summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang')
-rw-r--r--vendor/github.com/golang/geo/LICENSE202
-rw-r--r--vendor/github.com/golang/geo/r1/doc.go20
-rw-r--r--vendor/github.com/golang/geo/r1/interval.go177
-rw-r--r--vendor/github.com/golang/geo/r2/doc.go20
-rw-r--r--vendor/github.com/golang/geo/r2/rect.go255
-rw-r--r--vendor/github.com/golang/geo/r3/doc.go20
-rw-r--r--vendor/github.com/golang/geo/r3/precisevector.go198
-rw-r--r--vendor/github.com/golang/geo/r3/vector.go183
-rw-r--r--vendor/github.com/golang/geo/s1/angle.go120
-rw-r--r--vendor/github.com/golang/geo/s1/chordangle.go250
-rw-r--r--vendor/github.com/golang/geo/s1/doc.go20
-rw-r--r--vendor/github.com/golang/geo/s1/interval.go462
-rw-r--r--vendor/github.com/golang/geo/s2/bits_go18.go53
-rw-r--r--vendor/github.com/golang/geo/s2/bits_go19.go39
-rw-r--r--vendor/github.com/golang/geo/s2/cap.go519
-rw-r--r--vendor/github.com/golang/geo/s2/cell.go698
-rw-r--r--vendor/github.com/golang/geo/s2/cellid.go942
-rw-r--r--vendor/github.com/golang/geo/s2/cellunion.go590
-rw-r--r--vendor/github.com/golang/geo/s2/centroids.go133
-rw-r--r--vendor/github.com/golang/geo/s2/contains_point_query.go190
-rw-r--r--vendor/github.com/golang/geo/s2/contains_vertex_query.go63
-rw-r--r--vendor/github.com/golang/geo/s2/convex_hull_query.go239
-rw-r--r--vendor/github.com/golang/geo/s2/crossing_edge_query.go409
-rw-r--r--vendor/github.com/golang/geo/s2/distance_target.go149
-rw-r--r--vendor/github.com/golang/geo/s2/doc.go29
-rw-r--r--vendor/github.com/golang/geo/s2/edge_clipping.go672
-rw-r--r--vendor/github.com/golang/geo/s2/edge_crosser.go227
-rw-r--r--vendor/github.com/golang/geo/s2/edge_crossings.go396
-rw-r--r--vendor/github.com/golang/geo/s2/edge_distances.go408
-rw-r--r--vendor/github.com/golang/geo/s2/edge_query.go512
-rw-r--r--vendor/github.com/golang/geo/s2/edge_tessellator.go167
-rw-r--r--vendor/github.com/golang/geo/s2/encode.go237
-rw-r--r--vendor/github.com/golang/geo/s2/interleave.go143
-rw-r--r--vendor/github.com/golang/geo/s2/latlng.go101
-rw-r--r--vendor/github.com/golang/geo/s2/lexicon.go175
-rw-r--r--vendor/github.com/golang/geo/s2/loop.go1816
-rw-r--r--vendor/github.com/golang/geo/s2/matrix3x3.go127
-rw-r--r--vendor/github.com/golang/geo/s2/max_distance_targets.go306
-rw-r--r--vendor/github.com/golang/geo/s2/metric.go164
-rw-r--r--vendor/github.com/golang/geo/s2/min_distance_targets.go362
-rw-r--r--vendor/github.com/golang/geo/s2/nthderivative.go88
-rw-r--r--vendor/github.com/golang/geo/s2/paddedcell.go252
-rw-r--r--vendor/github.com/golang/geo/s2/point.go258
-rw-r--r--vendor/github.com/golang/geo/s2/point_measures.go149
-rw-r--r--vendor/github.com/golang/geo/s2/point_vector.go42
-rw-r--r--vendor/github.com/golang/geo/s2/pointcompression.go319
-rw-r--r--vendor/github.com/golang/geo/s2/polygon.go1212
-rw-r--r--vendor/github.com/golang/geo/s2/polyline.go589
-rw-r--r--vendor/github.com/golang/geo/s2/polyline_measures.go53
-rw-r--r--vendor/github.com/golang/geo/s2/predicates.go701
-rw-r--r--vendor/github.com/golang/geo/s2/projections.go203
-rw-r--r--vendor/github.com/golang/geo/s2/query_options.go196
-rw-r--r--vendor/github.com/golang/geo/s2/rect.go710
-rw-r--r--vendor/github.com/golang/geo/s2/rect_bounder.go352
-rw-r--r--vendor/github.com/golang/geo/s2/region.go71
-rw-r--r--vendor/github.com/golang/geo/s2/regioncoverer.go477
-rw-r--r--vendor/github.com/golang/geo/s2/shape.go263
-rw-r--r--vendor/github.com/golang/geo/s2/shapeindex.go1507
-rw-r--r--vendor/github.com/golang/geo/s2/shapeutil.go228
-rw-r--r--vendor/github.com/golang/geo/s2/shapeutil_edge_iterator.go72
-rw-r--r--vendor/github.com/golang/geo/s2/stuv.go427
-rw-r--r--vendor/github.com/golang/geo/s2/util.go125
-rw-r--r--vendor/github.com/golang/geo/s2/wedge_relations.go97
63 files changed, 0 insertions, 20184 deletions
diff --git a/vendor/github.com/golang/geo/LICENSE b/vendor/github.com/golang/geo/LICENSE
deleted file mode 100644
index d64569567..000000000
--- a/vendor/github.com/golang/geo/LICENSE
+++ /dev/null
@@ -1,202 +0,0 @@
-
- Apache License
- Version 2.0, January 2004
- http://www.apache.org/licenses/
-
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
-
- 1. Definitions.
-
- "License" shall mean the terms and conditions for use, reproduction,
- and distribution as defined by Sections 1 through 9 of this document.
-
- "Licensor" shall mean the copyright owner or entity authorized by
- the copyright owner that is granting the License.
-
- "Legal Entity" shall mean the union of the acting entity and all
- other entities that control, are controlled by, or are under common
- control with that entity. For the purposes of this definition,
- "control" means (i) the power, direct or indirect, to cause the
- direction or management of such entity, whether by contract or
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
- outstanding shares, or (iii) beneficial ownership of such entity.
-
- "You" (or "Your") shall mean an individual or Legal Entity
- exercising permissions granted by this License.
-
- "Source" form shall mean the preferred form for making modifications,
- including but not limited to software source code, documentation
- source, and configuration files.
-
- "Object" form shall mean any form resulting from mechanical
- transformation or translation of a Source form, including but
- not limited to compiled object code, generated documentation,
- and conversions to other media types.
-
- "Work" shall mean the work of authorship, whether in Source or
- Object form, made available under the License, as indicated by a
- copyright notice that is included in or attached to the work
- (an example is provided in the Appendix below).
-
- "Derivative Works" shall mean any work, whether in Source or Object
- form, that is based on (or derived from) the Work and for which the
- editorial revisions, annotations, elaborations, or other modifications
- represent, as a whole, an original work of authorship. For the purposes
- of this License, Derivative Works shall not include works that remain
- separable from, or merely link (or bind by name) to the interfaces of,
- the Work and Derivative Works thereof.
-
- "Contribution" shall mean any work of authorship, including
- the original version of the Work and any modifications or additions
- to that Work or Derivative Works thereof, that is intentionally
- submitted to Licensor for inclusion in the Work by the copyright owner
- or by an individual or Legal Entity authorized to submit on behalf of
- the copyright owner. For the purposes of this definition, "submitted"
- means any form of electronic, verbal, or written communication sent
- to the Licensor or its representatives, including but not limited to
- communication on electronic mailing lists, source code control systems,
- and issue tracking systems that are managed by, or on behalf of, the
- Licensor for the purpose of discussing and improving the Work, but
- excluding communication that is conspicuously marked or otherwise
- designated in writing by the copyright owner as "Not a Contribution."
-
- "Contributor" shall mean Licensor and any individual or Legal Entity
- on behalf of whom a Contribution has been received by Licensor and
- subsequently incorporated within the Work.
-
- 2. Grant of Copyright License. Subject to the terms and conditions of
- this License, each Contributor hereby grants to You a perpetual,
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
- copyright license to reproduce, prepare Derivative Works of,
- publicly display, publicly perform, sublicense, and distribute the
- Work and such Derivative Works in Source or Object form.
-
- 3. Grant of Patent License. Subject to the terms and conditions of
- this License, each Contributor hereby grants to You a perpetual,
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
- (except as stated in this section) patent license to make, have made,
- use, offer to sell, sell, import, and otherwise transfer the Work,
- where such license applies only to those patent claims licensable
- by such Contributor that are necessarily infringed by their
- Contribution(s) alone or by combination of their Contribution(s)
- with the Work to which such Contribution(s) was submitted. If You
- institute patent litigation against any entity (including a
- cross-claim or counterclaim in a lawsuit) alleging that the Work
- or a Contribution incorporated within the Work constitutes direct
- or contributory patent infringement, then any patent licenses
- granted to You under this License for that Work shall terminate
- as of the date such litigation is filed.
