diff options
Diffstat (limited to 'vendor/github.com/grafana/regexp/backtrack.go')
| -rw-r--r-- | vendor/github.com/grafana/regexp/backtrack.go | 365 |
1 files changed, 0 insertions, 365 deletions
diff --git a/vendor/github.com/grafana/regexp/backtrack.go b/vendor/github.com/grafana/regexp/backtrack.go deleted file mode 100644 index 7c37c66a8..000000000 --- a/vendor/github.com/grafana/regexp/backtrack.go +++ /dev/null @@ -1,365 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// backtrack is a regular expression search with submatch -// tracking for small regular expressions and texts. It allocates -// a bit vector with (length of input) * (length of prog) bits, -// to make sure it never explores the same (character position, instruction) -// state multiple times. This limits the search to run in time linear in -// the length of the test. -// -// backtrack is a fast replacement for the NFA code on small -// regexps when onepass cannot be used. - -package regexp - -import ( - "regexp/syntax" - "sync" -) - -// A job is an entry on the backtracker's job stack. It holds -// the instruction pc and the position in the input. -type job struct { - pc uint32 - arg bool - pos int -} - -const ( - visitedBits = 32 - maxBacktrackProg = 500 // len(prog.Inst) <= max - maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits) -) - -// bitState holds state for the backtracker. -type bitState struct { - end int - cap []int - matchcap []int - jobs []job - visited []uint32 - - inputs inputs -} - -var bitStatePool sync.Pool - -func newBitState() *bitState { - b, ok := bitStatePool.Get().(*bitState) - if !ok { - b = new(bitState) - } - return b -} - -func freeBitState(b *bitState) { - b.inputs.clear() - bitStatePool.Put(b) -} - -// maxBitStateLen returns the maximum length of a string to search with -// the backtracker using prog. -func maxBitStateLen(prog *syntax.Prog) int { - if !shouldBacktrack(prog) { - return 0 - } - return maxBacktrackVector / len(prog.Inst) -} - -// shouldBacktrack reports whether the program is too -// long for the backtracker to run. -func shouldBacktrack(prog *syntax.Prog) bool { - return len(prog.Inst) <= maxBacktrackProg -} - -// reset resets the state of the backtracker. -// end is the end position in the input. -// ncap is the number of captures. -func (b *bitState) reset(prog *syntax.Prog, end int, ncap int) { - b.end = end - - if cap(b.jobs) == 0 { - b.jobs = make([]job, 0, 256) - } else { - b.jobs = b.jobs[:0] - } - - visitedSize := (len(prog.Inst)*(end+1) + visitedBits - 1) / visitedBits - if cap(b.visited) < visitedSize { - b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits) - } else { - b.visited = b.visited[:visitedSize] - clear(b.visited) // set to 0 - } - - if cap(b.cap) < ncap { - b.cap = make([]int, ncap) - } else { - b.cap = b.cap[:ncap] - } - for i := range b.cap { - b.cap[i] = -1 - } - - if cap(b.matchcap) < ncap { - b.matchcap = make([]int, ncap) - } else { - b.matchcap = b.matchcap[:ncap] - } - for i := range b.matchcap { - b.matchcap[i] = -1 - } -} - -// shouldVisit reports whether the combination of (pc, pos) has not -// been visited yet. -func (b *bitState) shouldVisit(pc uint32, pos int) bool { - n := uint(int(pc)*(b.end+1) + pos) - if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 { - return false - } - b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1)) - return true -} - -// push pushes (pc, pos, arg) onto the job stack if it should be -// visited. -func (b *bitState) push(re *Regexp, pc uint32, pos int, arg bool) { - // Only check shouldVisit when arg is false. - // When arg is true, we are continuing a previous visit. - if re.prog.Inst[pc].Op != syntax.InstFail && (arg || b.shouldVisit(pc, pos)) { - b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos}) - } -} - -// tryBacktrack runs a backtracking search starting at pos. -func (re *Regexp) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool { - longest := re.longest - - b.push(re, pc, pos, false) - for len(b.jobs) > 0 { - l := len(b.jobs) - 1 - // Pop job off the stack. - pc := b.jobs[l].pc - pos := b.jobs[l].pos - arg := b.jobs[l].arg - b.jobs = b.jobs[:l] - - // Optimization: rather than push and pop, - // code that is going to Push and continue - // the loop simply updates ip, p, and arg - // and jumps to CheckAndLoop. We have to - // do the ShouldVisit check that Push - // would have, but we avoid the stack - // manipulation. - goto Skip - CheckAndLoop: - if !b.shouldVisit(pc, pos) { - continue - } - Skip: - - inst := &re.prog.Inst[pc] - - switch inst.Op { - default: - panic("bad inst") - case