2 = implIntf(rt, binaryMarshalerTyp) - bset(b1, &ti.flagBinaryMarshaler) - bset(b2, &ti.flagBinaryMarshalerPtr) - b1, b2 = implIntf(rt, binaryUnmarshalerTyp) - bset(b1, &ti.flagBinaryUnmarshaler) - bset(b2, &ti.flagBinaryUnmarshalerPtr) - b1, b2 = implIntf(rt, textMarshalerTyp) - bset(b1, &ti.flagTextMarshaler) - bset(b2, &ti.flagTextMarshalerPtr) - b1, b2 = implIntf(rt, textUnmarshalerTyp) - bset(b1, &ti.flagTextUnmarshaler) - bset(b2, &ti.flagTextUnmarshalerPtr) - b1, b2 = implIntf(rt, jsonMarshalerTyp) - bset(b1, &ti.flagJsonMarshaler) - bset(b2, &ti.flagJsonMarshalerPtr) - b1, b2 = implIntf(rt, jsonUnmarshalerTyp) - bset(b1, &ti.flagJsonUnmarshaler) - bset(b2, &ti.flagJsonUnmarshalerPtr) - b1, b2 = implIntf(rt, selferTyp) - bset(b1, &ti.flagSelfer) - bset(b2, &ti.flagSelferPtr) - b1, b2 = implIntf(rt, missingFielderTyp) - bset(b1, &ti.flagMissingFielder) - bset(b2, &ti.flagMissingFielderPtr) - b1, b2 = implIntf(rt, iszeroTyp) - bset(b1, &ti.flagIsZeroer) - bset(b2, &ti.flagIsZeroerPtr) - b1, b2 = implIntf(rt, isCodecEmptyerTyp) - bset(b1, &ti.flagIsCodecEmptyer) - bset(b2, &ti.flagIsCodecEmptyerPtr) - - b1, b2 = implIntf(rt, isSelferViaCodecgenerTyp) - ti.flagSelferViaCodecgen = b1 || b2 - - ti.flagMarshalInterface = ti.flagSelfer || ti.flagSelferPtr || - ti.flagSelferViaCodecgen || - ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr || - ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr || - ti.flagTextMarshaler || ti.flagTextMarshalerPtr || - ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr || - ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr || - ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr - - b1 = rt.Comparable() - // bset(b1, &ti.flagComparable) - ti.flagComparable = b1 - - ti.doSetFlagCanTransient() - - var tt reflect.Type - switch rk { - case reflect.Struct: - var omitEmpty bool - if f, ok := rt.FieldByName(structInfoFieldName); ok { - ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag)) - ti.infoFieldOmitempty = omitEmpty - } else { - ti.keyType = valueTypeString - } - pp, pi := &pool4tiload, pool4tiload.Get() - pv := pi.(*typeInfoLoad) - pv.reset() - pv.etypes = append(pv.etypes, ti.rtid) - x.rget(rt, rtid, nil, pv, omitEmpty) - n := ti.resolve(pv.sfis, pv.sfiNames) - ti.init(pv.sfis, n) - pp.Put(pi) - case reflect.Map: - ti.typeInfo4Container = new(typeInfo4Container) - ti.elem = rt.Elem() - for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { - } - ti.tielem = x.get(rt2id(tt), tt) - ti.elemkind = uint8(ti.elem.Kind()) - ti.elemsize = uint32(ti.elem.Size()) - ti.key = rt.Key() - for tt = ti.key; tt.Kind() == reflect.Ptr; tt = tt.Elem() { - } - ti.tikey = x.get(rt2id(tt), tt) - ti.keykind = uint8(ti.key.Kind()) - ti.keysize = uint32(ti.key.Size()) - if ti.flagHasPkgPath { - ti.fastpathUnderlying = reflect.MapOf(ti.key, ti.elem) - } - case reflect.Slice: - ti.typeInfo4Container = new(typeInfo4Container) - ti.mbs, b2 = implIntf(rt, mapBySliceTyp) - if !ti.mbs && b2 { - ti.mbs = b2 - } - ti.elem = rt.Elem() - for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { - } - ti.tielem = x.get(rt2id(tt), tt) - ti.elemkind = uint8(ti.elem.Kind()) - ti.elemsize = uint32(ti.elem.Size()) - if ti.flagHasPkgPath { - ti.fastpathUnderlying = reflect.SliceOf(ti.elem) - } - case reflect.Chan: - ti.typeInfo4Container = new(typeInfo4Container) - ti.elem = rt.Elem() - for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { - } - ti.tielem = x.get(rt2id(tt), tt) - ti.elemkind = uint8(ti.elem.Kind()) - ti.elemsize = uint32(ti.elem.Size()) - ti.chandir = uint8(rt.ChanDir()) - ti.key = reflect.SliceOf(ti.elem) - ti.keykind = uint8(reflect.Slice) - case reflect.Array: - ti.typeInfo4Container = new(typeInfo4Container) - ti.mbs, b2 = implIntf(rt, mapBySliceTyp) - if !ti.mbs && b2 { - ti.mbs = b2 - } - ti.elem = rt.Elem() - ti.elemkind = uint8(ti.elem.Kind()) - ti.elemsize = uint32(ti.elem.Size()) - for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() { - } - ti.tielem = x.get(rt2id(tt), tt) - ti.key = reflect.SliceOf(ti.elem) - ti.keykind = uint8(reflect.Slice) - ti.keysize = uint32(ti.key.Size()) - if ti.flagHasPkgPath { - ti.fastpathUnderlying = ti.key - } - - // MARKER: reflect.Ptr cannot happen here, as we halt early if reflect.Ptr passed in - // case reflect.Ptr: - // ti.elem = rt.Elem() - // ti.elemkind = uint8(ti.elem.Kind()) - // ti.elemsize = uint32(ti.elem.Size()) - } - - x.mu.Lock() - sp := x.infos.load() - // since this is an atomic load/store, we MUST use a different array each time, - // else we have a data race when a store is happening simultaneously with a findRtidFn call. - if sp == nil { - pti = &ti - sp = []rtid2ti{{rtid, pti}} - x.infos.store(sp) - } else { - var idx uint - idx, pti = findTypeInfo(sp, rtid) - if pti == nil { - pti = &ti - sp2 := make([]rtid2ti, len(sp)+1) - copy(sp2[idx+1:], sp[idx:]) - copy(sp2, sp[:idx]) - sp2[idx] = rtid2ti{rtid, pti} - x.infos.store(sp2) - } - } - x.mu.Unlock() - return -} - -func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, - path *structFieldInfoPathNode, pv *typeInfoLoad, omitEmpty bool) { - // Read up fields and store how to access the value. - // - // It uses go's rules for message selectors, - // which say that the field with the shallowest depth is selected. - // - // Note: we consciously use slices, not a map, to simulate a set. - // Typically, types have < 16 fields, - // and iteration using equals is faster than maps there - flen := rt.NumField() -LOOP: - for j, jlen := uint16(0), uint16(flen); j < jlen; j++ { - f := rt.Field(int(j)) - fkind := f.Type.Kind() - - // skip if a func type, or is unexported, or structTag value == "-" - switch fkind { - case reflect.Func, reflect.UnsafePointer: - continue LOOP - } - - isUnexported := f.PkgPath != "" - if isUnexported && !f.Anonymous { - continue - } - stag := x.structTag(f.Tag) - if stag == "-" { - continue - } - var si structFieldInfo - - var numderef uint8 = 0 - for xft := f.Type; xft.Kind() == reflect.Ptr; xft = xft.Elem() { - numderef++ - } - - var parsed bool - // if anonymous and no struct tag (or it's blank), - // and a struct (or pointer to struct), inline it. - if f.Anonymous && fkind != reflect.Interface { - // ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface - ft := f.Type - isPtr := ft.Kind() == reflect.Ptr - for ft.Kind() == reflect.Ptr { - ft = ft.Elem() - } - isStruct := ft.Kind() == reflect.Struct - - // Ignore embedded fields of unexported non-struct types. - // Also, from go1.10, ignore pointers to unexported struct types - // because unmarshal cannot assign a new struct to an unexported field. - // See https://golang.org/issue/21357 - if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) { - continue - } - doInline := stag == "" - if !doInline { - si.parseTag(stag) - parsed = true - doInline = si.encName == "" // si.isZero() - } - if doInline && isStruct { - // if etypes contains this, don't call rget again (as fields are already seen here) - ftid := rt2id(ft) - // We cannot recurse forever, but we need to track other field depths. - // So - we break if we see a type twice (not the first time). - // This should be sufficient to handle an embedded type that refers to its - // owning type, which then refers to its embedded type. - processIt := true - numk := 0 - for _, k := range pv.etypes { - if k == ftid { - numk++ - if numk == rgetMaxRecursion { - processIt = false - break - } - } - } - if processIt { - pv.etypes = append(pv.etypes, ftid) - path2 := &structFieldInfoPathNode{ - parent: path, - typ: f.Type, - offset: uint16(f.Offset), - index: j, - kind: uint8(fkind), - numderef: numderef, - } - x.rget(ft, ftid, path2, pv, omitEmpty) - } - continue - } - } - - // after the anonymous dance: if an unexported field, skip - if isUnexported || f.Name == "" { // f.Name cannot be "", but defensively