diff options
Diffstat (limited to 'vendor/github.com/klauspost/compress/zstd/fse_encoder.go')
-rw-r--r-- | vendor/github.com/klauspost/compress/zstd/fse_encoder.go | 701 |
1 files changed, 0 insertions, 701 deletions
diff --git a/vendor/github.com/klauspost/compress/zstd/fse_encoder.go b/vendor/github.com/klauspost/compress/zstd/fse_encoder.go deleted file mode 100644 index ab26326a8..000000000 --- a/vendor/github.com/klauspost/compress/zstd/fse_encoder.go +++ /dev/null @@ -1,701 +0,0 @@ -// Copyright 2019+ Klaus Post. All rights reserved. -// License information can be found in the LICENSE file. -// Based on work by Yann Collet, released under BSD License. - -package zstd - -import ( - "errors" - "fmt" - "math" -) - -const ( - // For encoding we only support up to - maxEncTableLog = 8 - maxEncTablesize = 1 << maxTableLog - maxEncTableMask = (1 << maxTableLog) - 1 - minEncTablelog = 5 - maxEncSymbolValue = maxMatchLengthSymbol -) - -// Scratch provides temporary storage for compression and decompression. -type fseEncoder struct { - symbolLen uint16 // Length of active part of the symbol table. - actualTableLog uint8 // Selected tablelog. - ct cTable // Compression tables. - maxCount int // count of the most probable symbol - zeroBits bool // no bits has prob > 50%. - clearCount bool // clear count - useRLE bool // This encoder is for RLE - preDefined bool // This encoder is predefined. - reUsed bool // Set to know when the encoder has been reused. - rleVal uint8 // RLE Symbol - maxBits uint8 // Maximum output bits after transform. - - // TODO: Technically zstd should be fine with 64 bytes. - count [256]uint32 - norm [256]int16 -} - -// cTable contains tables used for compression. -type cTable struct { - tableSymbol []byte - stateTable []uint16 - symbolTT []symbolTransform -} - -// symbolTransform contains the state transform for a symbol. -type symbolTransform struct { - deltaNbBits uint32 - deltaFindState int16 - outBits uint8 -} - -// String prints values as a human readable string. -func (s symbolTransform) String() string { - return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits) -} - -// Histogram allows to populate the histogram and skip that step in the compression, -// It otherwise allows to inspect the histogram when compression is done. -// To indicate that you have populated the histogram call HistogramFinished -// with the value of the highest populated symbol, as well as the number of entries -// in the most populated entry. These are accepted at face value. -func (s *fseEncoder) Histogram() *[256]uint32 { - return &s.count -} - -// HistogramFinished can be called to indicate that the histogram has been populated. -// maxSymbol is the index of the highest set symbol of the next data segment. -// maxCount is the number of entries in the most populated entry. -// These are accepted at face value. -func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) { - s.maxCount = maxCount - s.symbolLen = uint16(maxSymbol) + 1 - s.clearCount = maxCount != 0 -} - -// allocCtable will allocate tables needed for compression. -// If existing tables a re big enough, they are simply re-used. -func (s *fseEncoder) allocCtable() { - tableSize := 1 << s.actualTableLog - // get tableSymbol that is big enough. - if cap(s.ct.tableSymbol) < tableSize { - s.ct.tableSymbol = make([]byte, tableSize) - } - s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] - - ctSize := tableSize - if cap(s.ct.stateTable) < ctSize { - s.ct.stateTable = make([]uint16, ctSize) - } - s.ct.stateTable = s.ct.stateTable[:ctSize] - - if cap(s.ct.symbolTT) < 256 { - s.ct.symbolTT = make([]symbolTransform, 256) - } - s.ct.symbolTT = s.ct.symbolTT[:256] -} - -// buildCTable will populate the compression table so it is ready to be used. -func (s *fseEncoder) buildCTable() error { - tableSize := uint32(1 << s.actualTableLog) - highThreshold := tableSize - 1 - var cumul [256]int16 - - s.allocCtable() - tableSymbol := s.ct.tableSymbol[:tableSize] - // symbol start positions - { - cumul[0] = 0 - for ui, v := range s.norm[:s.symbolLen-1] { - u := byte(ui) // one less than reference - if v == -1 { - // Low proba symbol - cumul[u+1] = cumul[u] + 1 - tableSymbol[highThreshold] = u - highThreshold-- - } else { - cumul[u+1] = cumul[u] + v - } - } - // Encode last symbol separately to avoid overflowing u - u := int(s.symbolLen - 1) - v := s.norm[s.symbolLen-1] - if v == -1 { - // Low proba symbol - cumul[u+1] = cumul[u] + 1 - tableSymbol[highThreshold] = byte(u) - highThreshold-- - } else { - cumul[u+1] = cumul[u] + v - } - if uint32(cumul[s.symbolLen]) != tableSize { - return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) - } - cumul[s.symbolLen] = int16(tableSize) + 1 - } - // Spread symbols - s.zeroBits = false - { - step := tableStep(tableSize) - tableMask := tableSize - 1 - var position uint32 - // if any symbol > largeLimit, we may have 0 bits output. - largeLimit := int16(1 << (s.actualTableLog - 1)) - for ui, v := range s.norm[:s.symbolLen] { - symbol := byte(ui) - if v > largeLimit { - s.zeroBits = true - } - for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { - tableSymbol[position] = symbol - position = (position + step) & tableMask - for position > highThreshold { - position = (position + step) & tableMask - } /* Low proba area */ - } - } - - // Check if we have gone through all positions - if position != 0 { - return errors.New("position!=0") - } - } - - // Build table - table := s.ct.stateTable - { - tsi := int(tableSize) - for u, v := range tableSymbol { - // TableU16 : sorted by symbol order; gives next state value - table[cumul[v]] = uint16(tsi + u) - cumul[v]++ - } - } - - // Build Symbol Transformation Table - { - total := int16(0) - symbolTT := s.ct.symbolTT[:s.symbolLen] - tableLog := s.actualTableLog - tl := (uint32(tableLog) << 16) - (1 << tableLog) - for i, v := range s.norm[:s.symbolLen] { - switch v { - case 0: - case -1, 1: - symbolTT[i].deltaNbBits = tl - symbolTT[i].deltaFindState = total - 1 - total++ - default: - maxBitsOut := uint32(tableLog) - highBit(uint32(v-1)) - minStatePlus := uint32(v) << maxBitsOut - symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus - symbolTT[i].deltaFindState = total - v - total += v - } - } - if total != int16(tableSize) { - return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) - } - } - return nil -} - -var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} - -func (s *fseEncoder) setRLE(val byte) { - s.allocCtable() - s.actualTableLog = 0 - s.ct.stateTable = s.ct.stateTable[:1] - s.ct.symbolTT[val] = symbolTransform{ - deltaFindState: 0, - deltaNbBits: 0, - } - if debugEncoder { - println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val]) - } - s.rleVal = val - s.useRLE = true -} - -// setBits will set output bits for the transform. -// if nil is provided, the number of bits is equal to the index. -func (s *fseEncoder) setBits(transform []byte) { - if s.reUsed || s.preDefined { - return - } - if s.useRLE { - if transform == nil { - s.ct.symbolTT[s.rleVal].outBits = s.rleVal - s.maxBits = s.rleVal - return - } - s.maxBits = transform[s.rleVal] - s.ct.symbolTT[s.rleVal].outBits = s.maxBits - return - } - if transform == nil { - for i := range s.ct.symbolTT[:s.symbolLen] { - s.ct.symbolTT[i].outBits = uint8(i) - } - s.maxBits = uint8(s.symbolLen - 1) - return - } - s.maxBits = 0 - for i, v := range transform[:s.symbolLen] { - s.ct.symbolTT[i].outBits = v - if v > s.maxBits { - // We could assume bits always going up, but we play safe. - s.maxBits = v - } - } -} - -// normalizeCount will normalize the count of the symbols so -// the total is equal to the table size. -// If successful, compression tables will also be made ready. -func (s *fseEncoder) normalizeCount(length int) error { - if s.reUsed { - return nil - } - s.optimalTableLog(length) - var ( - tableLog = s.actualTableLog - scale = 62 - uint64(tableLog) - step = (1 << 62) / uint64(length) - vStep = uint64(1) << (scale - 20) - stillToDistribute = int16(1 << tableLog) - largest int - largestP int16 - lowThreshold = (uint32)(length >> tableLog) - ) - if s.maxCount == length { - s.useRLE = true - return nil - } - s.useRLE = false - for i, cnt := range s.count[:s.symbolLen] { - // already handled - // if (count[s] == s.length) return 0; /* rle special case */ - - if cnt == 0 { - s.norm[i] = 0 - continue - } - if cnt <= lowThreshold { - s.norm[i] = -1 - stillToDistribute-- - } else { - proba := (int16)((uint64(cnt) * step) >> scale) - if proba < 8 { - restToBeat := vStep * uint64(rtbTable[proba]) - v := uint64(cnt)*step - (uint64(proba) << scale) - if v > restToBeat { - proba++ - } - } - if proba > largestP { - largestP = proba - largest = i - } - s.norm[i] = proba - stillToDistribute -= proba - } - } - - if -stillToDistribute >= (s.norm[largest] >> 1) { - // corner case, need another normalization method - err := s.normalizeCount2(length) - if err != nil { - return err - } - if debugAsserts { - err = s.validateNorm() - if err != nil { - return err - } - } - return s.buildCTable() - } - s.norm[largest] += stillToDistribute - if debugAsserts { - err := s.validateNorm() - if err != nil { - return err - } - } - return s.buildCTable() -} - -// Secondary normalization