diff options
Diffstat (limited to 'vendor/github.com/klauspost/compress/zstd/README.md')
-rw-r--r-- | vendor/github.com/klauspost/compress/zstd/README.md | 441 |
1 files changed, 0 insertions, 441 deletions
diff --git a/vendor/github.com/klauspost/compress/zstd/README.md b/vendor/github.com/klauspost/compress/zstd/README.md deleted file mode 100644 index 92e2347bb..000000000 --- a/vendor/github.com/klauspost/compress/zstd/README.md +++ /dev/null @@ -1,441 +0,0 @@ -# zstd - -[Zstandard](https://facebook.github.io/zstd/) is a real-time compression algorithm, providing high compression ratios. -It offers a very wide range of compression / speed trade-off, while being backed by a very fast decoder. -A high performance compression algorithm is implemented. For now focused on speed. - -This package provides [compression](#Compressor) to and [decompression](#Decompressor) of Zstandard content. - -This package is pure Go and without use of "unsafe". - -The `zstd` package is provided as open source software using a Go standard license. - -Currently the package is heavily optimized for 64 bit processors and will be significantly slower on 32 bit processors. - -For seekable zstd streams, see [this excellent package](https://github.com/SaveTheRbtz/zstd-seekable-format-go). - -## Installation - -Install using `go get -u github.com/klauspost/compress`. The package is located in `github.com/klauspost/compress/zstd`. - -[](https://pkg.go.dev/github.com/klauspost/compress/zstd) - -## Compressor - -### Status: - -STABLE - there may always be subtle bugs, a wide variety of content has been tested and the library is actively -used by several projects. This library is being [fuzz-tested](https://github.com/klauspost/compress-fuzz) for all updates. - -There may still be specific combinations of data types/size/settings that could lead to edge cases, -so as always, testing is recommended. - -For now, a high speed (fastest) and medium-fast (default) compressor has been implemented. - -* The "Fastest" compression ratio is roughly equivalent to zstd level 1. -* The "Default" compression ratio is roughly equivalent to zstd level 3 (default). -* The "Better" compression ratio is roughly equivalent to zstd level 7. -* The "Best" compression ratio is roughly equivalent to zstd level 11. - -In terms of speed, it is typically 2x as fast as the stdlib deflate/gzip in its fastest mode. -The compression ratio compared to stdlib is around level 3, but usually 3x as fast. - - -### Usage - -An Encoder can be used for either compressing a stream via the -`io.WriteCloser` interface supported by the Encoder or as multiple independent -tasks via the `EncodeAll` function. -Smaller encodes are encouraged to use the EncodeAll function. -Use `NewWriter` to create a new instance that can be used for both. - -To create a writer with default options, do like this: - -```Go -// Compress input to output. -func Compress(in io.Reader, out io.Writer) error { - enc, err := zstd.NewWriter(out) - if err != nil { - return err - } - _, err = io.Copy(enc, in) - if err != nil { - enc.Close() - return err - } - return enc.Close() -} -``` - -Now you can encode by writing data to `enc`. The output will be finished writing when `Close()` is called. -Even if your encode fails, you should still call `Close()` to release any resources that may be held up. - -The above is fine for big encodes. However, whenever possible try to *reuse* the writer. - -To reuse the encoder, you can use the `Reset(io.Writer)` function to change to another output. -This will allow the encoder to reuse all resources and avoid wasteful allocations. - -Currently stream encoding has 'light' concurrency, meaning up to 2 goroutines can be working on part -of a stream. This is independent of the `WithEncoderConcurrency(n)`, but that is likely to change -in the future. So if you want to limit concurrency for future updates, specify the concurrency -you would like. - -If you would like stream encoding to be done without spawning async goroutines, use `WithEncoderConcurrency(1)` -which will compress input as each block is completed, blocking on writes until each