handle it - continue - } - - si.path = structFieldInfoPathNode{ - parent: path, - typ: f.Type, - offset: uint16(f.Offset), - index: j, - kind: uint8(fkind), - numderef: numderef, - // set asciiAlphaNum to true (default); checked and may be set to false below - encNameAsciiAlphaNum: true, - // note: omitEmpty might have been set in an earlier parseTag call, etc - so carry it forward - omitEmpty: si.path.omitEmpty, - } - - if !parsed { - si.encName = f.Name - si.parseTag(stag) - parsed = true - } else if si.encName == "" { - si.encName = f.Name - } - - // si.encNameHash = maxUintptr() // hashShortString(bytesView(si.encName)) - - if omitEmpty { - si.path.omitEmpty = true - } - - for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination - if !asciiAlphaNumBitset.isset(si.encName[i]) { - si.path.encNameAsciiAlphaNum = false - break - } - } - - pv.sfis = append(pv.sfis, si) - } -} - -func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) { - // return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp) - - // if I's method is defined on T (ie T implements I), then *T implements I. - // The converse is not true. - - // Type.Implements can be expensive, as it does a simulataneous linear search across 2 lists - // with alphanumeric string comparisons. - // If we can avoid running one of these 2 calls, we should. - - base = rt.Implements(iTyp) - if base { - indir = true - } else { - indir = reflect.PtrTo(rt).Implements(iTyp) - } - return -} - -func bool2int(b bool) (v uint8) { - // MARKER: optimized to be a single instruction - if b { - v = 1 - } - return -} - -func isSliceBoundsError(s string) bool { - return strings.Contains(s, "index out of range") || - strings.Contains(s, "slice bounds out of range") -} - -func sprintf(format string, v ...interface{}) string { - return fmt.Sprintf(format, v...) -} - -func panicValToErr(h errDecorator, v interface{}, err *error) { - if v == *err { - return - } - switch xerr := v.(type) { - case nil: - case runtime.Error: - d, dok := h.(*Decoder) - if dok && d.bytes && isSliceBoundsError(xerr.Error()) { - *err = io.ErrUnexpectedEOF - } else { - h.wrapErr(xerr, err) - } - case error: - switch xerr { - case nil: - case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized: - // treat as special (bubble up) - *err = xerr - default: - h.wrapErr(xerr, err) - } - default: - // we don't expect this to happen (as this library always panics with an error) - h.wrapErr(fmt.Errorf("%v", v), err) - } -} - -func usableByteSlice(bs []byte, slen int) (out []byte, changed bool) { - const maxCap = 1024 * 1024 * 64 // 64MB - const skipMaxCap = false // allow to test - if slen <= 0 { - return []byte{}, true - } - if slen <= cap(bs) { - return bs[:slen], false - } - // slen > cap(bs) ... handle memory overload appropriately - if skipMaxCap || slen <= maxCap { - return make([]byte, slen), true - } - return make([]byte, maxCap), true -} - -func mapKeyFastKindFor(k reflect.Kind) mapKeyFastKind { - return mapKeyFastKindVals[k&31] -} - -// ---- - -type codecFnInfo struct { - ti *typeInfo - xfFn Ext - xfTag uint64 - addrD bool - addrDf bool // force: if addrD, then decode function MUST take a ptr - addrE bool - // addrEf bool // force: if addrE, then encode function MUST take a ptr -} - -// codecFn encapsulates the captured variables and the encode function. -// This way, we only do some calculations one times, and pass to the -// code block that should be called (encapsulated in a function) -// instead of executing the checks every time. -type codecFn struct { - i codecFnInfo - fe func(*Encoder, *codecFnInfo, reflect.Value) - fd func(*Decoder, *codecFnInfo, reflect.Value) - // _ [1]uint64 // padding (cache-aligned) -} - -type codecRtidFn struct { - rtid uintptr - fn *codecFn -} - -func makeExt(ext interface{}) Ext { - switch t := ext.