diff options
Diffstat (limited to 'vendor/github.com/klauspost/compress/fse')
-rw-r--r-- | vendor/github.com/klauspost/compress/fse/README.md | 79 | ||||
-rw-r--r-- | vendor/github.com/klauspost/compress/fse/bitreader.go | 122 | ||||
-rw-r--r-- | vendor/github.com/klauspost/compress/fse/bitwriter.go | 167 | ||||
-rw-r--r-- | vendor/github.com/klauspost/compress/fse/bytereader.go | 47 | ||||
-rw-r--r-- | vendor/github.com/klauspost/compress/fse/compress.go | 683 | ||||
-rw-r--r-- | vendor/github.com/klauspost/compress/fse/decompress.go | 376 | ||||
-rw-r--r-- | vendor/github.com/klauspost/compress/fse/fse.go | 144 |
7 files changed, 0 insertions, 1618 deletions
diff --git a/vendor/github.com/klauspost/compress/fse/README.md b/vendor/github.com/klauspost/compress/fse/README.md deleted file mode 100644 index ea7324da6..000000000 --- a/vendor/github.com/klauspost/compress/fse/README.md +++ /dev/null @@ -1,79 +0,0 @@ -# Finite State Entropy
-
-This package provides Finite State Entropy encoding and decoding.
-
-Finite State Entropy (also referenced as [tANS](https://en.wikipedia.org/wiki/Asymmetric_numeral_systems#tANS))
-encoding provides a fast near-optimal symbol encoding/decoding
-for byte blocks as implemented in [zstandard](https://github.com/facebook/zstd).
-
-This can be used for compressing input with a lot of similar input values to the smallest number of bytes.
-This does not perform any multi-byte [dictionary coding](https://en.wikipedia.org/wiki/Dictionary_coder) as LZ coders,
-but it can be used as a secondary step to compressors (like Snappy) that does not do entropy encoding.
-
-* [Godoc documentation](https://godoc.org/github.com/klauspost/compress/fse)
-
-## News
-
- * Feb 2018: First implementation released. Consider this beta software for now.
-
-# Usage
-
-This package provides a low level interface that allows to compress single independent blocks.
-
-Each block is separate, and there is no built in integrity checks.
-This means that the caller should keep track of block sizes and also do checksums if needed.
-
-Compressing a block is done via the [`Compress`](https://godoc.org/github.com/klauspost/compress/fse#Compress) function.
-You must provide input and will receive the output and maybe an error.
-
-These error values can be returned:
-
-| Error | Description |
-|---------------------|-----------------------------------------------------------------------------|
-| `<nil>` | Everything ok, output is returned |
-| `ErrIncompressible` | Returned when input is judged to be too hard to compress |
-| `ErrUseRLE` | Returned from the compressor when the input is a single byte value repeated |
-| `(error)` | An internal error occurred. |
-
-As can be seen above there are errors that will be returned even under normal operation so it is important to handle these.
-
-To reduce allocations you can provide a [`Scratch`](https://godoc.org/github.com/klauspost/compress/fse#Scratch) object
-that can be re-used for successive calls. Both compression and decompression accepts a `Scratch` object, and the same
-object can be used for both.
-
-Be aware, that when re-using a `Scratch` object that the *output* buffer is also re-used, so if you are still using this
-you must set the `Out` field in the scratch to nil. The same buffer is used for compression and decompression output.
-
-Decompressing is done by calling the [`Decompress`](https://godoc.org/github.com/klauspost/compress/fse#Decompress) function.
-You must provide the output from the compression stage, at exactly the size you got back. If you receive an error back
-your input was likely corrupted.
-
-It is important to note that a successful decoding does *not* mean your output matches your original input.
-There are no integrity checks, so relying on errors from the decompressor does not assure your data is valid.
-
-For more detailed usage, see examples in the [godoc documentation](https://godoc.org/github.com/klauspost/compress/fse#pkg-examples).
-
-# Performance
-
-A lot of factors are affecting speed. Block sizes and compressibility of the material are primary factors.
-All compression functions are currently only running on the calling goroutine so only one core will be used per block.
-
-The compressor is significantly faster if symbols are kept as small as possible. The highest byte value of the input
-is used to reduce some of the processing, so if all your input is above byte value 64 for instance, it may be
-beneficial to transpose all your input values down by 64.
-
-With moderate block sizes around 64k speed are typically 200MB/s per core for compression and
-around 300MB/s decompression speed.
-
-The same hardware typically does Huffman (deflate) encoding at 125MB/s and decompression at 100MB/s.
-
-# Plans
-
-At one point, more internals will be exposed to facilitate more "expert" usage of the components.
-
-A streaming interface is also likely to be implemented. Likely compatible with [FSE stream format](https://github.com/Cyan4973/FiniteStateEntropy/blob/dev/programs/fileio.c#L261).
-
-# Contributing
-
-Contributions are always welcome. Be aware that adding public functions will require good justification and breaking
-changes will likely not be accepted. If in doubt open an issue before writing the PR.