-
- 4. Redistribution. You may reproduce and distribute copies of the
- Work or Derivative Works thereof in any medium, with or without
- modifications, and in Source or Object form, provided that You
- meet the following conditions:
-
- (a) You must give any other recipients of the Work or
- Derivative Works a copy of this License; and
-
- (b) You must cause any modified files to carry prominent notices
- stating that You changed the files; and
-
- (c) You must retain, in the Source form of any Derivative Works
- that You distribute, all copyright, patent, trademark, and
- attribution notices from the Source form of the Work,
- excluding those notices that do not pertain to any part of
- the Derivative Works; and
-
- (d) If the Work includes a "NOTICE" text file as part of its
- distribution, then any Derivative Works that You distribute must
- include a readable copy of the attribution notices contained
- within such NOTICE file, excluding those notices that do not
- pertain to any part of the Derivative Works, in at least one
- of the following places: within a NOTICE text file distributed
- as part of the Derivative Works; within the Source form or
- documentation, if provided along with the Derivative Works; or,
- within a display generated by the Derivative Works, if and
- wherever such third-party notices normally appear. The contents
- of the NOTICE file are for informational purposes only and
- do not modify the License. You may add Your own attribution
- notices within Derivative Works that You distribute, alongside
- or as an addendum to the NOTICE text from the Work, provided
- that such additional attribution notices cannot be construed
- as modifying the License.
-
- You may add Your own copyright statement to Your modifications and
- may provide additional or different license terms and conditions
- for use, reproduction, or distribution of Your modifications, or
- for any such Derivative Works as a whole, provided Your use,
- reproduction, and distribution of the Work otherwise complies with
- the conditions stated in this License.
-
- 5. Submission of Contributions. Unless You explicitly state otherwise,
- any Contribution intentionally submitted for inclusion in the Work
- by You to the Licensor shall be under the terms and conditions of
- this License, without any additional terms or conditions.
- Notwithstanding the above, nothing herein shall supersede or modify
- the terms of any separate license agreement you may have executed
- with Licensor regarding such Contributions.
-
- 6. Trademarks. This License does not grant permission to use the trade
- names, trademarks, service marks, or product names of the Licensor,
- except as required for reasonable and customary use in describing the
- origin of the Work and reproducing the content of the NOTICE file.
-
- 7. Disclaimer of Warranty. Unless required by applicable law or
- agreed to in writing, Licensor provides the Work (and each
- Contributor provides its Contributions) on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
- implied, including, without limitation, any warranties or conditions
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
- PARTICULAR PURPOSE. You are solely responsible for determining the
- appropriateness of using or redistributing the Work and assume any
- risks associated with Your exercise of permissions under this License.
-
- 8. Limitation of Liability. In no event and under no legal theory,
- whether in tort (including negligence), contract, or otherwise,
- unless required by applicable law (such as deliberate and grossly
- negligent acts) or agreed to in writing, shall any Contributor be
- liable to You for damages, including any direct, indirect, special,
- incidental, or consequential damages of any character arising as a
- result of this License or out of the use or inability to use the
- Work (including but not limited to damages for loss of goodwill,
- work stoppage, computer failure or malfunction, or any and all
- other commercial damages or losses), even if such Contributor
- has been advised of the possibility of such damages.
-
- 9. Accepting Warranty or Additional Liability. While redistributing
- the Work or Derivative Works thereof, You may choose to offer,
- and charge a fee for, acceptance of support, warranty, indemnity,
- or other liability obligations and/or rights consistent with this
- License. However, in accepting such obligations, You may act only
- on Your own behalf and on Your sole responsibility, not on behalf
- of any other Contributor, and only if You agree to indemnify,
- defend, and hold each Contributor harmless for any liability
- incurred by, or claims asserted against, such Contributor by reason
- of your accepting any such warranty or additional liability.
-
- END OF TERMS AND CONDITIONS
-
- APPENDIX: How to apply the Apache License to your work.
-
- To apply the Apache License to your work, attach the following
- boilerplate notice, with the fields enclosed by brackets "[]"
- replaced with your own identifying information. (Don't include
- the brackets!) The text should be enclosed in the appropriate
- comment syntax for the file format. We also recommend that a
- file or class name and description of purpose be included on the
- same "printed page" as the copyright notice for easier
- identification within third-party archives.
-
- Copyright [yyyy] [name of copyright owner]
-
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
diff --git a/vendor/github.com/golang/geo/r1/doc.go b/vendor/github.com/golang/geo/r1/doc.go
deleted file mode 100644
index c6b65c0e0..000000000
--- a/vendor/github.com/golang/geo/r1/doc.go
+++ /dev/null
@@ -1,20 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/*
-Package r1 implements types and functions for working with geometry in ℝ¹.
-
-See ../s2 for a more detailed overview.
-*/
-package r1
diff --git a/vendor/github.com/golang/geo/r1/interval.go b/vendor/github.com/golang/geo/r1/interval.go
deleted file mode 100644
index 48ea51982..000000000
--- a/vendor/github.com/golang/geo/r1/interval.go
+++ /dev/null
@@ -1,177 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package r1
-
-import (
- "fmt"
- "math"
-)
-
-// Interval represents a closed interval on ℝ.
-// Zero-length intervals (where Lo == Hi) represent single points.
-// If Lo > Hi then the interval is empty.
-type Interval struct {
- Lo, Hi float64
-}
-
-// EmptyInterval returns an empty interval.
-func EmptyInterval() Interval { return Interval{1, 0} }
-
-// IntervalFromPoint returns an interval representing a single point.
-func IntervalFromPoint(p float64) Interval { return Interval{p, p} }
-
-// IsEmpty reports whether the interval is empty.
-func (i Interval) IsEmpty() bool { return i.Lo > i.Hi }
-
-// Equal returns true iff the interval contains the same points as oi.
-func (i Interval) Equal(oi Interval) bool {
- return i == oi || i.IsEmpty() && oi.IsEmpty()
-}
-
-// Center returns the midpoint of the interval.
-// It is undefined for empty intervals.
-func (i Interval) Center() float64 { return 0.5 * (i.Lo + i.Hi) }
-
-// Length returns the length of the interval.
-// The length of an empty interval is negative.
-func (i Interval) Length() float64 { return i.Hi - i.Lo }
-
-// Contains returns true iff the interval contains p.
-func (i Interval) Contains(p float64) bool { return i.Lo <= p && p <= i.Hi }
-
-// ContainsInterval returns true iff the interval contains oi.
-func (i Interval) ContainsInterval(oi Interval) bool {
- if oi.IsEmpty() {
- return true
- }
- return i.Lo <= oi.Lo && oi.Hi <= i.Hi
-}
-
-// InteriorContains returns true iff the interval strictly contains p.
-func (i Interval) InteriorContains(p float64) bool {
- return i.Lo < p && p < i.Hi
-}
-
-// InteriorContainsInterval returns true iff the interval strictly contains oi.
-func (i Interval) InteriorContainsInterval(oi Interval) bool {
- if oi.IsEmpty() {
- return true
- }
- return i.Lo < oi.Lo && oi.Hi < i.Hi
-}
-
-// Intersects returns true iff the interval contains any points in common with oi.
-func (i Interval) Intersects(oi Interval) bool {
- if i.Lo <= oi.Lo {
- return oi.Lo <= i.Hi && oi.Lo <= oi.Hi // oi.Lo ∈ i and oi is not empty
- }
- return i.Lo <= oi.Hi && i.Lo <= i.Hi // i.Lo ∈ oi and i is not empty
-}
-
-// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary.
-func (i Interval) InteriorIntersects(oi Interval) bool {
- return oi.Lo < i.Hi && i.Lo < oi.Hi && i.Lo < i.Hi && oi.Lo <= oi.Hi
-}
-
-// Intersection returns the interval containing all points common to i and j.
-func (i Interval) Intersection(j Interval) Interval {
- // Empty intervals do not need to be special-cased.
- return Interval{
- Lo: math.Max(i.Lo, j.Lo),
- Hi: math.Min(i.Hi, j.Hi),
- }
-}
-
-// AddPoint returns the interval expanded so that it contains the given point.
-func (i Interval) AddPoint(p float64) Interval {
- if i.IsEmpty() {
- return Interval{p, p}
- }
- if p < i.Lo {
- return Interval{p, i.Hi}
- }
- if p > i.Hi {
- return Interval{i.Lo, p}
- }
- return i
-}
-
-// ClampPoint returns the closest point in the interval to the given point "p".
-// The interval must be non-empty.
-func (i Interval) ClampPoint(p float64) float64 {
- return math.Max(i.Lo, math.Min(i.Hi, p))
-}
-
-// Expanded returns an interval that has been expanded on each side by margin.
-// If margin is negative, then the function shrinks the interval on
-// each side by margin instead. The resulting interval may be empty. Any
-// expansion of an empty interval remains empty.
-func (i Interval) Expanded(margin float64) Interval {
- if i.IsEmpty() {
- return i
- }
- return Interval{i.Lo - margin, i.Hi + margin}
-}
-
-// Union returns the smallest interval that contains this interval and the given interval.
-func (i Interval) Union(other Interval) Interval {
- if i.IsEmpty() {
- return other
- }
- if other.IsEmpty() {
- return i
- }
- return Interval{math.Min(i.Lo, other.Lo), math.Max(i.Hi, other.Hi)}
-}
-
-func (i Interval) String() string { return fmt.Sprintf("[%.7f, %.7f]", i.Lo, i.Hi) }
-
-const (
- // epsilon is a small number that represents a reasonable level of noise between two
- // values that can be considered to be equal.
- epsilon = 1e-15
- // dblEpsilon is a smaller number for values that require more precision.
- // This is the C++ DBL_EPSILON equivalent.
- dblEpsilon = 2.220446049250313e-16
-)
-
-// ApproxEqual reports whether the interval can be transformed into the
-// given interval by moving each endpoint a small distance.
-// The empty interval is considered to be positioned arbitrarily on the
-// real line, so any interval with a small enough length will match
-// the empty interval.