(type) { - case Ext: - return t - case BytesExt: - return &bytesExtWrapper{BytesExt: t} - case InterfaceExt: - return &interfaceExtWrapper{InterfaceExt: t} - } - return &extFailWrapper{} -} - -func baseRV(v interface{}) (rv reflect.Value) { - // use reflect.ValueOf, not rv4i, as of go 1.16beta, rv4i was not inlineable - for rv = reflect.ValueOf(v); rv.Kind() == reflect.Ptr; rv = rv.Elem() { - } - return -} - -// ---- - -// these "checkOverflow" functions must be inlinable, and not call anybody. -// Overflow means that the value cannot be represented without wrapping/overflow. -// Overflow=false does not mean that the value can be represented without losing precision -// (especially for floating point). - -type checkOverflow struct{} - -func (checkOverflow) Float32(v float64) (overflow bool) { - if v < 0 { - v = -v - } - return math.MaxFloat32 < v && v <= math.MaxFloat64 -} -func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) { - if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) { - overflow = true - } - return -} -func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) { - if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) { - overflow = true - } - return -} - -func (checkOverflow) Uint2Int(v uint64, neg bool) (overflow bool) { - return (neg && v > 1<<63) || (!neg && v >= 1<<63) -} - -func (checkOverflow) SignedInt(v uint64) (overflow bool) { - //e.g. -127 to 128 for int8 - // pos := (v >> 63) == 0 - // ui2 := v & 0x7fffffffffffffff - // if pos { - // if ui2 > math.MaxInt64 { - // overflow = true - // } - // } else { - // if ui2 > math.MaxInt64-1 { - // overflow = true - // } - // } - - // a signed integer has overflow if the sign (first) bit is 1 (negative) - // and the numbers after the sign bit is > maxint64 - 1 - overflow = (v>>63) != 0 && v&0x7fffffffffffffff > math.MaxInt64-1 - - return -} - -func (x checkOverflow) Float32V(v float64) float64 { - if x.Float32(v) { - halt.errorf("float32 overflow: %v", v) - } - return v -} -func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 { - if x.Uint(v, bitsize) { - halt.errorf("uint64 overflow: %v", v) - } - return v -} -func (x checkOverflow) IntV(v int64, bitsize uint8) int64 { - if x.Int(v, bitsize) { - halt.errorf("int64 overflow: %v", v) - } - return v -} -func (x checkOverflow) SignedIntV(v uint64) int64 { - if x.SignedInt(v) { - halt.errorf("uint64 to int64 overflow: %v", v) - } - return int64(v) -} - -// ------------------ FLOATING POINT ----------------- - -func isNaN64(f float64) bool { return f != f } - -func isWhitespaceChar(v byte) bool { - // these are in order of speed below ... - - return v < 33 - // return v < 33 && whitespaceCharBitset64.isset(v) - // return v < 33 && (v == ' ' || v == '\n' || v == '\t' || v == '\r') - // return v == ' ' || v == '\n' || v == '\t' || v == '\r' - // return whitespaceCharBitset.isset(v) -} - -func isNumberChar(v byte) bool { - // these are in order of speed below ... - - return numCharBitset.isset(v) - // return v < 64 && numCharNoExpBitset64.isset(v) || v == 'e' || v == 'E' - // return v > 42 && v < 102 && numCharWithExpBitset64.isset(v-42) -} - -// ----------------------- - -type ioFlusher interface { - Flush() error -} - -type ioBuffered interface { - Buffered() int -} - -// ----------------------- - -type sfiRv struct { - v *structFieldInfo - r reflect.Value -} - -// ------ - -// bitset types are better than [256]bool, because they permit the whole -// bitset array being on a single cache line and use less memory. -// -// Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap). -// -// We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces -// bounds checking, so we discarded them, and everyone uses bitset256. -// -// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1). -// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7 -// -// Note that using >> or & is faster than using / or %, as division is quite expensive if not optimized. - -// MARKER: -// We noticed a little performance degradation when