has completed. - -You can specify your desired compression level using `WithEncoderLevel()` option. Currently only pre-defined -compression settings can be specified. - -#### Future Compatibility Guarantees - -This will be an evolving project. When using this package it is important to note that both the compression efficiency and speed may change. - -The goal will be to keep the default efficiency at the default zstd (level 3). -However the encoding should never be assumed to remain the same, -and you should not use hashes of compressed output for similarity checks. - -The Encoder can be assumed to produce the same output from the exact same code version. -However, the may be modes in the future that break this, -although they will not be enabled without an explicit option. - -This encoder is not designed to (and will probably never) output the exact same bitstream as the reference encoder. - -Also note, that the cgo decompressor currently does not [report all errors on invalid input](https://github.com/DataDog/zstd/issues/59), -[omits error checks](https://github.com/DataDog/zstd/issues/61), [ignores checksums](https://github.com/DataDog/zstd/issues/43) -and seems to ignore concatenated streams, even though [it is part of the spec](https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#frames). - -#### Blocks - -For compressing small blocks, the returned encoder has a function called `EncodeAll(src, dst []byte) []byte`. - -`EncodeAll` will encode all input in src and append it to dst. -This function can be called concurrently. -Each call will only run on a same goroutine as the caller. - -Encoded blocks can be concatenated and the result will be the combined input stream. -Data compressed with EncodeAll can be decoded with the Decoder, using either a stream or `DecodeAll`. - -Especially when encoding blocks you should take special care to reuse the encoder. -This will effectively make it run without allocations after a warmup period. -To make it run completely without allocations, supply a destination buffer with space for all content. - -```Go -import "github.com/klauspost/compress/zstd" - -// Create a writer that caches compressors. -// For this operation type we supply a nil Reader. -var encoder, _ = zstd.NewWriter(nil) - -// Compress a buffer. -// If you have a destination buffer, the allocation in the call can also be eliminated. -func Compress(src []byte) []byte { - return encoder.EncodeAll(src, make([]byte, 0, len(src))) -} -``` - -You can control the maximum number of concurrent encodes using the `WithEncoderConcurrency(n)` -option when creating the writer. - -Using the Encoder for both a stream and individual blocks concurrently is safe. - -### Performance - -I have collected some speed examples to compare speed and compression against other compressors. - -* `file` is the input file. -* `out` is the compressor used. `zskp` is this package. `zstd` is the Datadog cgo library. `gzstd/gzkp` is gzip standard and this library. -* `level` is the compression level used. For `zskp` level 1 is "fastest", level 2 is "default"; 3 is "better", 4 is "best". -* `insize`/`outsize` is the input/output size. -* `millis` is the number of milliseconds used for compression. -* `mb/s` is megabytes (2^20 bytes) per second. - -``` -Silesia Corpus: -http://sun.aei.polsl.pl/~sdeor/corpus/silesia.zip - -This package: -file out level insize outsize millis mb/s -silesia.tar zskp 1 211947520 73821326 634 318.47 -silesia.tar zskp 2 211947520 67655404 1508 133.96 -silesia.tar zskp 3 211947520 64746933 3000 67.37 -silesia.tar zskp 4 211947520 60073508 16926 11.94 - -cgo zstd: -silesia.tar zstd 1 211947520 73605392 543 371.56 -silesia.tar zstd 3 211947520 66793289 864 233.68 -silesia.tar zstd 6 211947520 62916450 1913 105.66 -silesia.tar zstd 9 211947520 60212393 5063 39.92 - -gzip, stdlib/this package: -silesia.tar gzstd 1 211947520 80007735 1498 134.87 -silesia.tar gzkp 1 211947520 80088272 1009 200.31 - -GOB stream of binary data. Highly compressible. -https://files.klauspost.com/compress/gob-stream.7z - -file out level insize outsize millis mb/s -gob-stream zskp 1 1911399616 