-func (i Interval) ApproxEqual(other Interval) bool {
- if i.IsEmpty() {
- return other.Length() <= 2*epsilon
- }
- if other.IsEmpty() {
- return i.Length() <= 2*epsilon
- }
- return math.Abs(other.Lo-i.Lo) <= epsilon &&
- math.Abs(other.Hi-i.Hi) <= epsilon
-}
-
-// DirectedHausdorffDistance returns the Hausdorff distance to the given interval. For two
-// intervals x and y, this distance is defined as
-// h(x, y) = max_{p in x} min_{q in y} d(p, q).
-func (i Interval) DirectedHausdorffDistance(other Interval) float64 {
- if i.IsEmpty() {
- return 0
- }
- if other.IsEmpty() {
- return math.Inf(1)
- }
- return math.Max(0, math.Max(i.Hi-other.Hi, other.Lo-i.Lo))
-}
diff --git a/vendor/github.com/golang/geo/r2/doc.go b/vendor/github.com/golang/geo/r2/doc.go
deleted file mode 100644
index 05b155543..000000000
--- a/vendor/github.com/golang/geo/r2/doc.go
+++ /dev/null
@@ -1,20 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/*
-Package r2 implements types and functions for working with geometry in ℝ².
-
-See package s2 for a more detailed overview.
-*/
-package r2
diff --git a/vendor/github.com/golang/geo/r2/rect.go b/vendor/github.com/golang/geo/r2/rect.go
deleted file mode 100644
index 495545bba..000000000
--- a/vendor/github.com/golang/geo/r2/rect.go
+++ /dev/null
@@ -1,255 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package r2
-
-import (
- "fmt"
- "math"
-
- "github.com/golang/geo/r1"
-)
-
-// Point represents a point in ℝ².
-type Point struct {
- X, Y float64
-}
-
-// Add returns the sum of p and op.
-func (p Point) Add(op Point) Point { return Point{p.X + op.X, p.Y + op.Y} }
-
-// Sub returns the difference of p and op.
-func (p Point) Sub(op Point) Point { return Point{p.X - op.X, p.Y - op.Y} }
-
-// Mul returns the scalar product of p and m.
-func (p Point) Mul(m float64) Point { return Point{m * p.X, m * p.Y} }
-
-// Ortho returns a counterclockwise orthogonal point with the same norm.
-func (p Point) Ortho() Point { return Point{-p.Y, p.X} }
-
-// Dot returns the dot product between p and op.
-func (p Point) Dot(op Point) float64 { return p.X*op.X + p.Y*op.Y }
-
-// Cross returns the cross product of p and op.
-func (p Point) Cross(op Point) float64 { return p.X*op.Y - p.Y*op.X }
-
-// Norm returns the vector's norm.
-func (p Point) Norm() float64 { return math.Hypot(p.X, p.Y) }
-
-// Normalize returns a unit point in the same direction as p.
-func (p Point) Normalize() Point {
- if p.X == 0 && p.Y == 0 {
- return p
- }
- return p.Mul(1 / p.Norm())
-}
-
-func (p Point) String() string { return fmt.Sprintf("(%.12f, %.12f)", p.X, p.Y) }
-
-// Rect represents a closed axis-aligned rectangle in the (x,y) plane.
-type Rect struct {
- X, Y r1.Interval
-}
-
-// RectFromPoints constructs a rect that contains the given points.
-func RectFromPoints(pts ...Point) Rect {
- // Because the default value on interval is 0,0, we need to manually
- // define the interval from the first point passed in as our starting
- // interval, otherwise we end up with the case of passing in
- // Point{0.2, 0.3} and getting the starting Rect of {0, 0.2}, {0, 0.3}
- // instead of the Rect {0.2, 0.2}, {0.3, 0.3} which is not correct.
- if len(pts) == 0 {
- return Rect{}
- }
-
- r := Rect{
- X: r1.Interval{Lo: pts[0].X, Hi: pts[0].X},
- Y: r1.Interval{Lo: pts[0].Y, Hi: pts[0].Y},
- }
-
- for _, p := range pts[1:] {
- r = r.AddPoint(p)
- }
- return r
-}
-
-// RectFromCenterSize constructs a rectangle with the given center and size.
-// Both dimensions of size must be non-negative.
-func RectFromCenterSize(center, size Point) Rect {
- return Rect{
- r1.Interval{Lo: center.X - size.X/2, Hi: center.X + size.X/2},
- r1.Interval{Lo: center.Y - size.Y/2, Hi: center.Y + size.Y/2},
- }
-}
-
-// EmptyRect constructs the canonical empty rectangle. Use IsEmpty() to test
-// for empty rectangles, since they have more than one representation. A Rect{}
-// is not the same as the EmptyRect.
-func EmptyRect() Rect {
- return Rect{r1.EmptyInterval(), r1.EmptyInterval()}
-}
-
-// IsValid reports whether the rectangle is valid.
-// This requires the width to be empty iff the height is empty.
-func (r Rect) IsValid() bool {
- return r.X.IsEmpty() == r.Y.IsEmpty()
-}
-
-// IsEmpty reports whether the rectangle is empty.
-func (r Rect) IsEmpty() bool {
- return r.X.IsEmpty()
-}
-
-// Vertices returns all four vertices of the rectangle. Vertices are returned in
-// CCW direction starting with the lower left corner.
-func (r Rect) Vertices() [4]Point {
- return [4]Point{
- {r.X.Lo, r.Y.Lo},
- {r.X.Hi, r.Y.Lo},
- {r.X.Hi, r.Y.Hi},
- {r.X.Lo, r.Y.Hi},
- }
-}
-
-// VertexIJ returns the vertex in direction i along the X-axis (0=left, 1=right) and
-// direction j along the Y-axis (0=down, 1=up).
-func (r Rect) VertexIJ(i, j int) Point {
- x := r.X.Lo
- if i == 1 {
- x = r.X.Hi
- }
- y := r.Y.Lo
- if j == 1 {
- y = r.Y.Hi
- }
- return Point{x, y}
-}
-
-// Lo returns the low corner of the rect.
-func (r Rect) Lo() Point {
- return Point{r.X.Lo, r.Y.Lo}
-}
-
-// Hi returns the high corner of the rect.
-func (r Rect) Hi() Point {
- return Point{r.X.Hi, r.Y.Hi}
-}
-
-// Center returns the center of the rectangle in (x,y)-space
-func (r Rect) Center() Point {
- return Point{r.X.Center(), r.Y.Center()}
-}
-
-// Size returns the width and height of this rectangle in (x,y)-space. Empty
-// rectangles have a negative width and height.
-func (r Rect) Size() Point {
- return Point{r.X.Length(), r.Y.Length()}
-}
-
-// ContainsPoint reports whether the rectangle contains the given point.
-// Rectangles are closed regions, i.e. they contain their boundary.
-func (r Rect) ContainsPoint(p Point) bool {
- return r.X.Contains(p.X) && r.Y.Contains(p.Y)
-}
-
-// InteriorContainsPoint returns true iff the given point is contained in the interior
-// of the region (i.e. the region excluding its boundary).
-func (r Rect) InteriorContainsPoint(p Point) bool {
- return r.X.InteriorContains(p.X) && r.Y.InteriorContains(p.Y)
-}
-
-// Contains reports whether the rectangle contains the given rectangle.
-func (r Rect) Contains(other Rect) bool {
- return r.X.ContainsInterval(other.X) && r.Y.ContainsInterval(other.Y)
-}
-
-// InteriorContains reports whether the interior of this rectangle contains all of the
-// points of the given other rectangle (including its boundary).
-func (r Rect) InteriorContains(other Rect) bool {
- return r.X.InteriorContainsInterval(other.X) && r.Y.InteriorContainsInterval(other.Y)
-}
-
-// Intersects reports whether this rectangle and the other rectangle have any points in common.
-func (r Rect) Intersects(other Rect) bool {
- return r.X.Intersects(other.X) && r.Y.Intersects(other.Y)
-}
-
-// InteriorIntersects reports whether the interior of this rectangle intersects
-// any point (including the boundary) of the given other rectangle.
-func (r Rect) InteriorIntersects(other Rect) bool {
- return r.X.InteriorIntersects(other.X) && r.Y.InteriorIntersects(other.Y)
-}
-
-// AddPoint expands the rectangle to include the given point. The rectangle is
-// expanded by the minimum amount possible.
-func (r Rect) AddPoint(p Point) Rect {
- return Rect{r.X.AddPoint(p.X), r.Y.AddPoint(p.Y)}
-}
-
-// AddRect expands the rectangle to include the given rectangle. This is the
-// same as replacing the rectangle by the union of the two rectangles, but
-// is more efficient.
-func (r Rect) AddRect(other Rect) Rect {
- return Rect{r.X.Union(other.X), r.Y.Union(other.Y)}
-}
-
-// ClampPoint returns the closest point in the rectangle to the given point.
-// The rectangle must be non-empty.
-func (r Rect) ClampPoint(p Point) Point {
- return Point{r.X.ClampPoint(p.X), r.Y.ClampPoint(p.Y)}
-}
-
-// Expanded returns a rectangle that has been expanded in the x-direction
-// by margin.X, and in y-direction by margin.Y. If either margin is empty,
-// then shrink the interval on the corresponding sides instead. The resulting
-// rectangle may be empty. Any expansion of an empty rectangle remains empty.
-func (r Rect) Expanded(margin Point) Rect {
- xx := r.X.Expanded(margin.X)
- yy := r.Y.Expanded(margin.Y)
- if xx.IsEmpty() || yy.IsEmpty() {
- return EmptyRect()
- }
- return Rect{xx, yy}
-}
-
-// ExpandedByMargin returns a Rect that has been expanded by the amount on all sides.