using bitset256 as [32]byte (or bitset32 as uint32). -// For example, json encoding went from 188K ns/op to 168K ns/op (~ 10% reduction). -// Consequently, we are using a [NNN]bool for bitsetNNN. -// To eliminate bounds-checking, we use x % v as that is guaranteed to be within bounds. - -// ---- -type bitset32 [32]bool - -func (x *bitset32) set(pos byte) *bitset32 { - x[pos&31] = true // x[pos%32] = true - return x -} -func (x *bitset32) isset(pos byte) bool { - return x[pos&31] // x[pos%32] -} - -type bitset256 [256]bool - -func (x *bitset256) set(pos byte) *bitset256 { - x[pos] = true - return x -} -func (x *bitset256) isset(pos byte) bool { - return x[pos] -} - -// ------------ - -type panicHdl struct{} - -// errorv will panic if err is defined (not nil) -func (panicHdl) onerror(err error) { - if err != nil { - panic(err) - } -} - -// errorf will always panic, using the parameters passed. -// -// Note: it is ok to pass in a stringView, as it will just pass it directly -// to a fmt.Sprintf call and not hold onto it. -// -//go:noinline -func (panicHdl) errorf(format string, params ...interface{}) { - if format == "" { - panic(errPanicUndefined) - } - if len(params) == 0 { - panic(errors.New(format)) - } - panic(fmt.Errorf(format, params...)) -} - -// ---------------------------------------------------- - -type errDecorator interface { - wrapErr(in error, out *error) -} - -type errDecoratorDef struct{} - -func (errDecoratorDef) wrapErr(v error, e *error) { *e = v } - -// ---------------------------------------------------- - -type mustHdl struct{} - -func (mustHdl) String(s string, err error) string { - halt.onerror(err) - return s -} -func (mustHdl) Int(s int64, err error) int64 { - halt.onerror(err) - return s -} -func (mustHdl) Uint(s uint64, err error) uint64 { - halt.onerror(err) - return s -} -func (mustHdl) Float(s float64, err error) float64 { - halt.onerror(err) - return s -} - -// ------------------- - -func freelistCapacity(length int) (capacity int) { - for capacity = 8; capacity <= length; capacity *= 2 { - } - return -} - -// bytesFreelist is a list of byte buffers, sorted by cap. -// -// In anecdotal testing (running go test -tsd 1..6), we couldn't get -// the length of the list > 4 at any time. So we believe a linear search -// without bounds checking is sufficient. -// -// Typical usage model: -// -// peek may go together with put, iff pop=true. peek gets largest byte slice temporarily. -// check is used to switch a []byte if necessary -// get/put go together -// -// Given that folks may get a []byte, and then append to it a lot which may re-allocate -// a new []byte, we should try to return both (one received from blist and new one allocated). -// -// Typical usage model for get/put, when we don't know whether we may need more than requested -// -// v0 := blist.get() -// v1 := v0 -// ... use v1 ... -// blist.put(v1) -// if !byteSliceSameData(v0, v1) { -// blist.put(v0) -// } -type bytesFreelist [][]byte - -// peek returns a slice of possibly non-zero'ed bytes, with len=0, -// and with the largest capacity from the list. -func (x *bytesFreelist) peek(length int, pop bool) (out []byte) { - if bytesFreeListNoCache { - return make([]byte, 0, freelistCapacity(length)) - } - y := *x - if len(y) > 0 { - out = y[len(y)-1] - } - // start buf with a minimum of 64 bytes - const minLenBytes = 64 - if length < minLenBytes { - length = minLenBytes - } - if cap(out) < length { - out = make([]byte, 0, freelistCapacity(length)) - y = append(y, out) - *x = y - } - if pop && len(y) > 0 { - y = y[:len(y)-1] - *x = y - } - return -} - -// get returns a slice of possibly non-zero'ed bytes, with len=0, -// and with cap >= length requested. -func (x *bytesFreelist) get(length int) (out []byte) { - if bytesFreeListNoCache { - return make([]byte, 0, freelistCapacity(length)) - } - y := *x - // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta - // for i, v := range y { - for i := 0; i < len(y); i++ { - v := y[i] - if cap(v) >= length { - // *x = append(y[:i], y[i+1:]...) - copy(y[i:], y[i+1:]) - *x = y[:len(y)-1] - return v - } - } - return make([]byte, 0, freelistCapacity(length)) -} - -func (x *bytesFreelist) put(v []byte) { - if bytesFreeListNoCache || cap(v) == 0 { - return - } - if len(v) != 0 { - v = v[:0] - } - // append the new value, then try to put it in a better position - y := append(*x, v) - *x = y - // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta - // for i, z := range y[:len(y)-1] { - for i := 0; i < len(y)-1; i++ { - z := y[i] - if cap(z) > cap(v) { - copy(y[i+1:], y[i:]) - y[i] = v - return - } - } -} - -func (x *bytesFreelist) check(v []byte, length int) (out []byte) { - // ensure inlineable, by moving slow-path out to its own function - if cap(v) >= length { - return v[:0] - } - return x.checkPutGet(v, length) -} - -func (x *bytesFreelist) checkPutGet(v []byte, length int) []byte { - // checkPutGet broken out into its own function, so check is inlineable in general case - const useSeparateCalls = false - - if useSeparateCalls { - x.put(v) - return x.get(length) - } - - if bytesFreeListNoCache { - return make([]byte, 0, freelistCapacity(length)) - } - - // assume cap(v) < length, so put must happen before get - y := *x - var put = cap(v) == 0 // if empty, consider it already put - if !put { - y = append(y, v) - *x = y - } - for i := 0; i < len(y); i++ { - z := y[i] - if put { - if cap(z) >= length { - copy(y[i:], y[i+1:]) - y = y[:len(y)-1] - *x = y - return z - } - } else { - if cap(z) > cap(v) { - copy(y[i+1:], y[i:]) - y[i] = v - put = true - } - } - } - return make([]byte, 0, freelistCapacity(length)) -} - -// ------------------------- - -// sfiRvFreelist is used by Encoder for encoding structs, -// where we have to gather the fields first and then -// analyze them for omitEmpty, before knowing the length of the array/map to encode. -// -// Typically, the length here will depend on the number of cycles e.g. -// if type T1 has reference to T1, or T1 has reference to type T2 which has reference to T1. -// -// In the general case, the length of this list at most times is 1, -// so linear search is fine. -type sfiRvFreelist [][]sfiRv - -func (x *sfiRvFreelist) get(length int) (out []sfiRv) { - y := *x - - // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta - // for i, v := range y { - for i := 0; i < len(y); i++ { - v := y[i] - if cap(v) >= length { - // *x = append(y[:i], y[i+1:]...) - copy(y[i:], y[i+1:]) - *x = y[:len(y)-1] - return v - } - } - return make([]sfiRv, 0, freelistCapacity(length)) -} - -func (x *sfiRvFreelist) put(v []sfiRv) { - if len(v) != 0 { - v = v[:0] - } - // append the new value, then try to put it in a better position - y := append(*x, v) - *x = y - // MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta - // for i, z := range y[:len(y)-1] { - for i := 0; i < len(y)-1; i++ { - z := y[i] - if cap(z) > cap(v) { - copy(y[i+1:], y[i:]) - y[i] = v - return - } - } -} - -// ---- multiple interner implementations ---- - -// Hard to tell which is most performant: -// - use a map[string]string - worst perf, no collisions, and unlimited entries -// - use a linear search with move to front heuristics - no collisions, and maxed at 64 entries -// - use a computationally-intensive hash - best performance, some collisions, maxed at 64 entries - -const ( - internMaxStrLen = 16 // if more than 16 bytes, faster to copy than compare bytes - internCap = 64 * 2 // 64 uses 1K bytes RAM, so 128 (anecdotal sweet spot) uses 2K bytes -) - -type internerMap map[string]string - -func (x *internerMap) init() { - *x = make(map[string]string, internCap) -} - -func (x internerMap) string(v []byte) (s string) { - s, ok := x[string(v)] // no allocation here, per go implementation - if !ok { - s = string(v) // new allocation here - x[s] = s - } - return -} |