\ No newline at end of file diff --git a/vendor/github.com/klauspost/compress/fse/bitreader.go b/vendor/github.com/klauspost/compress/fse/bitreader.go deleted file mode 100644 index f65eb3909..000000000 --- a/vendor/github.com/klauspost/compress/fse/bitreader.go +++ /dev/null @@ -1,122 +0,0 @@ -// Copyright 2018 Klaus Post. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. -// Based on work Copyright (c) 2013, Yann Collet, released under BSD License. - -package fse - -import ( - "encoding/binary" - "errors" - "io" -) - -// bitReader reads a bitstream in reverse. -// The last set bit indicates the start of the stream and is used -// for aligning the input. -type bitReader struct { - in []byte - off uint // next byte to read is at in[off - 1] - value uint64 - bitsRead uint8 -} - -// init initializes and resets the bit reader. -func (b *bitReader) init(in []byte) error { - if len(in) < 1 { - return errors.New("corrupt stream: too short") - } - b.in = in - b.off = uint(len(in)) - // The highest bit of the last byte indicates where to start - v := in[len(in)-1] - if v == 0 { - return errors.New("corrupt stream, did not find end of stream") - } - b.bitsRead = 64 - b.value = 0 - if len(in) >= 8 { - b.fillFastStart() - } else { - b.fill() - b.fill() - } - b.bitsRead += 8 - uint8(highBits(uint32(v))) - return nil -} - -// getBits will return n bits. n can be 0. -func (b *bitReader) getBits(n uint8) uint16 { - if n == 0 || b.bitsRead >= 64 { - return 0 - } - return b.getBitsFast(n) -} - -// getBitsFast requires that at least one bit is requested every time. -// There are no checks if the buffer is filled. -func (b *bitReader) getBitsFast(n uint8) uint16 { - const regMask = 64 - 1 - v := uint16((b.value << (b.bitsRead & regMask)) >> ((regMask + 1 - n) & regMask)) - b.bitsRead += n - return v -} - -// fillFast() will make sure at least 32 bits are available. -// There must be at least 4 bytes available. -func (b *bitReader) fillFast() { - if b.bitsRead < 32 { - return - } - // 2 bounds checks. - v := b.in[b.off-4:] - v = v[:4] - low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24) - b.value = (b.value << 32) | uint64(low) - b.bitsRead -= 32 - b.off -= 4 -} - -// fill() will make sure at least 32 bits are available. -func (b *bitReader) fill() { - if b.bitsRead < 32 { - return - } - if b.off > 4 { - v := b.in[b.off-4:] - v = v[:4] - low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24) - b.value = (b.value << 32) | uint64(low) - b.bitsRead -= 32 - b.off -= 4 - return - } - for b.off > 0 { - b.value = (b.value << 8) | uint64(b.in[b.off-1]) - b.bitsRead -= 8 - b.off-- - } -} - -// fillFastStart() assumes the bitreader is empty and there is at least 8 bytes to read. -func (b *bitReader) fillFastStart() { - // Do single re-slice to avoid bounds checks. - b.value = binary.LittleEndian.Uint64(b.in[b.off-8:]) - b.bitsRead = 0 - b.off -= 8 -} - -// finished returns true if all bits have been read from the bit stream. -func (b *bitReader) finished() bool { - return b.bitsRead >= 64 && b.off == 0 -} - -// close the bitstream and returns an error if out-of-buffer reads occurred. -func (b *bitReader) close() error { - // Release reference. - b.in = nil - if b.bitsRead > 64 { - return io.ErrUnexpectedEOF - } - return nil -} diff --git a/vendor/github.com/klauspost/compress/fse/bitwriter.go b/vendor/github.com/klauspost/compress/fse/bitwriter.go deleted file mode 100644 index e82fa3bb7..000000000 --- a/vendor/github.com/klauspost/compress/fse/bitwriter.go +++ /dev/null @@ -1,167 +0,0 @@ -// Copyright 2018 Klaus Post. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. -// Based on work Copyright (c) 2013, Yann Collet, released under BSD License. - -package fse - -import "fmt" - -// bitWriter will write bits. -// First bit will be LSB of the first byte of output. -type bitWriter struct { - bitContainer uint64 - nBits uint8 - out []byte -} - -// bitMask16 is bitmasks. Has extra to avoid bounds check. -var bitMask16 = [32]uint16{ - 0, 1, 3, 7, 0xF, 0x1F, - 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, - 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0xFFFF, - 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, - 0xFFFF, 0xFFFF} /* up to 16 bits */ - -// addBits16NC will add up to 16 bits. -// It will not check if there is space for them, -// so the caller must ensure that it has flushed recently. -func (b *bitWriter) addBits16NC(value uint16, bits uint8) { - b.bitContainer |= uint64(value&bitMask16[bits&31]) << (b.nBits & 63) - b.nBits += bits -} - -// addBits16Clean will add up to 16 bits. value may not contain more set bits than indicated. -// It will not check if there is space for them, so the caller must ensure that it has flushed recently. -func (b *bitWriter) addBits16Clean(value uint16, bits uint8) { - b.bitContainer |= uint64(value) << (b.nBits & 63) - b.nBits += bits -} - -// addBits16ZeroNC will add up to 16 bits. -// It will not check if there is space for them, -// so the caller must ensure that it has flushed recently. -// This is fastest if bits can be zero. -func (b *bitWriter) addBits16ZeroNC(value uint16, bits uint8) { - if bits == 0 { - return - } - value <<= (16 - bits) & 15 - value >>= (16 - bits) & 15 - b.bitContainer |= uint64(value) << (b.nBits & 63) - b.nBits += bits -} - -// flush will flush all pending full bytes. -// There will be at least 56 bits available for writing when this has been called. -// Using flush32 is faster, but leaves less space for writing. -func (b *bitWriter) flush() { - v := b.nBits >> 3 - switch v { - case 0: - case 1: - b.out = append(b.out, - byte(b.bitContainer), - ) - case 2: - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - ) - case 3: - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - byte(b.bitContainer>>16), - ) - case 4: - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - byte(b.bitContainer>>16), - byte(b.bitContainer>>24), - ) - case 5: - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - byte(b.bitContainer>>16), - byte(b.bitContainer>>24), - byte(b.bitContainer>>32), - ) - case 6: - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - byte(b.bitContainer>>16), - byte(b.bitContainer>>24), - byte(b.bitContainer>>32), - byte(b.bitContainer>>40), - ) - case 7: - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - byte(b.bitContainer>>16), - byte(b.bitContainer>>24), - byte(b.bitContainer>>32), - byte(b.bitContainer>>40), - byte(b.bitContainer>>48), - ) - case 8: - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - byte(b.bitContainer>>16), - byte(b.bitContainer>>24), - byte(b.bitContainer>>32), - byte(b.bitContainer>>40), - byte(b.bitContainer>>48), - byte(b.bitContainer>>56), - ) - default: - panic(fmt.Errorf("bits (%d) > 64", b.nBits)) - } - b.bitContainer >>= v << 3 - b.nBits &= 7 -} - -// flush32 will flush out, so there are at least 32 bits available for writing. -func (b *bitWriter) flush32() { - if b.nBits < 32 { - return - } - b.out = append(b.out, - byte(b.bitContainer), - byte(b.bitContainer>>8), - byte(b.bitContainer>>16), - byte(b.bitContainer>>24)) - b.nBits -= 32 - b.bitContainer >>= 32 -} - -// flushAlign will flush remaining full bytes and align to next byte boundary. -func (b *bitWriter) flushAlign() { - nbBytes := (b.nBits + 7) >> 3 - for i := uint8(0); i < nbBytes; i++ { - b.out = append(b.out, byte(b.bitContainer>>(i*8))) - } - b.nBits = 0 - b.bitContainer = 0 -} - -// close will write the alignment bit and write the final byte(s) -// to the output. -func (b *bitWriter) close() { - // End mark - b.addBits16Clean(1, 1) - // flush until next byte. - b.flushAlign() -} - -// reset and continue writing by appending to out. -func (b *bitWriter) reset(out []byte) { - b.bitContainer = 0 - b.nBits = 0 - b.out = out -} diff --git a/vendor/github.com/klauspost/compress/fse/bytereader.go b/vendor/github.com/klauspost/compress/fse/bytereader.go deleted file mode 100644 index abade2d60..000000000 --- a/vendor/github.com/klauspost/compress/fse/bytereader.go +++ /dev/null @@ -1,47 +0,0 @@ -// Copyright 2018 Klaus Post. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. -// Based on work Copyright (c) 2013, Yann Collet, released under BSD License. - -package fse - -// byteReader provides a byte reader that reads -// little endian values from a byte stream. -// The input stream is manually advanced. -// The reader performs no bounds checks. -type byteReader struct { - b []byte - off int -} - -// init will initialize the reader and set the input. -func (b *byteReader) init(in []byte) { - b.b = in - b.off = 0 -} - -// advance the stream b n bytes. -func (b *byteReader) advance(n uint) { - b.off += int(n) -} - -// Uint32 returns a little endian uint32 starting at current offset. -func (b byteReader) Uint32() uint32 { - b2 := b.b[b.off:] - b2 = b2[:4] - v3 := uint32(b2[3]) - v2 := uint32(b2[2]) - v1 := uint32(b2[1]) - v0 := uint32(b2[0]) - return v0 | (v1 << 8) | (v2 << 16) | (v3 << 24) -} - -// unread returns the unread portion of the input. -func (b byteReader) unread() []byte { - return b.b[b.off:] -} - -// remain will return the number of bytes remaining. -func (b byteReader) remain() int { - return len(b.b) - b.off -} diff --git a/vendor/github.com/klauspost/compress/fse/compress.go b/vendor/github.com/klauspost/compress/fse/compress.go deleted file mode 100644 index 074018d8f..000000000 --- a/vendor/github.com/klauspost/compress/fse/compress.go +++ /dev/null @@ -1,683 +0,0 @@ -// Copyright 2018 Klaus Post. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. -// Based on work Copyright (c) 2013, Yann Collet, released under BSD License. - -package fse - -import ( - "errors" - "fmt" -) - -// Compress the input bytes. Input must be < 2GB. -// Provide a Scratch buffer to avoid memory allocations. -// Note that the output is also kept in the scratch buffer. -// If input is too hard to compress, ErrIncompressible is returned. -// If input is a single byte value repeated ErrUseRLE is returned. -func Compress(in []byte, s *Scratch) ([]byte, error) { - if len(in) <= 1 { - return nil, ErrIncompressible - } - if len(in) > (2<<30)-1 { - return nil, errors.New("input too big, must be < 2GB") - } - s, err := s.prepare(in) - if err != nil { - return nil, err - } - - // Create histogram, if none was provided. - maxCount := s.maxCount - if maxCount == 0 { - maxCount = s.countSimple(in) - } - // Reset for next run. - s.clearCount = true - s.maxCount = 0 - if maxCount == len(in) { - // One symbol, use RLE - return nil, ErrUseRLE - } - if maxCount == 1 || maxCount < (len(in)>>7) { - // Each symbol present maximum once or too well distributed. - return nil, ErrIncompressible - } - s.optimalTableLog() - err = s.normalizeCount() - if err != nil { - return nil, err - } - err = s.writeCount() - if err != nil { - return nil, err - } - - if false { - err = s.validateNorm() - if err != nil { - return nil, err - } - } - - err = s.buildCTable() - if err != nil { - return nil, err - } - err = s.compress(in) - if err != nil { - return nil, err - } - s.Out = s.bw.out - // Check if we compressed. - if len(s.Out) >= len(in) { - return nil, ErrIncompressible - } - return s.Out, nil -} - -// cState contains the compression state of a stream. -type cState struct { - bw *bitWriter - stateTable []uint16 - state uint16 -} - -// init will initialize the compression state to the first symbol of the stream. -func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) { - c.bw = bw - c.stateTable = ct.stateTable - - nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 - im := int32((nbBitsOut << 16) - first.deltaNbBits) - lu := (im >> nbBitsOut) + first.deltaFindState - c.state = c.stateTable[lu] -} - -// encode the output symbol provided and write it to the bitstream. -func (c *cState) encode(symbolTT symbolTransform) { - nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 - dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState - c.bw.addBits16NC(c.state, uint8(nbBitsOut)) - c.state = c.stateTable[dstState] -} - -// encode the output symbol provided and write it to the bitstream. -func (c *cState) encodeZero(symbolTT symbolTransform) { - nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 - dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState - c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut)) - c.state = c.stateTable[dstState] -} - -// flush will write the tablelog to the output and flush the remaining full bytes. -func (c *cState) flush(tableLog uint8) { - c.bw.flush32() - c.bw.addBits16NC(c.state, tableLog) - c.bw.flush() -} - -// compress is the main compression loop that will encode the input from the last byte to the first. -func (s *Scratch) compress(src []byte) error { - if len(src) <= 2 { - return errors.New("compress: src too small") - } - tt := s.ct.symbolTT[:256] - s.bw.reset(s.Out) - - // Our two states each encodes every second byte. - // Last byte encoded (first byte decoded) will always be encoded by c1. - var c1, c2 cState - - // Encode so remaining size is divisible by 4. - ip := len(src) - if ip&1 == 1 { - c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]]) - c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]]) - c1.encodeZero(tt[src[ip-3]]) - ip -= 3 - } else { - c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]]) - c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]]) - ip -= 2 - } - if ip&2 != 0 { - c2.encodeZero(tt[src[ip-1]]) - c1.encodeZero(tt[src[ip-2]]) - ip -= 2 - } - src = src[:ip] - - // Main compression loop. - switch { - case !s.zeroBits && s.actualTableLog <= 8: - // We can encode 4 symbols without requiring a flush. - // We do not need to check if any output is 0 bits. - for ; len(src) >= 4; src = src[:len(src)-4] { - s.bw.flush32() - v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1] - c2.encode(tt[v0]) - c1.encode(tt[v1]) - c2.encode(tt[v2]) - c1.encode(tt[v3]) - } - case !s.zeroBits: - // We do not need to check if any output is 0 bits. - for ; len(src) >= 4; src = src[:len(src)-4] { - s.bw.flush32() - v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1] - c2.encode(tt[v0]) - c1.encode(tt[v1]) - s.bw.flush32() - c2.encode(tt[v2]) - c1.encode(tt[v3]) - } - case s.actualTableLog <= 8: - // We can encode 4 symbols without requiring a flush - for ; len(src) >= 4; src = src[:len(src)-4] { - s.bw.flush32() - v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1] - c2.encodeZero(tt[v0]) - c1.encodeZero(tt[v1]) - c2.encodeZero(tt[v2]) - c1.encodeZero(tt[v3]) - } - default: - for ; len(src) >= 4; src = src[:len(src)-4] { - s.bw.flush32() - v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1] - c2.encodeZero(tt[v0]) - c1.encodeZero(tt[v1]) - s.bw.flush32() - c2.encodeZero(tt[v2]) - c1.encodeZero(tt[v3]) - } - } - - // Flush final state. - // Used to initialize state when decoding. - c2.flush(s.actualTableLog) - c1.flush(s.actualTableLog) - - s.bw.close() - return nil -} - -// writeCount will write the normalized histogram count to header. -// This is read back by readNCount. -func (s *Scratch) writeCount() error { - var ( - tableLog = s.actualTableLog - tableSize = 1 << tableLog - previous0 bool - charnum uint16 - - maxHeaderSize = ((int(s.symbolLen)*int(tableLog) + 4 + 2) >> 3) + 3 - - // Write Table Size - bitStream = uint32(tableLog - minTablelog) - bitCount = uint(4) - remaining = int16(tableSize + 1) /* +1 for extra accuracy */ - threshold = int16(tableSize) - nbBits = uint(tableLog + 1) - ) - if cap(s.Out) < maxHeaderSize { - s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize) - } - outP := uint(0) - out := s.Out[:maxHeaderSize] - - // stops at 1 - for remaining > 1 { - if previous0 { - start := charnum - for s.norm[charnum] == 0 { - charnum++ - } - for charnum >= start+24 { - start += 24 - bitStream += uint32(0xFFFF) << bitCount - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += 2 - bitStream >>= 16 - } - for charnum >= start+3 { - start += 3 - bitStream += 3 << bitCount - bitCount += 2 - } - bitStream += uint32(charnum-start) << bitCount - bitCount += 2 - if bitCount > 16 { - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += 2 - bitStream >>= 16 - bitCount -= 16 - } - } - - count := s.norm[charnum] - charnum++ - max := (2*threshold - 1) - remaining - if count < 0 { - remaining += count - } else { - remaining -= count - } - count++ // +1 for extra accuracy - if count >= threshold { - count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ - } - bitStream += uint32(count) << bitCount - bitCount += nbBits - if count < max { - bitCount-- - } - - previous0 = count == 1 - if remaining < 1 { - return errors.New("internal error: remaining<1") - } - for remaining < threshold { - nbBits-- - threshold >>= 1 - } - - if bitCount > 16 { - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += 2 - bitStream >>= 16 - bitCount -= 16 - } - } - - out[outP] = byte(bitStream) - out[outP+1] = byte(bitStream >> 8) - outP += (bitCount + 7) / 8 - - if charnum > s.symbolLen { - return errors.New("internal error: charnum > s.symbolLen") - } - s.Out = out[:outP] - return nil -} - -// symbolTransform contains the state transform for a symbol. -type symbolTransform struct { - deltaFindState int32 - deltaNbBits uint32 -} - -// String prints values as a human readable string. -func (s symbolTransform) String() string { - return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState) -} - -// cTable contains tables used for compression. -type cTable struct { - tableSymbol []byte - stateTable []uint16 - symbolTT []symbolTransform -} - -// allocCtable will allocate tables needed for compression. -// If existing tables a re big enough, they are simply re-used. -func (s *Scratch) allocCtable() { - tableSize := 1 << s.actualTableLog - // get tableSymbol that is big enough. - if cap(s.ct.tableSymbol) < tableSize { - s.ct.tableSymbol = make([]byte, tableSize) - } - s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] - - ctSize := tableSize - if cap(s.ct.stateTable) < ctSize { - s.ct.stateTable = make([]uint16, ctSize) - } - s.ct.stateTable = s.ct.stateTable[:ctSize] - - if cap(s.ct.symbolTT) < 256 { - s.ct.symbolTT = make([]symbolTransform, 256) - } - s.ct.symbolTT = s.ct.symbolTT[:256] -} - -// buildCTable will populate the compression table so it is ready to be used. -func (s *Scratch) buildCTable() error { - tableSize := uint32(1 << s.actualTableLog) - highThreshold := tableSize - 1 - var cumul [maxSymbolValue + 2]int16 - - s.allocCtable() - tableSymbol := s.ct.tableSymbol[:tableSize] - // symbol start positions - { - cumul[0] = 0 - for ui, v := range s.norm[:s.symbolLen-1] { - u := byte(ui) // one less than reference - if v == -1 { - // Low proba symbol - cumul[u+1] = cumul[u] + 1 - tableSymbol[highThreshold] = u - highThreshold-- - } else { - cumul[u+1] = cumul[u] + v - } - } - // Encode last symbol separately to avoid overflowing u - u := int(s.symbolLen - 1) - v := s.norm[s.symbolLen-1] - if v == -1 { - // Low proba symbol - cumul[u+1] = cumul[u] + 1 - tableSymbol[highThreshold] = byte(u) - highThreshold-- - } else { - cumul[u+1] = cumul[u] + v - } - if uint32(cumul[s.symbolLen]) != tableSize { - return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) - } - cumul[s.symbolLen] = int16(tableSize) + 1 - } - // Spread symbols - s.zeroBits = false - { - step := tableStep(tableSize) - tableMask := tableSize - 1 - var position uint32 - // if any symbol > largeLimit, we may have 0 bits output. - largeLimit := int16(1 << (s.actualTableLog - 1)) - for ui, v := range s.norm[:s.symbolLen] { - symbol := byte(ui) - if v > largeLimit { - s.zeroBits = true - } - for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { - tableSymbol[position] = symbol - position = (position + step) & tableMask - for position > highThreshold { - position = (position + step) & tableMask - } /* Low proba area */ - } - } - - // Check if we have gone through all positions - if position != 0 { - return errors.New("position!=0") - } - } - - // Build table - table := s.ct.stateTable - { - tsi := int(tableSize) - for u, v := range tableSymbol { - // TableU16 : sorted by symbol order; gives next state value - table[cumul[v]] = uint16(tsi + u) - cumul[v]++ - } - } - - // Build Symbol Transformation Table - { - total := int16(0) - symbolTT := s.ct.symbolTT[:s.symbolLen] - tableLog := s.actualTableLog - tl := (uint32(tableLog) << 16) - (1 << tableLog) - for i, v := range s.norm[:s.symbolLen] { - switch v { - case 0: - case -1, 1: - symbolTT[i].deltaNbBits = tl - symbolTT[i].deltaFindState = int32(total - 1) - total++ - default: - maxBitsOut := uint32(tableLog) - highBits(uint32(v-1)) - minStatePlus := uint32(v) << maxBitsOut - symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus - symbolTT[i].deltaFindState = int32(total - v) - total += v - } - } - if total != int16(tableSize) { - return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) - } - } - return nil -} - -// countSimple will create a simple histogram in s.count. -// Returns the biggest count. -// Does not update s.clearCount. -func (s *Scratch) countSimple(in []byte) (max int) { - for _, v := range in { - s.count[v]++ - } - m, symlen := uint32(0), s.symbolLen - for i, v := range s.count[:] { - if v == 0 { - continue - } - if v > m { - m = v - } - symlen = uint16(i) + 1 - } - s.symbolLen = symlen - return int(m) -} - -// minTableLog provides the minimum logSize to safely represent a distribution. -func (s *Scratch) minTableLog() uint8 { - minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1 - minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2 - if minBitsSrc < minBitsSymbols { - return uint8(minBitsSrc) - } - return uint8(minBitsSymbols) -} - -// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog -func (s *Scratch) optimalTableLog() { - tableLog := s.TableLog - minBits := s.minTableLog() - maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2 - if maxBitsSrc < tableLog { - // Accuracy can be reduced - tableLog = maxBitsSrc - } - if minBits > tableLog { - tableLog = minBits - } - // Need a minimum to safely represent all symbol values - if tableLog < minTablelog { - tableLog = minTablelog - } - if tableLog > maxTableLog { - tableLog = maxTableLog - } - s.actualTableLog = tableLog -} - -var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} - -// normalizeCount will normalize the count of the symbols so -// the total is equal to the table size. -func (s *Scratch) normalizeCount() error { - var ( - tableLog = s.actualTableLog - scale = 62 - uint64(tableLog) - step = (1 << 62) / uint64(s.br.remain()) - vStep = uint64(1) << (scale - 20) - stillToDistribute = int16(1 << tableLog) - largest int - largestP int16 - lowThreshold = (uint32)(s.br.remain() >> tableLog) - ) - - for i, cnt := range s.count[:s.symbolLen] { - // already handled - // if (count[s] == s.length) return 0; /* rle special case */ - - if cnt == 0 { - s.norm[i] = 0 - continue - } - if cnt <= lowThreshold { - s.norm[i] = -1 - stillToDistribute-- - } else { - proba := (int16)((uint64(cnt) * step) >> scale) - if proba < 8 { - restToBeat := vStep * uint64(rtbTable[proba]) - v := uint64(cnt)*step - (uint64(proba) << scale) - if v > restToBeat { - proba++ - } - } - if proba > largestP { - largestP = proba - largest = i - } - s.norm[i] = proba - stillToDistribute -= proba - } - } - - if -stillToDistribute >= (s.norm[largest] >> 1) { - // corner case, need another normalization method - return s.normalizeCount2() - } - s.norm[largest] += stillToDistribute - return nil -} - -// Secondary normalization method. -// To be used when primary method fails. -func (s *Scratch) normalizeCount2() error { - const notYetAssigned = -2 - var ( - distributed uint32 - total = uint32(s.br.remain()) - tableLog = s.actualTableLog - lowThreshold = total >> tableLog - lowOne = (total * 3) >> (tableLog + 1) - ) - for i, cnt := range s.count[:s.symbolLen] { - if cnt == 0 { - s.norm[i] = 0 - continue - } - if cnt <= lowThreshold { - s.norm[i] = -1 - distributed++ - total -= cnt - continue - } - if cnt <= lowOne { - s.norm[i] = 1 - distributed++ - total -= cnt - continue - } - s.norm[i] = notYetAssigned - } - toDistribute := (1 << tableLog) - distributed - - if (total / toDistribute) > lowOne { - // risk of rounding to zero - lowOne = (total * 3) / (toDistribute * 2) - for i, cnt := range s.count[:s.symbolLen] { - if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { - s.norm[i] = 1 - distributed++ - total -= cnt - continue - } - } - toDistribute = (1 << tableLog) - distributed - } - if distributed == uint32(s.symbolLen)+1 { - // all values are pretty poor; - // probably incompressible data (should have already been detected); - // find max, then give all remaining points to max - var maxV int - var maxC uint32 - for i, cnt := range s.count[:s.symbolLen] { - if cnt > maxC { - maxV = i - maxC = cnt - } - } - s.norm[maxV] += int16(toDistribute) - return nil - } - - if total == 0 { - // all of the symbols were low enough for the lowOne or lowThreshold - for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { - if s.norm[i] > 0 { - toDistribute-- - s.norm[i]++ - } - } - return nil - } - - var ( - vStepLog = 62 - uint64(tableLog) - mid = uint64((1 << (vStepLog - 1)) - 1) - rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining - tmpTotal = mid - ) - for i, cnt := range s.count[:s.symbolLen] { - if s.norm[i] == notYetAssigned { - var ( - end = tmpTotal + uint64(cnt)*rStep - sStart = uint32(tmpTotal >> vStepLog) - sEnd = uint32(end >> vStepLog) - weight = sEnd - sStart - ) - if weight < 1 { - return errors.New("weight < 1") - } - s.norm[i] = int16(weight) - tmpTotal = end - } - } - return nil -} - -// validateNorm validates the normalized histogram table. -func (s *Scratch) validateNorm() (err error) { - var total int - for _, v := range s.norm[:s.symbolLen] { - if v >= 0 { - total += int(v) - } else { - total -= int(v) - } - } - defer func() { - if err == nil { - return - } - fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) - for i, v := range s.norm[:s.symbolLen] { - fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) - } - }() - if total != (1 << s.actualTableLog) { - return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) - } - for i, v := range s.count[s.symbolLen:] { - if v != 0 { - return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) - } - } - return nil -} diff --git a/vendor/github.com/klauspost/compress/fse/decompress.go b/vendor/github.com/klauspost/compress/fse/decompress.go deleted file mode 100644 index 0c7dd4ffe..000000000 --- a/vendor/github.com/klauspost/compress/fse/decompress.go +++ /dev/null @@ -1,376 +0,0 @@ -package fse - -import ( - "errors" - "fmt" -) - -const ( - tablelogAbsoluteMax = 15 -) - -// Decompress a block of data. -// You can provide a scratch buffer to avoid allocations. -// If nil is provided a temporary one will be allocated. -// It is possible, but by no way guaranteed that corrupt data will -// return an error. -// It is up to the caller to verify integrity of the returned data. -// Use a predefined Scratch to set maximum acceptable output size. -func Decompress(b []byte, s *Scratch) ([]byte, error) { - s, err := s.prepare(b) - if err != nil { - return nil, err - } - s.Out = s.Out[:0] - err = s.readNCount() - if err != nil { - return nil, err - } - err = s.buildDtable() - if err != nil { - return nil, err - } - err = s.decompress() - if err != nil { - return nil, err - } - - return s.Out, nil -} - -// readNCount will read the symbol distribution so decoding tables can be constructed. -func (s *Scratch) readNCount() error { - var ( - charnum uint16 - previous0 bool - b = &s.br - ) - iend := b.remain() - if iend < 4 { - return errors.New("input too small") - } - bitStream := b.Uint32() - nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog - if nbBits > tablelogAbsoluteMax { - return errors.New("tableLog too large") - } - bitStream >>= 4 - bitCount := uint(4) - - s.actualTableLog = uint8(nbBits) - remaining := int32((1 << nbBits) + 1) - threshold := int32(1 << nbBits) - gotTotal := int32(0) - nbBits++ - - for remaining > 1 { - if previous0 { - n0 := charnum - for (bitStream & 0xFFFF) == 0xFFFF { - n0 += 24 - if b.off < iend-5 { - b.advance(2) - bitStream = b.Uint32() >> bitCount - } else { - bitStream >>= 16 - bitCount += 16 - } - } - for (bitStream & 3) == 3 { - n0 += 3 - bitStream >>= 2 - bitCount += 2 - } - n0 += uint16(bitStream & 3) - bitCount += 2 - if n0 > maxSymbolValue { - return errors.New("maxSymbolValue too small") - } - for charnum < n0 { - s.norm[charnum&0xff] = 0 - charnum++ - } - - if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 { - b.advance(bitCount >> 3) - bitCount &= 7 - bitStream = b.Uint32() >> bitCount - } else { - bitStream >>= 2 - } - } - - max := (2*(threshold) - 1) - (remaining) - var count int32 - - if (int32(bitStream) & (threshold - 1)) < max { - count = int32(bitStream) & (threshold - 1) - bitCount += nbBits - 1 - } else { - count = int32(bitStream) & (2*threshold - 1) - if count >= threshold { - count -= max - } - bitCount += nbBits - } - - count-- // extra accuracy - if count < 0 { - // -1 means +1 - remaining += count - gotTotal -= count - } else { - remaining -= count - gotTotal += count - } - s.norm[charnum&0xff] = int16(count) - charnum++ - previous0 = count == 0 - for remaining < threshold { - nbBits-- - threshold >>= 1 - } - if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 { - b.advance(bitCount >> 3) - bitCount &= 7 - } else { - bitCount -= (uint)(8 * (len(b.b) - 4 - b.off)) - b.off = len(b.b) - 4 - } - bitStream = b.Uint32() >> (bitCount & 31) - } - s.symbolLen = charnum - - if s.symbolLen <= 1 { - return fmt.Errorf("symbolLen (%d) too small", s.symbolLen) - } - if s.symbolLen > maxSymbolValue+1 { - return fmt.Errorf("symbolLen (%d) too big", s.symbolLen) - } - if remaining != 1 { - return fmt.Errorf("corruption detected (remaining %d != 1)", remaining) - } - if bitCount > 32 { - return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount) - } - if gotTotal != 1<<s.actualTableLog { - return fmt.Errorf("corruption detected (total %d != %d)", gotTotal, 1<<s.actualTableLog) - } - b.advance((bitCount + 7) >> 3) - return nil -} - -// decSymbol contains information about a state entry, -// Including the state offset base, the output symbol and -// the number of bits to read for the low part of the destination state. -type decSymbol struct { - newState uint16 - symbol uint8 - nbBits uint8 -} - -// allocDtable will allocate decoding tables if they are not big enough. -func (s *Scratch) allocDtable() { - tableSize := 1 << s.actualTableLog - if cap(s.decTable) < tableSize { - s.decTable = make([]decSymbol, tableSize) - } - s.decTable = s.decTable[:tableSize] - - if cap(s.ct.tableSymbol) < 256 { - s.ct.tableSymbol = make([]byte, 256) - } - s.ct.tableSymbol = s.ct.tableSymbol[:256] - - if cap(s.ct.stateTable) < 256 { - s.ct.stateTable = make([]uint16, 256) - } - s.ct.stateTable = s.ct.stateTable[:256] -} - -// buildDtable will build the decoding table. -func (s *Scratch) buildDtable() error { - tableSize := uint32(1 << s.actualTableLog) - highThreshold := tableSize - 1 - s.allocDtable() - symbolNext := s.ct.stateTable[:256] - - // Init, lay down lowprob symbols - s.zeroBits = false - { - largeLimit := int16(1 << (s.actualTableLog - 1)) - for i, v := range s.norm[:s.symbolLen] { - if v == -1 { - s.decTable[highThreshold].symbol = uint8(i) - highThreshold-- - symbolNext[i] = 1 - } else { - if v >= largeLimit { - s.zeroBits = true - } - symbolNext[i] = uint16(v) - } - } - } - // Spread symbols - { - tableMask := tableSize - 1 - step := tableStep(tableSize) - position := uint32(0) - for ss, v := range s.norm[:s.symbolLen] { - for i := 0; i < int(v); i++ { - s.decTable[position].symbol = uint8(ss) - position = (position + step) & tableMask - for position > highThreshold { - // lowprob area - position = (position + step) & tableMask - } - } - } - if position != 0 { - // position must reach all cells once, otherwise normalizedCounter is incorrect - return errors.New("corrupted input (position != 0)") - } - } - - // Build Decoding table - { - tableSize := uint16(1 << s.actualTableLog) - for u, v := range s.decTable { - symbol := v.symbol - nextState := symbolNext[symbol] - symbolNext[symbol] = nextState + 1 - nBits := s.actualTableLog - byte(highBits(uint32(nextState))) - s.decTable[u].nbBits = nBits - newState := (nextState << nBits) - tableSize - if newState >= tableSize { - return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize) - } - if newState == uint16(u) && nBits == 0 { - // Seems weird that this is possible with nbits > 0. - return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u) - } - s.decTable[u].newState = newState - } - } - return nil -} - -// decompress will decompress the bitstream. -// If the buffer is over-read an error is returned. -func (s *Scratch) decompress() error { - br := &s.bits - if err := br.init(s.br.unread()); err != nil { - return err - } - - var s1, s2 decoder - // Initialize and decode first state and symbol. - s1.init(br, s.decTable, s.actualTableLog) - s2.init(br, s.decTable, s.actualTableLog) - - // Use temp table to avoid bound checks/append penalty. - var tmp = s.ct.tableSymbol[:256] - var off uint8 - - // Main part - if !s.zeroBits { - for br.off >= 8 { - br.fillFast() - tmp[off+0] = s1.nextFast() - tmp[off+1] = s2.nextFast() - br.fillFast() - tmp[off+2] = s1.nextFast() - tmp[off+3] = s2.nextFast() - off += 4 - // When off is 0, we have overflowed and should write. - if off == 0 { - s.Out = append(s.Out, tmp...) - if len(s.Out) >= s.DecompressLimit { - return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit) - } - } - } - } else { - for br.off >= 8 { - br.fillFast() - tmp[off+0] = s1.next() - tmp[off+1] = s2.next() - br.fillFast() - tmp[off+2] = s1.next() - tmp[off+3] = s2.next() - off += 4 - if off == 0 { - s.Out = append(s.Out, tmp...) - // When off is 0, we have overflowed and should write. - if len(s.Out) >= s.DecompressLimit { - return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit) - } - } - } - } - s.Out = append(s.Out, tmp[:off]...) - - // Final bits, a bit more expensive check - for { - if s1.finished() { - s.Out = append(s.Out, s1.final(), s2.final()) - break - } - br.fill() - s.Out = append(s.Out, s1.next()) - if s2.finished() { - s.Out = append(s.Out, s2.final(), s1.final()) - break - } - s.Out = append(s.Out, s2.next()) - if len(s.Out) >= s.DecompressLimit { - return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit) - } - } - return br.close() -} - -// decoder keeps track of the current state and updates it from the bitstream. -type decoder struct { - state uint16 - br *bitReader - dt []decSymbol -} - -// init will initialize the decoder and read the first state from the stream. -func (d *decoder) init(in *bitReader, dt []decSymbol, tableLog uint8) { - d.dt = dt - d.br = in - d.state = in.getBits(tableLog) -} - -// next