-func (r Rect) ExpandedByMargin(margin float64) Rect {
- return r.Expanded(Point{margin, margin})
-}
-
-// Union returns the smallest rectangle containing the union of this rectangle and
-// the given rectangle.
-func (r Rect) Union(other Rect) Rect {
- return Rect{r.X.Union(other.X), r.Y.Union(other.Y)}
-}
-
-// Intersection returns the smallest rectangle containing the intersection of this
-// rectangle and the given rectangle.
-func (r Rect) Intersection(other Rect) Rect {
- xx := r.X.Intersection(other.X)
- yy := r.Y.Intersection(other.Y)
- if xx.IsEmpty() || yy.IsEmpty() {
- return EmptyRect()
- }
-
- return Rect{xx, yy}
-}
-
-// ApproxEqual returns true if the x- and y-intervals of the two rectangles are
-// the same up to the given tolerance.
-func (r Rect) ApproxEqual(r2 Rect) bool {
- return r.X.ApproxEqual(r2.X) && r.Y.ApproxEqual(r2.Y)
-}
-
-func (r Rect) String() string { return fmt.Sprintf("[Lo%s, Hi%s]", r.Lo(), r.Hi()) }
diff --git a/vendor/github.com/golang/geo/r3/doc.go b/vendor/github.com/golang/geo/r3/doc.go
deleted file mode 100644
index 1eb4710c8..000000000
--- a/vendor/github.com/golang/geo/r3/doc.go
+++ /dev/null
@@ -1,20 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/*
-Package r3 implements types and functions for working with geometry in ℝ³.
-
-See ../s2 for a more detailed overview.
-*/
-package r3
diff --git a/vendor/github.com/golang/geo/r3/precisevector.go b/vendor/github.com/golang/geo/r3/precisevector.go
deleted file mode 100644
index b13393dbc..000000000
--- a/vendor/github.com/golang/geo/r3/precisevector.go
+++ /dev/null
@@ -1,198 +0,0 @@
-// Copyright 2016 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package r3
-
-import (
- "fmt"
- "math/big"
-)
-
-const (
- // prec is the number of bits of precision to use for the Float values.
- // To keep things simple, we use the maximum allowable precision on big
- // values. This allows us to handle all values we expect in the s2 library.
- prec = big.MaxPrec
-)
-
-// define some commonly referenced values.
-var (
- precise0 = precInt(0)
- precise1 = precInt(1)
-)
-
-// precStr wraps the conversion from a string into a big.Float. For results that
-// actually can be represented exactly, this should only be used on values that
-// are integer multiples of integer powers of 2.
-func precStr(s string) *big.Float {
- // Explicitly ignoring the bool return for this usage.
- f, _ := new(big.Float).SetPrec(prec).SetString(s)
- return f
-}
-
-func precInt(i int64) *big.Float {
- return new(big.Float).SetPrec(prec).SetInt64(i)
-}
-
-func precFloat(f float64) *big.Float {
- return new(big.Float).SetPrec(prec).SetFloat64(f)
-}
-
-func precAdd(a, b *big.Float) *big.Float {
- return new(big.Float).SetPrec(prec).Add(a, b)
-}
-
-func precSub(a, b *big.Float) *big.Float {
- return new(big.Float).SetPrec(prec).Sub(a, b)
-}
-
-func precMul(a, b *big.Float) *big.Float {
- return new(big.Float).SetPrec(prec).Mul(a, b)
-}
-
-// PreciseVector represents a point in ℝ³ using high-precision values.
-// Note that this is NOT a complete implementation because there are some
-// operations that Vector supports that are not feasible with arbitrary precision
-// math. (e.g., methods that need division like Normalize, or methods needing a
-// square root operation such as Norm)
-type PreciseVector struct {
- X, Y, Z *big.Float
-}
-
-// PreciseVectorFromVector creates a high precision vector from the given Vector.
-func PreciseVectorFromVector(v Vector) PreciseVector {
- return NewPreciseVector(v.X, v.Y, v.Z)
-}
-
-// NewPreciseVector creates a high precision vector from the given floating point values.
-func NewPreciseVector(x, y, z float64) PreciseVector {
- return PreciseVector{
- X: precFloat(x),
- Y: precFloat(y),
- Z: precFloat(z),
- }
-}
-
-// Vector returns this precise vector converted to a Vector.
-func (v PreciseVector) Vector() Vector {
- // The accuracy flag is ignored on these conversions back to float64.
- x, _ := v.X.Float64()
- y, _ := v.Y.Float64()
- z, _ := v.Z.Float64()
- return Vector{x, y, z}.Normalize()
-}
-
-// Equal reports whether v and ov are equal.
-func (v PreciseVector) Equal(ov PreciseVector) bool {
- return v.X.Cmp(ov.X) == 0 && v.Y.Cmp(ov.Y) == 0 && v.Z.Cmp(ov.Z) == 0
-}
-
-func (v PreciseVector) String() string {
- return fmt.Sprintf("(%10g, %10g, %10g)", v.X, v.Y, v.Z)
-}
-
-// Norm2 returns the square of the norm.
-func (v PreciseVector) Norm2() *big.Float { return v.Dot(v) }
-
-// IsUnit reports whether this vector is of unit length.
-func (v PreciseVector) IsUnit() bool {
- return v.Norm2().Cmp(precise1) == 0
-}
-
-// Abs returns the vector with nonnegative components.
-func (v PreciseVector) Abs() PreciseVector {
- return PreciseVector{
- X: new(big.Float).Abs(v.X),
- Y: new(big.Float).Abs(v.Y),
- Z: new(big.Float).Abs(v.Z),
- }
-}
-
-// Add returns the standard vector sum of v and ov.
-func (v PreciseVector) Add(ov PreciseVector) PreciseVector {
- return PreciseVector{
- X: precAdd(v.X, ov.X),
- Y: precAdd(v.Y, ov.Y),
- Z: precAdd(v.Z, ov.Z),
- }
-}
-
-// Sub returns the standard vector difference of v and ov.
-func (v PreciseVector) Sub(ov PreciseVector) PreciseVector {
- return PreciseVector{
- X: precSub(v.X, ov.X),
- Y: precSub(v.Y, ov.Y),
- Z: precSub(v.Z, ov.Z),
- }
-}
-
-// Mul returns the standard scalar product of v and f.
-func (v PreciseVector) Mul(f *big.Float) PreciseVector {
- return PreciseVector{
- X: precMul(v.X, f),
- Y: precMul(v.Y, f),
- Z: precMul(v.Z, f),
- }
-}
-
-// MulByFloat64 returns the standard scalar product of v and f.
-func (v PreciseVector) MulByFloat64(f float64) PreciseVector {
- return v.Mul(precFloat(f))
-}
-
-// Dot returns the standard dot product of v and ov.
-func (v PreciseVector) Dot(ov PreciseVector) *big.Float {
- return precAdd(precMul(v.X, ov.X), precAdd(precMul(v.Y, ov.Y), precMul(v.Z, ov.Z)))
-}
-
-// Cross returns the standard cross product of v and ov.
-func (v PreciseVector) Cross(ov PreciseVector) PreciseVector {
- return PreciseVector{
- X: precSub(precMul(v.Y, ov.Z), precMul(v.Z, ov.Y)),
- Y: precSub(precMul(v.Z, ov.X), precMul(v.X, ov.Z)),
- Z: precSub(precMul(v.X, ov.Y), precMul(v.Y, ov.X)),
- }
-}
-
-// LargestComponent returns the axis that represents the largest component in this vector.
-func (v PreciseVector) LargestComponent() Axis {
- t := v.Abs()
-
- if t.X.Cmp(t.Y) > 0 {
- if t.X.Cmp(t.Z) > 0 {
- return XAxis
- }
- return ZAxis
- }
- if t.Y.Cmp(t.Z) > 0 {
- return YAxis
- }
- return ZAxis
-}
-
-// SmallestComponent returns the axis that represents the smallest component in this vector.
-func (v PreciseVector) SmallestComponent() Axis {
- t := v.Abs()
-
- if t.X.Cmp(t.Y) < 0 {
- if t.X.Cmp(t.Z) < 0 {
- return XAxis
- }
- return ZAxis
- }
- if t.Y.Cmp(t.Z) < 0 {
- return YAxis
- }
- return ZAxis
-}
diff --git a/vendor/github.com/golang/geo/r3/vector.go b/vendor/github.com/golang/geo/r3/vector.go
deleted file mode 100644
index ccda622f4..000000000
--- a/vendor/github.com/golang/geo/r3/vector.go
+++ /dev/null
@@ -1,183 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package r3
-
-import (
- "fmt"
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// Vector represents a point in ℝ³.
-type Vector struct {
- X, Y, Z float64
-}
-
-// ApproxEqual reports whether v and ov are equal within a small epsilon.
-func (v Vector) ApproxEqual(ov Vector) bool {
- const epsilon = 1e-16
- return math.Abs(v.X-ov.X) < epsilon && math.Abs(v.Y-ov.Y) < epsilon && math.Abs(v.Z-ov.Z) < epsilon
-}
-
-func (v Vector) String() string { return fmt.Sprintf("(%0.24f, %0.24f, %0.24f)", v.X, v.Y, v.Z) }
-
-// Norm returns the vector's norm.
-func (v Vector) Norm() float64 { return math.Sqrt(v.Dot(v)) }
-
-// Norm2 returns the square of the norm.
-func (v Vector) Norm2() float64 { return v.Dot(v) }
-
-// Normalize returns a unit vector in the same direction as v.