233948096 3230 564.34 -gob-stream zskp 2 1911399616 203997694 4997 364.73 -gob-stream zskp 3 1911399616 173526523 13435 135.68 -gob-stream zskp 4 1911399616 162195235 47559 38.33 - -gob-stream zstd 1 1911399616 249810424 2637 691.26 -gob-stream zstd 3 1911399616 208192146 3490 522.31 -gob-stream zstd 6 1911399616 193632038 6687 272.56 -gob-stream zstd 9 1911399616 177620386 16175 112.70 - -gob-stream gzstd 1 1911399616 357382013 9046 201.49 -gob-stream gzkp 1 1911399616 359136669 4885 373.08 - -The test data for the Large Text Compression Benchmark is the first -10^9 bytes of the English Wikipedia dump on Mar. 3, 2006. -http://mattmahoney.net/dc/textdata.html - -file out level insize outsize millis mb/s -enwik9 zskp 1 1000000000 343833605 3687 258.64 -enwik9 zskp 2 1000000000 317001237 7672 124.29 -enwik9 zskp 3 1000000000 291915823 15923 59.89 -enwik9 zskp 4 1000000000 261710291 77697 12.27 - -enwik9 zstd 1 1000000000 358072021 3110 306.65 -enwik9 zstd 3 1000000000 313734672 4784 199.35 -enwik9 zstd 6 1000000000 295138875 10290 92.68 -enwik9 zstd 9 1000000000 278348700 28549 33.40 - -enwik9 gzstd 1 1000000000 382578136 8608 110.78 -enwik9 gzkp 1 1000000000 382781160 5628 169.45 - -Highly compressible JSON file. -https://files.klauspost.com/compress/github-june-2days-2019.json.zst - -file out level insize outsize millis mb/s -github-june-2days-2019.json zskp 1 6273951764 697439532 9789 611.17 -github-june-2days-2019.json zskp 2 6273951764 610876538 18553 322.49 -github-june-2days-2019.json zskp 3 6273951764 517662858 44186 135.41 -github-june-2days-2019.json zskp 4 6273951764 464617114 165373 36.18 - -github-june-2days-2019.json zstd 1 6273951764 766284037 8450 708.00 -github-june-2days-2019.json zstd 3 6273951764 661889476 10927 547.57 -github-june-2days-2019.json zstd 6 6273951764 642756859 22996 260.18 -github-june-2days-2019.json zstd 9 6273951764 601974523 52413 114.16 - -github-june-2days-2019.json gzstd 1 6273951764 1164397768 26793 223.32 -github-june-2days-2019.json gzkp 1 6273951764 1120631856 17693 338.16 - -VM Image, Linux mint with a few installed applications: -https://files.klauspost.com/compress/rawstudio-mint14.7z - -file out level insize outsize millis mb/s -rawstudio-mint14.tar zskp 1 8558382592 3718400221 18206 448.29 -rawstudio-mint14.tar zskp 2 8558382592 3326118337 37074 220.15 -rawstudio-mint14.tar zskp 3 8558382592 3163842361 87306 93.49 -rawstudio-mint14.tar zskp 4 8558382592 2970480650 783862 10.41 - -rawstudio-mint14.tar zstd 1 8558382592 3609250104 17136 476.27 -rawstudio-mint14.tar zstd 3 8558382592 3341679997 29262 278.92 -rawstudio-mint14.tar zstd 6 8558382592 3235846406 77904 104.77 -rawstudio-mint14.tar zstd 9 8558382592 3160778861 140946 57.91 - -rawstudio-mint14.tar gzstd 1 8558382592 3926234992 51345 158.96 -rawstudio-mint14.tar gzkp 1 8558382592 3960117298 36722 222.26 - -CSV data: -https://files.klauspost.com/compress/nyc-taxi-data-10M.csv.zst - -file out level insize outsize millis mb/s -nyc-taxi-data-10M.csv zskp 1 3325605752 641319332 9462 335.17 -nyc-taxi-data-10M.csv zskp 2 3325605752 588976126 17570 180.50 -nyc-taxi-data-10M.csv zskp 3 3325605752 529329260 32432 97.79 -nyc-taxi-data-10M.csv zskp 4 3325605752 474949772 138025 22.98 - -nyc-taxi-data-10M.csv zstd 1 3325605752 687399637 8233 385.18 -nyc-taxi-data-10M.csv zstd 3 3325605752 598514411 10065 315.07 -nyc-taxi-data-10M.csv zstd 6 3325605752 570522953 20038 158.27 -nyc-taxi-data-10M.csv zstd 9 3325605752 517554797 64565 49.12 - -nyc-taxi-data-10M.csv gzstd 1 3325605752 928654908 21270 149.11 -nyc-taxi-data-10M.csv gzkp 1 3325605752 922273214 13929 227.68 -``` - -## Decompressor - -Status: STABLE - there may still be subtle bugs, but a wide variety of content has been tested. - -This library is being continuously [fuzz-tested](https://github.com/klauspost/compress-fuzz), -kindly supplied by [fuzzit.dev](https://fuzzit.dev/). -The main purpose of the fuzz testing is to ensure that it is not possible to crash the decoder, -or run it past its limits with ANY input provided. - -### Usage - -The package has been designed for two main usages, big streams of data and