method. -// To be used when primary method fails. -func (s *fseEncoder) normalizeCount2(length int) error { - const notYetAssigned = -2 - var ( - distributed uint32 - total = uint32(length) - tableLog = s.actualTableLog - lowThreshold = total >> tableLog - lowOne = (total * 3) >> (tableLog + 1) - ) - for i, cnt := range s.count[:s.symbolLen] { - if cnt == 0 { - s.norm[i] = 0 - continue - } - if cnt <= lowThreshold { - s.norm[i] = -1 - distributed++ - total -= cnt - continue - } - if cnt <= lowOne { - s.norm[i] = 1 - distributed++ - total -= cnt - continue - } - s.norm[i] = notYetAssigned - } - toDistribute := (1 << tableLog) - distributed - - if (total / toDistribute) > lowOne { - // risk of rounding to zero - lowOne = (total * 3) / (toDistribute * 2) - for i, cnt := range s.count[:s.symbolLen] { - if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { - s.norm[i] = 1 - distributed++ - total -= cnt - continue - } - } - toDistribute = (1 << tableLog) - distributed - } - if distributed == uint32(s.symbolLen)+1 { - // all values are pretty poor; - // probably incompressible data (should have already been detected); - // find max, then give all remaining points to max - var maxV int - var maxC uint32 - for i, cnt := range s.count[:s.symbolLen] { - if cnt > maxC { - maxV = i - maxC = cnt - } - } - s.norm[maxV] += int16(toDistribute) - return nil - } - - if total == 0 { - // all of the symbols were low enough for the lowOne or lowThreshold - for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { - if s.norm[i] > 0 { - toDistribute-- - s.norm[i]++ - } - } - return nil - } - - var ( - vStepLog = 62 - uint64(tableLog) - mid = uint64((1 << (vStepLog - 1)) - 1) - rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining - tmpTotal = mid - ) - for i, cnt := range s.count[:s.symbolLen] { - if s.norm[i] == notYetAssigned { - var ( - end = tmpTotal + uint64(cnt)*rStep - sStart = uint32(tmpTotal >> vStepLog) - sEnd = uint32(end >> vStepLog) - weight = sEnd - sStart - ) - if weight < 1 { - return errors.New("weight < 1") - } - s.norm[i] = int16(weight) - tmpTotal = end - } - } - return nil -} - -// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog -func (s *fseEncoder) optimalTableLog(length int) { - tableLog := uint8(maxEncTableLog) - minBitsSrc := highBit(uint32(length)) + 1 - minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2 - minBits := uint8(minBitsSymbols) - if minBitsSrc < minBitsSymbols { - minBits = uint8(minBitsSrc) - } - - maxBitsSrc := uint8(highBit(uint32(length-1))) - 2 - if maxBitsSrc < tableLog { - // Accuracy can be reduced - tableLog = maxBitsSrc - } - if minBits > tableLog { - tableLog = minBits - } - // Need a minimum to safely represent all symbol values - if tableLog < minEncTablelog { - tableLog = minEncTablelog - } - if tableLog > maxEncTableLog { - tableLog = maxEncTableLog - } - s.actualTableLog = tableLog -} - -// validateNorm validates the normalized histogram table. -func (s *fseEncoder) validateNorm() (err error) { - var total int - for _, v := range s.norm[:s.symbolLen] { - if v >= 0 { - total += int(v) - } else { - total -= int(v) - } - } - defer func() { - if err == nil { - return - } - fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) - for i, v := range s.norm[:s.symbolLen] { - fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) - } - }() - if total != (1 << s.actualTableLog) { - return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) - } - for i, v := range s.count[s.symbolLen:] { - if v != 0 { - return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) - } - } - return nil -} - -// writeCount will write the normalized histogram count to header. -// This is read back by readNCount. -func (s *fseEncoder) writeCount(out []byte) ([]byte, error) { - if s.useRLE { - return append(out, s.rleVal), nil - } - if s.preDefined || s.reUsed { - // Never write predefined. - return out, nil - } - - var ( - tableLog = s.actualTableLog - tableSize = 1 << tableLog - previous0 bool - charnum uint16 - - // maximum header size plus 2 extra bytes for final output if bitCount == 0. - maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2 - - // Write Table Size - bitStream = uint32(tableLog - minEncTablelog) - bitCount = uint(4) - remaining = int16(tableSize + 1) /* +1 for extra accuracy */ - threshold = int16(tableSize) - nbBits = uint(tableLog + 1) - outP = len(out) - ) - if cap(out) < outP+maxHeaderSize { - out = append(out, make([]byte, maxHeaderSize*3)...) - out = out[:len(out)-maxHeaderSize*3] - } - out = out[:outP+maxHeaderSize] - - // stops at 1 - for remaining > 1 { - if previous0 { - start := charnum - for s.norm[charnum] == 0 { - charnum++ - } - for charnum >= start+24 { - start += 24 - bitStream += uint32(0xFFFF) << bitCount - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += 2 - bitStream >>= 16 - } - for charnum >= start+3 { - start += 3 - bitStream += 3 << bitCount - bitCount += 2 - } - bitStream += uint32(charnum-start) << bitCount - bitCount += 2 - if bitCount > 16 { - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += 2 - bitStream >>= 16 - bitCount -= 16 - } - } - - count := s.norm[charnum] - charnum++ - max := (2*threshold - 1) - remaining - if count < 0 { - remaining += count - } else { - remaining -= count - } - count++ // +1 for extra accuracy - if count >= threshold { - count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ - } - bitStream += uint32(count) << bitCount - bitCount += nbBits - if count < max { - bitCount-- - } - - previous0 = count == 1 - if remaining < 1 { - return nil, errors.New("internal error: remaining < 1") - } - for remaining < threshold { - nbBits-- - threshold >>= 1 - } - - if bitCount > 16 { - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += 2 - bitStream >>= 16 - bitCount -= 16 - } - } - - if outP+2 > len(out) { - return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen]) - } - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += int((bitCount + 7) / 8) - - if charnum > s.symbolLen { - return nil, errors.New("internal error: charnum > s.symbolLen") - } - return out[:outP], nil -} - -// Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) -// note 1 : assume symbolValue is valid (<= maxSymbolValue) -// note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits * -func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 { - minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16 - threshold := (minNbBits + 1) << 16 - if debugAsserts { - if !(s.actualTableLog < 16) { - panic("!s.actualTableLog < 16") - } - // ensure enough room for renormalization double shift - if !(uint8(accuracyLog) < 31-s.actualTableLog) { - panic("!uint8(accuracyLog) < 31-s.actualTableLog") - } - } - tableSize := uint32(1) << s.actualTableLog - deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize) - // linear interpolation (very approximate) - normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog - bitMultiplier := uint32(1) << accuracyLog - if debugAsserts { - if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold { - panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold") - } - if normalizedDeltaFromThreshold > bitMultiplier { - panic("normalizedDeltaFromThreshold > bitMultiplier") - } - } - return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold -} - -// Returns the cost in bits of encoding the distribution in count using ctable. -// Histogram should only be up to the last non-zero symbol. -// Returns an -1 if ctable cannot represent all the symbols in count. -func (s *fseEncoder) approxSize(hist []uint32) uint32 { - if int(s.symbolLen) < len(hist) { - // More symbols than we have. - return math.MaxUint32 - } - if s.useRLE { - // We will never reuse RLE encoders. - return math.MaxUint32 - } - const kAccuracyLog = 8 - badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog - var cost uint32 - for i, v := range hist { - if v == 0 { - continue - } - if s.norm[i] == 0 { - return math.MaxUint32 - } - bitCost := s.bitCost(uint8(i), kAccuracyLog) - if bitCost > badCost { - return math.MaxUint32 - } - cost += v * bitCost - } - return cost >> kAccuracyLog -} - -// maxHeaderSize returns the maximum header size in bits. -// This is not exact size, but we want a penalty for new tables anyway. -func (s *fseEncoder) maxHeaderSize() uint32 { - if s.preDefined { - return 0 - } - if s.useRLE { - return 8 - } - return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8 -} - -// cState contains the compression state of a stream. -type cState struct { - bw *bitWriter - stateTable []uint16 - state uint16 -} - -// init will initialize the compression state to the first symbol of the stream. -func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) { - c.bw = bw - c.stateTable = ct.stateTable - if len(c.stateTable) == 1 { - // RLE - c.stateTable[0] = uint16(0) - c.state = 0 - return - } - nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 - im := int32((nbBitsOut << 16) - first.deltaNbBits) - lu := (im >> nbBitsOut) + int32(first.deltaFindState) - c.state = c.stateTable[lu] -} - -// flush will write the tablelog to the output and flush the remaining full bytes. -func (c *cState) flush(tableLog uint8) { - c.bw.flush32() - c.bw.addBits16NC(c.state, tableLog) -} |