-func (v Vector) Normalize() Vector {
- n2 := v.Norm2()
- if n2 == 0 {
- return Vector{0, 0, 0}
- }
- return v.Mul(1 / math.Sqrt(n2))
-}
-
-// IsUnit returns whether this vector is of approximately unit length.
-func (v Vector) IsUnit() bool {
- const epsilon = 5e-14
- return math.Abs(v.Norm2()-1) <= epsilon
-}
-
-// Abs returns the vector with nonnegative components.
-func (v Vector) Abs() Vector { return Vector{math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z)} }
-
-// Add returns the standard vector sum of v and ov.
-func (v Vector) Add(ov Vector) Vector { return Vector{v.X + ov.X, v.Y + ov.Y, v.Z + ov.Z} }
-
-// Sub returns the standard vector difference of v and ov.
-func (v Vector) Sub(ov Vector) Vector { return Vector{v.X - ov.X, v.Y - ov.Y, v.Z - ov.Z} }
-
-// Mul returns the standard scalar product of v and m.
-func (v Vector) Mul(m float64) Vector { return Vector{m * v.X, m * v.Y, m * v.Z} }
-
-// Dot returns the standard dot product of v and ov.
-func (v Vector) Dot(ov Vector) float64 { return v.X*ov.X + v.Y*ov.Y + v.Z*ov.Z }
-
-// Cross returns the standard cross product of v and ov.
-func (v Vector) Cross(ov Vector) Vector {
- return Vector{
- v.Y*ov.Z - v.Z*ov.Y,
- v.Z*ov.X - v.X*ov.Z,
- v.X*ov.Y - v.Y*ov.X,
- }
-}
-
-// Distance returns the Euclidean distance between v and ov.
-func (v Vector) Distance(ov Vector) float64 { return v.Sub(ov).Norm() }
-
-// Angle returns the angle between v and ov.
-func (v Vector) Angle(ov Vector) s1.Angle {
- return s1.Angle(math.Atan2(v.Cross(ov).Norm(), v.Dot(ov))) * s1.Radian
-}
-
-// Axis enumerates the 3 axes of ℝ³.
-type Axis int
-
-// The three axes of ℝ³.
-const (
- XAxis Axis = iota
- YAxis
- ZAxis
-)
-
-// Ortho returns a unit vector that is orthogonal to v.
-// Ortho(-v) = -Ortho(v) for all v.
-func (v Vector) Ortho() Vector {
- ov := Vector{0.012, 0.0053, 0.00457}
- switch v.LargestComponent() {
- case XAxis:
- ov.Z = 1
- case YAxis:
- ov.X = 1
- default:
- ov.Y = 1
- }
- return v.Cross(ov).Normalize()
-}
-
-// LargestComponent returns the axis that represents the largest component in this vector.
-func (v Vector) LargestComponent() Axis {
- t := v.Abs()
-
- if t.X > t.Y {
- if t.X > t.Z {
- return XAxis
- }
- return ZAxis
- }
- if t.Y > t.Z {
- return YAxis
- }
- return ZAxis
-}
-
-// SmallestComponent returns the axis that represents the smallest component in this vector.
-func (v Vector) SmallestComponent() Axis {
- t := v.Abs()
-
- if t.X < t.Y {
- if t.X < t.Z {
- return XAxis
- }
- return ZAxis
- }
- if t.Y < t.Z {
- return YAxis
- }
- return ZAxis
-}
-
-// Cmp compares v and ov lexicographically and returns:
-//
-// -1 if v < ov
-// 0 if v == ov
-// +1 if v > ov
-//
-// This method is based on C++'s std::lexicographical_compare. Two entities
-// are compared element by element with the given operator. The first mismatch
-// defines which is less (or greater) than the other. If both have equivalent
-// values they are lexicographically equal.
-func (v Vector) Cmp(ov Vector) int {
- if v.X < ov.X {
- return -1
- }
- if v.X > ov.X {
- return 1
- }
-
- // First elements were the same, try the next.
- if v.Y < ov.Y {
- return -1
- }
- if v.Y > ov.Y {
- return 1
- }
-
- // Second elements were the same return the final compare.
- if v.Z < ov.Z {
- return -1
- }
- if v.Z > ov.Z {
- return 1
- }
-
- // Both are equal
- return 0
-}
diff --git a/vendor/github.com/golang/geo/s1/angle.go b/vendor/github.com/golang/geo/s1/angle.go
deleted file mode 100644
index 747b23dea..000000000
--- a/vendor/github.com/golang/geo/s1/angle.go
+++ /dev/null
@@ -1,120 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s1
-
-import (
- "math"
- "strconv"
-)
-
-// Angle represents a 1D angle. The internal representation is a double precision
-// value in radians, so conversion to and from radians is exact.
-// Conversions between E5, E6, E7, and Degrees are not always
-// exact. For example, Degrees(3.1) is different from E6(3100000) or E7(31000000).
-//
-// The following conversions between degrees and radians are exact:
-//
-// Degree*180 == Radian*math.Pi
-// Degree*(180/n) == Radian*(math.Pi/n) for n == 0..8
-//
-// These identities hold when the arguments are scaled up or down by any power
-// of 2. Some similar identities are also true, for example,
-//
-// Degree*60 == Radian*(math.Pi/3)
-//
-// But be aware that this type of identity does not hold in general. For example,
-//
-// Degree*3 != Radian*(math.Pi/60)
-//
-// Similarly, the conversion to radians means that (Angle(x)*Degree).Degrees()
-// does not always equal x. For example,
-//
-// (Angle(45*n)*Degree).Degrees() == 45*n for n == 0..8
-//
-// but
-//
-// (60*Degree).Degrees() != 60
-//
-// When testing for equality, you should allow for numerical errors (ApproxEqual)
-// or convert to discrete E5/E6/E7 values first.
-type Angle float64
-
-// Angle units.
-const (
- Radian Angle = 1
- Degree = (math.Pi / 180) * Radian
-
- E5 = 1e-5 * Degree
- E6 = 1e-6 * Degree
- E7 = 1e-7 * Degree
-)
-
-// Radians returns the angle in radians.
-func (a Angle) Radians() float64 { return float64(a) }
-
-// Degrees returns the angle in degrees.
-func (a Angle) Degrees() float64 { return float64(a / Degree) }
-
-// round returns the value rounded to nearest as an int32.
-// This does not match C++ exactly for the case of x.5.
-func round(val float64) int32 {
- if val < 0 {
- return int32(val - 0.5)
- }
- return int32(val + 0.5)
-}
-
-// InfAngle returns an angle larger than any finite angle.
-func InfAngle() Angle {
- return Angle(math.Inf(1))
-}
-
-// isInf reports whether this Angle is infinite.
-func (a Angle) isInf() bool {
- return math.IsInf(float64(a), 0)
-}
-
-// E5 returns the angle in hundred thousandths of degrees.
-func (a Angle) E5() int32 { return round(a.Degrees() * 1e5) }
-
-// E6 returns the angle in millionths of degrees.
-func (a Angle) E6() int32 { return round(a.Degrees() * 1e6) }
-
-// E7 returns the angle in ten millionths of degrees.
-func (a Angle) E7() int32 { return round(a.Degrees() * 1e7) }
-
-// Abs returns the absolute value of the angle.
-func (a Angle) Abs() Angle { return Angle(math.Abs(float64(a))) }
-
-// Normalized returns an equivalent angle in (-π, π].
-func (a Angle) Normalized() Angle {
- rad := math.Remainder(float64(a), 2*math.Pi)
- if rad <= -math.Pi {
- rad = math.Pi
- }
- return Angle(rad)
-}
-
-func (a Angle) String() string {
- return strconv.FormatFloat(a.Degrees(), 'f', 7, 64) // like "%.7f"
-}
-
-// ApproxEqual reports whether the two angles are the same up to a small tolerance.
-func (a Angle) ApproxEqual(other Angle) bool {
- return math.Abs(float64(a)-float64(other)) <= epsilon
-}
-
-// BUG(dsymonds): The major differences from the C++ version are:
-// - no unsigned E5/E6/E7 methods
diff --git a/vendor/github.com/golang/geo/s1/chordangle.go b/vendor/github.com/golang/geo/s1/chordangle.go
deleted file mode 100644
index 406c69ef1..000000000
--- a/vendor/github.com/golang/geo/s1/chordangle.go
+++ /dev/null
@@ -1,250 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s1
-
-import (
- "math"
-)
-
-// ChordAngle represents the angle subtended by a chord (i.e., the straight
-// line segment connecting two points on the sphere). Its representation
-// makes it very efficient for computing and comparing distances, but unlike
-// Angle it is only capable of representing angles between 0 and π radians.
-// Generally, ChordAngle should only be used in loops where many angles need
-// to be calculated and compared. Otherwise it is simpler to use Angle.
-//
-// ChordAngle loses some accuracy as the angle approaches π radians.
-// Specifically, the representation of (π - x) radians has an error of about
-// (1e-15 / x), with a maximum error of about 2e-8 radians (about 13cm on the
-// Earth's surface). For comparison, for angles up to π/2 radians (10000km)
-// the worst-case representation error is about 2e-16 radians (1 nanonmeter),
-// which is about the same as Angle.
-//
-// ChordAngles are represented by the squared chord length, which can
-// range from 0 to 4. Positive infinity represents an infinite squared length.
-type ChordAngle float64
-
-const (
- // NegativeChordAngle represents a chord angle smaller than the zero angle.
- // The only valid operations on a NegativeChordAngle are comparisons,
- // Angle conversions, and Successor/Predecessor.