returns the next symbol and sets the next state. -// At least tablelog bits must be available in the bit reader. -func (d *decoder) next() uint8 { - n := &d.dt[d.state] - lowBits := d.br.getBits(n.nbBits) - d.state = n.newState + lowBits - return n.symbol -} - -// finished returns true if all bits have been read from the bitstream -// and the next state would require reading bits from the input. -func (d *decoder) finished() bool { - return d.br.finished() && d.dt[d.state].nbBits > 0 -} - -// final returns the current state symbol without decoding the next. -func (d *decoder) final() uint8 { - return d.dt[d.state].symbol -} - -// nextFast returns the next symbol and sets the next state. -// This can only be used if no symbols are 0 bits. -// At least tablelog bits must be available in the bit reader. -func (d *decoder) nextFast() uint8 { - n := d.dt[d.state] - lowBits := d.br.getBitsFast(n.nbBits) - d.state = n.newState + lowBits - return n.symbol -} diff --git a/vendor/github.com/klauspost/compress/fse/fse.go b/vendor/github.com/klauspost/compress/fse/fse.go deleted file mode 100644 index 535cbadfd..000000000 --- a/vendor/github.com/klauspost/compress/fse/fse.go +++ /dev/null @@ -1,144 +0,0 @@ -// Copyright 2018 Klaus Post. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. -// Based on work Copyright (c) 2013, Yann Collet, released under BSD License. - -// Package fse provides Finite State Entropy encoding and decoding. -// -// Finite State Entropy encoding provides a fast near-optimal symbol encoding/decoding -// for byte blocks as implemented in zstd. -// -// See https://github.com/klauspost/compress/tree/master/fse for more information. -package fse - -import ( - "errors" - "fmt" - "math/bits" -) - -const ( - /*!MEMORY_USAGE : - * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) - * Increasing memory usage improves compression ratio - * Reduced memory usage can improve speed, due to cache effect - * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ - maxMemoryUsage = 14 - defaultMemoryUsage = 13 - - maxTableLog = maxMemoryUsage - 2 - maxTablesize = 1 << maxTableLog - defaultTablelog = defaultMemoryUsage - 2 - minTablelog = 5 - maxSymbolValue = 255 -) - -var ( - // ErrIncompressible is returned when input is judged to be too hard to compress. - ErrIncompressible = errors.New("input is not compressible") - - // ErrUseRLE is returned from the compressor when the input is a single byte value repeated. - ErrUseRLE = errors.New("input is single value repeated") -) - -// Scratch provides temporary storage for compression and decompression. -type Scratch struct { - // Private - count [maxSymbolValue + 1]uint32 - norm [maxSymbolValue + 1]int16 - br byteReader - bits bitReader - bw bitWriter - ct cTable // Compression tables. - decTable []decSymbol // Decompression table. - maxCount int // count of the most probable symbol - - // Per block parameters. - // These can be used to override compression parameters of the block. - // Do not touch, unless you know what you are doing. - - // Out is output buffer. - // If the scratch is re-used before the caller is done processing the output, - // set this field to nil. - // Otherwise the output buffer will be re-used for next Compression/Decompression step - // and allocation will be avoided. - Out []byte - - // DecompressLimit limits the maximum decoded size acceptable. - // If > 0 decompression will stop when approximately this many bytes - // has been decoded. - // If 0, maximum size will be 2GB. - DecompressLimit int - - symbolLen uint16 // Length of active part of the symbol table. - actualTableLog uint8 // Selected tablelog. - zeroBits bool // no bits has prob > 50%. - clearCount bool // clear count - - // MaxSymbolValue will override the maximum symbol value of the next block. - MaxSymbolValue uint8 - - // TableLog will attempt to override the tablelog for the next block. - TableLog uint8 -} - -// Histogram allows to populate the histogram and skip that step in the compression, -// It otherwise allows to inspect the histogram when compression is done. -// To indicate that you have populated the histogram call HistogramFinished -// with the value of the highest populated symbol, as well as the number of entries -// in the most populated entry. These are accepted at face value. -// The returned slice will always be length 256. -func (s *Scratch) Histogram() []uint32 { - return s.count[:] -} - -// HistogramFinished can be called to indicate that the histogram has been populated. -// maxSymbol is the index of the highest set symbol of the next data segment. -// maxCount is the number of entries in the most populated entry. -// These are accepted at face value. -func (s *Scratch) HistogramFinished(maxSymbol uint8, maxCount int) { - s.maxCount = maxCount - s.symbolLen = uint16(maxSymbol) + 1 - s.clearCount = maxCount != 0 -} - -// prepare will prepare and allocate scratch tables used for both compression and decompression. -func (s *Scratch) prepare(in []byte) (*Scratch, error) { - if s == nil { - s = &Scratch{} - } - if s.MaxSymbolValue == 0 { - s.MaxSymbolValue = 255 - } - if s.TableLog == 0 { - s.TableLog = defaultTablelog - } - if s.TableLog > maxTableLog { - return nil, fmt.Errorf("tableLog (%d) > maxTableLog (%d)", s.TableLog, maxTableLog) - } - if cap(s.Out) == 0 { - s.Out = make([]byte, 0, len(in)) - } - if s.clearCount && s.maxCount == 0 { - for i := range s.count { - s.count[i] = 0 - } - s.clearCount = false - } - s.br.init(in) - if s.DecompressLimit == 0 { - // Max size 2GB. - s.DecompressLimit = (2 << 30) - 1 - } - - return s, nil -} - -// tableStep returns the next table index. -func tableStep(tableSize uint32) uint32 { - return (tableSize >> 1) + (tableSize >> 3) + 3 -} - -func highBits(val uint32) (n uint32) { - return uint32(bits.Len32(val) - 1) -} |