smaller in-memory buffers. -There are two main usages of the package for these. Both of them are accessed by creating a `Decoder`. - -For streaming use a simple setup could look like this: - -```Go -import "github.com/klauspost/compress/zstd" - -func Decompress(in io.Reader, out io.Writer) error { - d, err := zstd.NewReader(in) - if err != nil { - return err - } - defer d.Close() - - // Copy content... - _, err = io.Copy(out, d) - return err -} -``` - -It is important to use the "Close" function when you no longer need the Reader to stop running goroutines, -when running with default settings. -Goroutines will exit once an error has been returned, including `io.EOF` at the end of a stream. - -Streams are decoded concurrently in 4 asynchronous stages to give the best possible throughput. -However, if you prefer synchronous decompression, use `WithDecoderConcurrency(1)` which will decompress data -as it is being requested only. - -For decoding buffers, it could look something like this: - -```Go -import "github.com/klauspost/compress/zstd" - -// Create a reader that caches decompressors. -// For this operation type we supply a nil Reader. -var decoder, _ = zstd.NewReader(nil, zstd.WithDecoderConcurrency(0)) - -// Decompress a buffer. We don't supply a destination buffer, -// so it will be allocated by the decoder. -func Decompress(src []byte) ([]byte, error) { - return decoder.DecodeAll(src, nil) -} -``` - -Both of these cases should provide the functionality needed. -The decoder can be used for *concurrent* decompression of multiple buffers. -By default 4 decompressors will be created. - -It will only allow a certain number of concurrent operations to run. -To tweak that yourself use the `WithDecoderConcurrency(n)` option when creating the decoder. -It is possible to use `WithDecoderConcurrency(0)` to create GOMAXPROCS decoders. - -### Dictionaries - -Data compressed with [dictionaries](https://github.com/facebook/zstd#the-case-for-small-data-compression) can be decompressed. - -Dictionaries are added individually to Decoders. -Dictionaries are generated by the `zstd --train` command and contains an initial state for the decoder. -To add a dictionary use the `WithDecoderDicts(dicts ...[]byte)` option with the dictionary data. -Several dictionaries can be added at once. - -The dictionary will be used automatically for the data that specifies them. -A re-used Decoder will still contain the dictionaries registered. - -When registering multiple dictionaries with the same ID, the last one will be used. - -It is possible to use dictionaries when compressing data. - -To enable a dictionary use `WithEncoderDict(dict []byte)`. Here only one dictionary will be used -and it will likely be used even if it doesn't improve compression. - -The used dictionary must be used to decompress the content. - -For any real gains, the dictionary should be built with similar data. -If an unsuitable dictionary is used the output may be slightly larger than using no dictionary. -Use the [zstd commandline tool](https://github.com/facebook/zstd/releases) to build a dictionary from sample data. -For information see [zstd dictionary information](https://github.com/facebook/zstd#the-case-for-small-data-compression). - -For now there is a fixed startup performance penalty for compressing content with dictionaries. -This will likely be improved over time. Just be aware to test performance when implementing. - -### Allocation-less operation - -The decoder has been designed to operate without allocations after a warmup. - -This means that you should *store* the decoder for best performance. -To re-use a stream decoder, use the `Reset(r io.Reader) error` to switch to another stream. -A decoder can safely be re-used even if the previous stream failed. - -To release the resources, you must call the `Close()` function on a decoder. -After this it can *no longer be reused*, but all running goroutines will be stopped. -So you *must* use this if you will no longer need the Reader. - -For decompressing smaller buffers a single decoder can be used. -When decoding buffers, you can supply a destination slice with