- NegativeChordAngle = ChordAngle(-1)
-
- // RightChordAngle represents a chord angle of 90 degrees (a "right angle").
- RightChordAngle = ChordAngle(2)
-
- // StraightChordAngle represents a chord angle of 180 degrees (a "straight angle").
- // This is the maximum finite chord angle.
- StraightChordAngle = ChordAngle(4)
-
- // maxLength2 is the square of the maximum length allowed in a ChordAngle.
- maxLength2 = 4.0
-)
-
-// ChordAngleFromAngle returns a ChordAngle from the given Angle.
-func ChordAngleFromAngle(a Angle) ChordAngle {
- if a < 0 {
- return NegativeChordAngle
- }
- if a.isInf() {
- return InfChordAngle()
- }
- l := 2 * math.Sin(0.5*math.Min(math.Pi, a.Radians()))
- return ChordAngle(l * l)
-}
-
-// ChordAngleFromSquaredLength returns a ChordAngle from the squared chord length.
-// Note that the argument is automatically clamped to a maximum of 4 to
-// handle possible roundoff errors. The argument must be non-negative.
-func ChordAngleFromSquaredLength(length2 float64) ChordAngle {
- if length2 > maxLength2 {
- return StraightChordAngle
- }
- return ChordAngle(length2)
-}
-
-// Expanded returns a new ChordAngle that has been adjusted by the given error
-// bound (which can be positive or negative). Error should be the value
-// returned by either MaxPointError or MaxAngleError. For example:
-// a := ChordAngleFromPoints(x, y)
-// a1 := a.Expanded(a.MaxPointError())
-func (c ChordAngle) Expanded(e float64) ChordAngle {
- // If the angle is special, don't change it. Otherwise clamp it to the valid range.
- if c.isSpecial() {
- return c
- }
- return ChordAngle(math.Max(0.0, math.Min(maxLength2, float64(c)+e)))
-}
-
-// Angle converts this ChordAngle to an Angle.
-func (c ChordAngle) Angle() Angle {
- if c < 0 {
- return -1 * Radian
- }
- if c.isInf() {
- return InfAngle()
- }
- return Angle(2 * math.Asin(0.5*math.Sqrt(float64(c))))
-}
-
-// InfChordAngle returns a chord angle larger than any finite chord angle.
-// The only valid operations on an InfChordAngle are comparisons, Angle
-// conversions, and Successor/Predecessor.
-func InfChordAngle() ChordAngle {
- return ChordAngle(math.Inf(1))
-}
-
-// isInf reports whether this ChordAngle is infinite.
-func (c ChordAngle) isInf() bool {
- return math.IsInf(float64(c), 1)
-}
-
-// isSpecial reports whether this ChordAngle is one of the special cases.
-func (c ChordAngle) isSpecial() bool {
- return c < 0 || c.isInf()
-}
-
-// isValid reports whether this ChordAngle is valid or not.
-func (c ChordAngle) isValid() bool {
- return (c >= 0 && c <= maxLength2) || c.isSpecial()
-}
-
-// Successor returns the smallest representable ChordAngle larger than this one.
-// This can be used to convert a "<" comparison to a "<=" comparison.
-//
-// Note the following special cases:
-// NegativeChordAngle.Successor == 0
-// StraightChordAngle.Successor == InfChordAngle
-// InfChordAngle.Successor == InfChordAngle
-func (c ChordAngle) Successor() ChordAngle {
- if c >= maxLength2 {
- return InfChordAngle()
- }
- if c < 0 {
- return 0
- }
- return ChordAngle(math.Nextafter(float64(c), 10.0))
-}
-
-// Predecessor returns the largest representable ChordAngle less than this one.
-//
-// Note the following special cases:
-// InfChordAngle.Predecessor == StraightChordAngle
-// ChordAngle(0).Predecessor == NegativeChordAngle
-// NegativeChordAngle.Predecessor == NegativeChordAngle
-func (c ChordAngle) Predecessor() ChordAngle {
- if c <= 0 {
- return NegativeChordAngle
- }
- if c > maxLength2 {
- return StraightChordAngle
- }
-
- return ChordAngle(math.Nextafter(float64(c), -10.0))
-}
-
-// MaxPointError returns the maximum error size for a ChordAngle constructed
-// from 2 Points x and y, assuming that x and y are normalized to within the
-// bounds guaranteed by s2.Point.Normalize. The error is defined with respect to
-// the true distance after the points are projected to lie exactly on the sphere.
-func (c ChordAngle) MaxPointError() float64 {
- // There is a relative error of (2.5*dblEpsilon) when computing the squared
- // distance, plus a relative error of 2 * dblEpsilon, plus an absolute error
- // of (16 * dblEpsilon**2) because the lengths of the input points may differ
- // from 1 by up to (2*dblEpsilon) each. (This is the maximum error in Normalize).
- return 4.5*dblEpsilon*float64(c) + 16*dblEpsilon*dblEpsilon
-}
-
-// MaxAngleError returns the maximum error for a ChordAngle constructed
-// as an Angle distance.
-func (c ChordAngle) MaxAngleError() float64 {
- return dblEpsilon * float64(c)
-}
-
-// Add adds the other ChordAngle to this one and returns the resulting value.
-// This method assumes the ChordAngles are not special.
-func (c ChordAngle) Add(other ChordAngle) ChordAngle {
- // Note that this method (and Sub) is much more efficient than converting
- // the ChordAngle to an Angle and adding those and converting back. It
- // requires only one square root plus a few additions and multiplications.
-
- // Optimization for the common case where b is an error tolerance
- // parameter that happens to be set to zero.
- if other == 0 {
- return c
- }
-
- // Clamp the angle sum to at most 180 degrees.
- if c+other >= maxLength2 {
- return StraightChordAngle
- }
-
- // Let a and b be the (non-squared) chord lengths, and let c = a+b.
- // Let A, B, and C be the corresponding half-angles (a = 2*sin(A), etc).
- // Then the formula below can be derived from c = 2 * sin(A+B) and the
- // relationships sin(A+B) = sin(A)*cos(B) + sin(B)*cos(A)
- // cos(X) = sqrt(1 - sin^2(X))
- x := float64(c * (1 - 0.25*other))
- y := float64(other * (1 - 0.25*c))
- return ChordAngle(math.Min(maxLength2, x+y+2*math.Sqrt(x*y)))
-}
-
-// Sub subtracts the other ChordAngle from this one and returns the resulting
-// value. This method assumes the ChordAngles are not special.
-func (c ChordAngle) Sub(other ChordAngle) ChordAngle {
- if other == 0 {
- return c
- }
- if c <= other {
- return 0
- }
- x := float64(c * (1 - 0.25*other))
- y := float64(other * (1 - 0.25*c))
- return ChordAngle(math.Max(0.0, x+y-2*math.Sqrt(x*y)))
-}
-
-// Sin returns the sine of this chord angle. This method is more efficient
-// than converting to Angle and performing the computation.
-func (c ChordAngle) Sin() float64 {
- return math.Sqrt(c.Sin2())
-}
-
-// Sin2 returns the square of the sine of this chord angle.
-// It is more efficient than Sin.
-func (c ChordAngle) Sin2() float64 {
- // Let a be the (non-squared) chord length, and let A be the corresponding
- // half-angle (a = 2*sin(A)). The formula below can be derived from:
- // sin(2*A) = 2 * sin(A) * cos(A)
- // cos^2(A) = 1 - sin^2(A)
- // This is much faster than converting to an angle and computing its sine.
- return float64(c * (1 - 0.25*c))
-}
-
-// Cos returns the cosine of this chord angle. This method is more efficient
-// than converting to Angle and performing the computation.
-func (c ChordAngle) Cos() float64 {
- // cos(2*A) = cos^2(A) - sin^2(A) = 1 - 2*sin^2(A)
- return float64(1 - 0.5*c)
-}
-
-// Tan returns the tangent of this chord angle.
-func (c ChordAngle) Tan() float64 {
- return c.Sin() / c.Cos()
-}
-
-// TODO(roberts): Differences from C++:
-// Helpers to/from E5/E6/E7
-// Helpers to/from degrees and radians directly.
-// FastUpperBoundFrom(angle Angle)
diff --git a/vendor/github.com/golang/geo/s1/doc.go b/vendor/github.com/golang/geo/s1/doc.go
deleted file mode 100644
index 52a2c526d..000000000
--- a/vendor/github.com/golang/geo/s1/doc.go
+++ /dev/null
@@ -1,20 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/*
-Package s1 implements types and functions for working with geometry in S¹ (circular geometry).
-
-See ../s2 for a more detailed overview.
-*/
-package s1
diff --git a/vendor/github.com/golang/geo/s1/interval.go b/vendor/github.com/golang/geo/s1/interval.go
deleted file mode 100644
index 6fea5221f..000000000
--- a/vendor/github.com/golang/geo/s1/interval.go
+++ /dev/null
@@ -1,462 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s1
-
-import (
- "math"
- "strconv"
-)
-
-// An Interval represents a closed interval on a unit circle (also known
-// as a 1-dimensional sphere). It is capable of representing the empty
-// interval (containing no points), the full interval (containing all
-// points), and zero-length intervals (containing a single point).
-//
-// Points are represented by the angle they make with the positive x-axis in
-// the range [-π, π]. An interval is represented by its lower and upper
-// bounds (both inclusive, since the interval is closed). The lower bound may
-// be greater than the upper bound, in which case the interval is "inverted"
-// (i.e. it passes through the point (-1, 0)).