syntax.InstFail: - panic("unexpected InstFail") - case syntax.InstAlt: - // Cannot just - // b.push(inst.Out, pos, false) - // b.push(inst.Arg, pos, false) - // If during the processing of inst.Out, we encounter - // inst.Arg via another path, we want to process it then. - // Pushing it here will inhibit that. Instead, re-push - // inst with arg==true as a reminder to push inst.Arg out - // later. - if arg { - // Finished inst.Out; try inst.Arg. - arg = false - pc = inst.Arg - goto CheckAndLoop - } else { - b.push(re, pc, pos, true) - pc = inst.Out - goto CheckAndLoop - } - - case syntax.InstAltMatch: - // One opcode consumes runes; the other leads to match. - switch re.prog.Inst[inst.Out].Op { - case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: - // inst.Arg is the match. - b.push(re, inst.Arg, pos, false) - pc = inst.Arg - pos = b.end - goto CheckAndLoop - } - // inst.Out is the match - non-greedy - b.push(re, inst.Out, b.end, false) - pc = inst.Out - goto CheckAndLoop - - case syntax.InstRune: - r, width := i.step(pos) - if !inst.MatchRune(r) { - continue - } - pos += width - pc = inst.Out - goto CheckAndLoop - - case syntax.InstRune1: - r, width := i.step(pos) - if r != inst.Rune[0] { - continue - } - pos += width - pc = inst.Out - goto CheckAndLoop - - case syntax.InstRuneAnyNotNL: - r, width := i.step(pos) - if r == '\n' || r == endOfText { - continue - } - pos += width - pc = inst.Out - goto CheckAndLoop - - case syntax.InstRuneAny: - r, width := i.step(pos) - if r == endOfText { - continue - } - pos += width - pc = inst.Out - goto CheckAndLoop - - case syntax.InstCapture: - if arg { - // Finished inst.Out; restore the old value. - b.cap[inst.Arg] = pos - continue - } else { - if inst.Arg < uint32(len(b.cap)) { - // Capture pos to register, but save old value. - b.push(re, pc, b.cap[inst.Arg], true) // come back when we're done. - b.cap[inst.Arg] = pos - } - pc = inst.Out - goto CheckAndLoop - } - - case syntax.InstEmptyWidth: - flag := i.context(pos) - if !flag.match(syntax.EmptyOp(inst.Arg)) { - continue - } - pc = inst.Out - goto CheckAndLoop - - case syntax.InstNop: - pc = inst.Out - goto CheckAndLoop - - case syntax.InstMatch: - // We found a match. If the caller doesn't care - // where the match is, no point going further. - if len(b.cap) == 0 { - return true - } - - // Record best match so far. - // Only need to check end point, because this entire - // call is only considering one start position. - if len(b.cap) > 1 { - b.cap[1] = pos - } - if old := b.matchcap[1]; old == -1 || (longest && pos > 0 && pos > old) { - copy(b.matchcap, b.cap) - } - - // If going for first match, we're done. - if !longest { - return true - } - - // If we used the entire text, no longer match is possible. - if pos == b.end { - return true - } - - // Otherwise, continue on in hope of a longer match. - continue - } - } - - return longest && len(b.matchcap) > 1 && b.matchcap[1] >= 0 -} - -// backtrack runs a backtracking search of prog on the input starting at pos. -func (re *Regexp) backtrack(ib []byte, is string, pos int, ncap int, dstCap []int) []int { - startCond := re.cond - if startCond == ^syntax.EmptyOp(0) { // impossible - return nil - } - if startCond&syntax.EmptyBeginText != 0 && pos != 0 { - // Anchored match, past beginning of text. - return nil - } - - b := newBitState() - i, end := b.inputs.init(nil, ib, is) - b.reset(re.prog, end, ncap) - - // Anchored search must start at the beginning of the input - if startCond&syntax.EmptyBeginText != 0 { - if len(b.cap) > 0 { - b.cap[0] = pos - } - if !re.tryBacktrack(b, i, uint32(re.prog.Start), pos) { - freeBitState(b) - return nil - } - } else { - - // Unanchored search, starting from each possible text position. - // Notice that we have to try the empty string at the end of - // the text, so the loop condition is pos <= end, not pos < end. - // This looks like it's quadratic in the size of the text, - // but we are not clearing visited between calls to TrySearch, - // so no work is duplicated and it ends up still being linear. - width := -1 - for ; pos <= end && width != 0; pos += width { - if len(re.prefix) > 0 { - // Match requires literal prefix; fast search for it. - advance := i.index(re, pos) - if advance < 0 { - freeBitState(b) - return nil - } - pos += advance - } - - if len(b.cap) > 0 { - b.cap[0] = pos - } - if re.tryBacktrack(b, i, uint32(re.prog.Start), pos) { - // Match must be leftmost; done. - goto Match - } - _, width = i.step(pos) - } - freeBitState(b) - return nil - } - -Match: - dstCap = append(dstCap, b.matchcap...) - freeBitState(b) - return dstCap -} |