length 0 and your expected capacity. -In this case no unneeded allocations should be made. - -### Concurrency - -The buffer decoder does everything on the same goroutine and does nothing concurrently. -It can however decode several buffers concurrently. Use `WithDecoderConcurrency(n)` to limit that. - -The stream decoder will create goroutines that: - -1) Reads input and splits the input into blocks. -2) Decompression of literals. -3) Decompression of sequences. -4) Reconstruction of output stream. - -So effectively this also means the decoder will "read ahead" and prepare data to always be available for output. - -The concurrency level will, for streams, determine how many blocks ahead the compression will start. - -Since "blocks" are quite dependent on the output of the previous block stream decoding will only have limited concurrency. - -In practice this means that concurrency is often limited to utilizing about 3 cores effectively. - -### Benchmarks - -The first two are streaming decodes and the last are smaller inputs. - -Running on AMD Ryzen 9 3950X 16-Core Processor. AMD64 assembly used. - -``` -BenchmarkDecoderSilesia-32 5 206878840 ns/op 1024.50 MB/s 49808 B/op 43 allocs/op -BenchmarkDecoderEnwik9-32 1 1271809000 ns/op 786.28 MB/s 72048 B/op 52 allocs/op - -Concurrent blocks, performance: - -BenchmarkDecoder_DecodeAllParallel/kppkn.gtb.zst-32 67356 17857 ns/op 10321.96 MB/s 22.48 pct 102 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/geo.protodata.zst-32 266656 4421 ns/op 26823.21 MB/s 11.89 pct 19 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/plrabn12.txt.zst-32 20992 56842 ns/op 8477.17 MB/s 39.90 pct 754 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/lcet10.txt.zst-32 27456 43932 ns/op 9714.01 MB/s 33.27 pct 524 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/asyoulik.txt.zst-32 78432 15047 ns/op 8319.15 MB/s 40.34 pct 66 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/alice29.txt.zst-32 65800 18436 ns/op 8249.63 MB/s 37.75 pct 88 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/html_x_4.zst-32 102993 11523 ns/op 35546.09 MB/s 3.637 pct 143 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/paper-100k.pdf.zst-32 1000000 1070 ns/op 95720.98 MB/s 80.53 pct 3 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/fireworks.jpeg.zst-32 749802 1752 ns/op 70272.35 MB/s 100.0 pct 5 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/urls.10K.zst-32 22640 52934 ns/op 13263.37 MB/s 26.25 pct 1014 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/html.zst-32 226412 5232 ns/op 19572.27 MB/s 14.49 pct 20 B/op 0 allocs/op -BenchmarkDecoder_DecodeAllParallel/comp-data.bin.zst-32 923041 1276 ns/op 3194.71 MB/s 31.26 pct 0 B/op 0 allocs/op -``` - -This reflects the performance around May 2022, but this may be out of date. - -## Zstd inside ZIP files - -It is possible to use zstandard to compress individual files inside zip archives. -While this isn't widely supported it can be useful for internal files. - -To support the compression and decompression of these files you must register a compressor and decompressor. - -It is highly recommended registering the (de)compressors on individual zip Reader/Writer and NOT -use the global registration functions. The main reason for this is that 2 registrations from -different packages will result in a panic. - -It is a good idea to only have a single compressor and decompressor, since they can be used for multiple zip -files concurrently, and using a single instance will allow reusing some resources. - -See [this example](https://pkg.go.dev/github.com/klauspost/compress/zstd#example-ZipCompressor) for -how to compress and decompress files inside zip archives. - -# Contributions - -Contributions are always welcome. -For new features/fixes, remember to add tests and for performance enhancements include benchmarks. - -For general feedback and experience reports, feel free to open an issue or write me on [Twitter](https://twitter.com/sh0dan). - -This package includes the excellent [`github.com/cespare/xxhash`](https://github.com/cespare/xxhash) package Copyright (c) 2016 Caleb Spare. |