-//
-// The point (-1, 0) has two valid representations, π and -π. The
-// normalized representation of this point is π, so that endpoints
-// of normal intervals are in the range (-π, π]. We normalize the latter to
-// the former in IntervalFromEndpoints. However, we take advantage of the point
-// -π to construct two special intervals:
-// The full interval is [-π, π]
-// The empty interval is [π, -π].
-//
-// Treat the exported fields as read-only.
-type Interval struct {
- Lo, Hi float64
-}
-
-// IntervalFromEndpoints constructs a new interval from endpoints.
-// Both arguments must be in the range [-π,π]. This function allows inverted intervals
-// to be created.
-func IntervalFromEndpoints(lo, hi float64) Interval {
- i := Interval{lo, hi}
- if lo == -math.Pi && hi != math.Pi {
- i.Lo = math.Pi
- }
- if hi == -math.Pi && lo != math.Pi {
- i.Hi = math.Pi
- }
- return i
-}
-
-// IntervalFromPointPair returns the minimal interval containing the two given points.
-// Both arguments must be in [-π,π].
-func IntervalFromPointPair(a, b float64) Interval {
- if a == -math.Pi {
- a = math.Pi
- }
- if b == -math.Pi {
- b = math.Pi
- }
- if positiveDistance(a, b) <= math.Pi {
- return Interval{a, b}
- }
- return Interval{b, a}
-}
-
-// EmptyInterval returns an empty interval.
-func EmptyInterval() Interval { return Interval{math.Pi, -math.Pi} }
-
-// FullInterval returns a full interval.
-func FullInterval() Interval { return Interval{-math.Pi, math.Pi} }
-
-// IsValid reports whether the interval is valid.
-func (i Interval) IsValid() bool {
- return (math.Abs(i.Lo) <= math.Pi && math.Abs(i.Hi) <= math.Pi &&
- !(i.Lo == -math.Pi && i.Hi != math.Pi) &&
- !(i.Hi == -math.Pi && i.Lo != math.Pi))
-}
-
-// IsFull reports whether the interval is full.
-func (i Interval) IsFull() bool { return i.Lo == -math.Pi && i.Hi == math.Pi }
-
-// IsEmpty reports whether the interval is empty.
-func (i Interval) IsEmpty() bool { return i.Lo == math.Pi && i.Hi == -math.Pi }
-
-// IsInverted reports whether the interval is inverted; that is, whether Lo > Hi.
-func (i Interval) IsInverted() bool { return i.Lo > i.Hi }
-
-// Invert returns the interval with endpoints swapped.
-func (i Interval) Invert() Interval {
- return Interval{i.Hi, i.Lo}
-}
-
-// Center returns the midpoint of the interval.
-// It is undefined for full and empty intervals.
-func (i Interval) Center() float64 {
- c := 0.5 * (i.Lo + i.Hi)
- if !i.IsInverted() {
- return c
- }
- if c <= 0 {
- return c + math.Pi
- }
- return c - math.Pi
-}
-
-// Length returns the length of the interval.
-// The length of an empty interval is negative.
-func (i Interval) Length() float64 {
- l := i.Hi - i.Lo
- if l >= 0 {
- return l
- }
- l += 2 * math.Pi
- if l > 0 {
- return l
- }
- return -1
-}
-
-// Assumes p ∈ (-π,π].
-func (i Interval) fastContains(p float64) bool {
- if i.IsInverted() {
- return (p >= i.Lo || p <= i.Hi) && !i.IsEmpty()
- }
- return p >= i.Lo && p <= i.Hi
-}
-
-// Contains returns true iff the interval contains p.
-// Assumes p ∈ [-π,π].
-func (i Interval) Contains(p float64) bool {
- if p == -math.Pi {
- p = math.Pi
- }
- return i.fastContains(p)
-}
-
-// ContainsInterval returns true iff the interval contains oi.
-func (i Interval) ContainsInterval(oi Interval) bool {
- if i.IsInverted() {
- if oi.IsInverted() {
- return oi.Lo >= i.Lo && oi.Hi <= i.Hi
- }
- return (oi.Lo >= i.Lo || oi.Hi <= i.Hi) && !i.IsEmpty()
- }
- if oi.IsInverted() {
- return i.IsFull() || oi.IsEmpty()
- }
- return oi.Lo >= i.Lo && oi.Hi <= i.Hi
-}
-
-// InteriorContains returns true iff the interior of the interval contains p.
-// Assumes p ∈ [-π,π].
-func (i Interval) InteriorContains(p float64) bool {
- if p == -math.Pi {
- p = math.Pi
- }
- if i.IsInverted() {
- return p > i.Lo || p < i.Hi
- }
- return (p > i.Lo && p < i.Hi) || i.IsFull()
-}
-
-// InteriorContainsInterval returns true iff the interior of the interval contains oi.
-func (i Interval) InteriorContainsInterval(oi Interval) bool {
- if i.IsInverted() {
- if oi.IsInverted() {
- return (oi.Lo > i.Lo && oi.Hi < i.Hi) || oi.IsEmpty()
- }
- return oi.Lo > i.Lo || oi.Hi < i.Hi
- }
- if oi.IsInverted() {
- return i.IsFull() || oi.IsEmpty()
- }
- return (oi.Lo > i.Lo && oi.Hi < i.Hi) || i.IsFull()
-}
-
-// Intersects returns true iff the interval contains any points in common with oi.
-func (i Interval) Intersects(oi Interval) bool {
- if i.IsEmpty() || oi.IsEmpty() {
- return false
- }
- if i.IsInverted() {
- return oi.IsInverted() || oi.Lo <= i.Hi || oi.Hi >= i.Lo
- }
- if oi.IsInverted() {
- return oi.Lo <= i.Hi || oi.Hi >= i.Lo
- }
- return oi.Lo <= i.Hi && oi.Hi >= i.Lo
-}
-
-// InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary.
-func (i Interval) InteriorIntersects(oi Interval) bool {
- if i.IsEmpty() || oi.IsEmpty() || i.Lo == i.Hi {
- return false
- }
- if i.IsInverted() {
- return oi.IsInverted() || oi.Lo < i.Hi || oi.Hi > i.Lo
- }
- if oi.IsInverted() {
- return oi.Lo < i.Hi || oi.Hi > i.Lo
- }
- return (oi.Lo < i.Hi && oi.Hi > i.Lo) || i.IsFull()
-}
-
-// Compute distance from a to b in [0,2π], in a numerically stable way.
-func positiveDistance(a, b float64) float64 {
- d := b - a
- if d >= 0 {
- return d
- }
- return (b + math.Pi) - (a - math.Pi)
-}
-
-// Union returns the smallest interval that contains both the interval and oi.
-func (i Interval) Union(oi Interval) Interval {
- if oi.IsEmpty() {
- return i
- }
- if i.fastContains(oi.Lo) {
- if i.fastContains(oi.Hi) {
- // Either oi ⊂ i, or i ∪ oi is the full interval.
- if i.ContainsInterval(oi) {
- return i
- }
- return FullInterval()
- }
- return Interval{i.Lo, oi.Hi}
- }
- if i.fastContains(oi.Hi) {
- return Interval{oi.Lo, i.Hi}
- }
-
- // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
- if i.IsEmpty() || oi.fastContains(i.Lo) {
- return oi
- }
-
- // This is the only hard case where we need to find the closest pair of endpoints.
- if positiveDistance(oi.Hi, i.Lo) < positiveDistance(i.Hi, oi.Lo) {
- return Interval{oi.Lo, i.Hi}
- }
- return Interval{i.Lo, oi.Hi}
-}
-
-// Intersection returns the smallest interval that contains the intersection of the interval and oi.
-func (i Interval) Intersection(oi Interval) Interval {
- if oi.IsEmpty() {
- return EmptyInterval()
- }
- if i.fastContains(oi.Lo) {
- if i.fastContains(oi.Hi) {
- // Either oi ⊂ i, or i and oi intersect twice. Neither are empty.
- // In the first case we want to return i (which is shorter than oi).
- // In the second case one of them is inverted, and the smallest interval
- // that covers the two disjoint pieces is the shorter of i and oi.
- // We thus want to pick the shorter of i and oi in both cases.
- if oi.Length() < i.Length() {
- return oi
- }
- return i
- }
- return Interval{oi.Lo, i.Hi}
- }
- if i.fastContains(oi.Hi) {
- return Interval{i.Lo, oi.Hi}
- }
-
- // Neither endpoint of oi is in i. Either i ⊂ oi, or i and oi are disjoint.
- if oi.fastContains(i.Lo) {
- return i
- }
- return EmptyInterval()
-}
-
-// AddPoint returns the interval expanded by the minimum amount necessary such
-// that it contains the given point "p" (an angle in the range [-π, π]).
-func (i Interval) AddPoint(p float64) Interval {
- if math.Abs(p) > math.Pi {
- return i
- }
- if p == -math.Pi {
- p = math.Pi
- }
- if i.fastContains(p) {
- return i
- }
- if i.IsEmpty() {
- return Interval{p, p}
- }
- if positiveDistance(p, i.Lo) < positiveDistance(i.Hi, p) {
- return Interval{p, i.Hi}
- }
- return Interval{i.Lo, p}
-}
-
-// Define the maximum rounding error for arithmetic operations. Depending on the
-// platform the mantissa precision may be different than others, so we choose to
-// use specific values to be consistent across all.
-// The values come from the C++ implementation.
-var (
- // epsilon is a small number that represents a reasonable level of noise between two
- // values that can be considered to be equal.
- epsilon = 1e-15
- // dblEpsilon is a smaller number for values that require more precision.
- dblEpsilon = 2.220446049e-16
-)
-
-// Expanded returns an interval that has been expanded on each side by margin.
-// If margin is negative, then the function shrinks the interval on
-// each side by margin instead. The resulting interval may be empty or
-// full. Any expansion (positive or negative) of a full interval remains
-// full, and any expansion of an empty interval remains empty.
-func (i Interval) Expanded(margin float64) Interval {
- if margin >= 0 {
- if i.IsEmpty() {
- return i
- }
- // Check whether this interval will be full after expansion, allowing
- // for a rounding error when computing each endpoint.
- if i.Length()+2*margin+2*dblEpsilon >= 2*math.Pi {
- return FullInterval()
- }
- } else {
- if i.IsFull() {
- return i
- }
- // Check whether this interval will be empty after expansion, allowing
- // for a rounding error when computing each endpoint.
- if i.Length()+2*margin-2*dblEpsilon <= 0 {
- return EmptyInterval()
- }
- }
- result := IntervalFromEndpoints(
- math.Remainder(i.Lo-margin, 2*math.Pi),
- math.Remainder(i.Hi+margin, 2*math.Pi),
- )
- if result.Lo <= -math.Pi {
- result.Lo = math.Pi
- }
- return result
-}
-
-// ApproxEqual reports whether this interval can be transformed into the given
-// interval by moving each endpoint by at most ε, without the
-// endpoints crossing (which would invert the interval). Empty and full
-// intervals are considered to start at an arbitrary point on the unit circle,
-// so any interval with (length <= 2*ε) matches the empty interval, and
-// any interval with (length >= 2*π - 2*ε) matches the full interval.
-func (i Interval) ApproxEqual(other Interval) bool {
- // Full and empty intervals require special cases because the endpoints
- // are considered to be positioned arbitrarily.
- if i.IsEmpty() {
- return other.Length() <= 2*epsilon
- }
- if other.IsEmpty() {
- return i.Length() <= 2*epsilon
- }
- if i.IsFull() {
- return other.Length() >= 2*(math.Pi-epsilon)
- }
- if other.IsFull() {
- return i.Length() >= 2*(math.Pi-epsilon)
- }
-
- // The purpose of the last test below is to verify that moving the endpoints
- // does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20].
- return (math.Abs(math.Remainder(other.Lo-i.Lo, 2*math.Pi)) <= epsilon &&
- math.Abs(math.Remainder(other.Hi-i.Hi, 2*math.Pi)) <= epsilon &&
- math.Abs(i.Length()-other.Length()) <= 2*epsilon)
-
-}
-
-func (i Interval) String() string {
- // like "[%.7f, %.7f]"
- return "[" + strconv.FormatFloat(i.Lo, 'f', 7, 64) + ", " + strconv.FormatFloat(i.Hi, 'f', 7, 64) + "]"
-}
-
-// Complement returns the complement of the interior of the interval. An interval and
-// its complement have the same boundary but do not share any interior
-// values. The complement operator is not a bijection, since the complement
-// of a singleton interval (containing a single value) is the same as the
-// complement of an empty interval.
-func (i Interval) Complement() Interval {
- if i.Lo == i.Hi {
- // Singleton. The interval just contains a single point.
- return FullInterval()
- }
- // Handles empty and full.
- return Interval{i.Hi, i.Lo}
-}
-
-// ComplementCenter returns the midpoint of the complement of the interval. For full and empty
-// intervals, the result is arbitrary. For a singleton interval (containing a
-// single point), the result is its antipodal point on S1.
-func (i Interval) ComplementCenter() float64 {
- if i.Lo != i.Hi {
- return i.Complement().Center()
- }
- // Singleton. The interval just contains a single point.
- if i.Hi <= 0 {
- return i.Hi + math.Pi
- }
- return i.Hi - math.Pi
-}
-
-// DirectedHausdorffDistance returns the Hausdorff distance to the given interval.
-// For two intervals i and y, this distance is defined by
-// h(i, y) = max_{p in i} min_{q in y} d(p, q),
-// where d(.,.) is measured along S1.
-func (i Interval) DirectedHausdorffDistance(y Interval) Angle {
- if y.ContainsInterval(i) {
- return 0 // This includes the case i is empty.
- }
- if y.IsEmpty() {
- return Angle(math.Pi) // maximum possible distance on s1.
- }
- yComplementCenter := y.ComplementCenter()
- if i.Contains(yComplementCenter) {
- return Angle(positiveDistance(y.Hi, yComplementCenter))
- }
-
- // The Hausdorff distance is realized by either two i.Hi endpoints or two
- // i.Lo endpoints, whichever is farther apart.
- hiHi := 0.0
- if IntervalFromEndpoints(y.Hi, yComplementCenter).Contains(i.Hi) {
- hiHi = positiveDistance(y.Hi, i.Hi)
- }
-
- loLo := 0.0
- if IntervalFromEndpoints(yComplementCenter, y.Lo).Contains(i.Lo) {
- loLo = positiveDistance(i.Lo, y.Lo)
- }
-
- return Angle(math.Max(hiHi, loLo))
-}
-
-// Project returns the closest point in the interval to the given point p.
-// The interval must be non-empty.
-func (i Interval) Project(p float64) float64 {
- if p == -math.Pi {
- p = math.Pi
- }
- if i.fastContains(p) {
- return p
- }
- // Compute distance from p to each endpoint.
- dlo := positiveDistance(p, i.Lo)
- dhi := positiveDistance(i.Hi, p)
- if dlo < dhi {
- return i.Lo
- }
- return i.Hi
-}
diff --git a/vendor/github.com/golang/geo/s2/bits_go18.go b/vendor/github.com/golang/geo/s2/bits_go18.go
deleted file mode 100644
index 10a674da5..000000000
--- a/vendor/github.com/golang/geo/s2/bits_go18.go
+++ /dev/null
@@ -1,53 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// +build !go1.9
-
-package s2
-
-// This file is for the bit manipulation code pre-Go 1.9.
-
-// findMSBSetNonZero64 returns the index (between 0 and 63) of the most
-// significant set bit. Passing zero to this function returns zero.
-func findMSBSetNonZero64(x uint64) int {
- val := []uint64{0x2, 0xC, 0xF0, 0xFF00, 0xFFFF0000, 0xFFFFFFFF00000000}
- shift := []uint64{1, 2, 4, 8, 16, 32}
- var msbPos uint64
- for i := 5; i >= 0; i-- {
- if x&val[i] != 0 {
- x >>= shift[i]
- msbPos |= shift[i]
- }
- }
- return int(msbPos)
-}
-
-const deBruijn64 = 0x03f79d71b4ca8b09
-const digitMask = uint64(1<<64 - 1)
-
-var deBruijn64Lookup = []byte{
- 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
- 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
- 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
- 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
-}
-
-// findLSBSetNonZero64 returns the index (between 0 and 63) of the least
-// significant set bit. Passing zero to this function returns zero.
-//
-// This code comes from trailingZeroBits in https://golang.org/src/math/big/nat.go
-// which references (Knuth, volume 4, section 7.3.1).
-func findLSBSetNonZero64(x uint64) int {
- return int(deBruijn64Lookup[((x&-x)*(deBruijn64&digitMask))>>58])
-}
diff --git a/vendor/github.com/golang/geo/s2/bits_go19.go b/vendor/github.com/golang/geo/s2/bits_go19.go
deleted file mode 100644
index 9532b377d..000000000
--- a/vendor/github.com/golang/geo/s2/bits_go19.go
+++ /dev/null
@@ -1,39 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// +build go1.9
-
-package s2
-
-// This file is for the bit manipulation code post-Go 1.9.
-
-import "math/bits"
-
-// findMSBSetNonZero64 returns the index (between 0 and 63) of the most
-// significant set bit. Passing zero to this function return zero.
-func findMSBSetNonZero64(x uint64) int {
- if x == 0 {
- return 0
- }
- return 63 - bits.LeadingZeros64(x)
-}
-
-// findLSBSetNonZero64 returns the index (between 0 and 63) of the least
-// significant set bit. Passing zero to this function return zero.
-func findLSBSetNonZero64(x uint64) int {
- if x == 0 {
- return 0
- }
- return bits.TrailingZeros64(x)
-}
diff --git a/vendor/github.com/golang/geo/s2/cap.go b/vendor/github.com/golang/geo/s2/cap.go
deleted file mode 100644
index c4fb2e1e0..000000000
--- a/vendor/github.com/golang/geo/s2/cap.go
+++ /dev/null
@@ -1,519 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/s1"
-)
-
-var (
- // centerPoint is the default center for Caps
- centerPoint = PointFromCoords(1.0, 0, 0)
-)
-
-// Cap represents a disc-shaped region defined by a center and radius.
-// Technically this shape is called a "spherical cap" (rather than disc)
-// because it is not planar; the cap represents a portion of the sphere that
-// has been cut off by a plane. The boundary of the cap is the circle defined
-// by the intersection of the sphere and the plane. For containment purposes,
-// the cap is a closed set, i.e. it contains its boundary.
-//
-// For the most part, you can use a spherical cap wherever you would use a
-// disc in planar geometry. The radius of the cap is measured along the
-// surface of the sphere (rather than the straight-line distance through the
-// interior). Thus a cap of radius π/2 is a hemisphere, and a cap of radius
-// π covers the entire sphere.
-//
-// The center is a point on the surface of the unit sphere. (Hence the need for
-// it to be of unit length.)
-//
-// A cap can also be defined by its center point and height. The height is the
-// distance from the center point to the cutoff plane. There is also support for
-// "empty" and "full" caps, which contain no points and all points respectively.
-//
-// Here are some useful relationships between the cap height (h), the cap
-// radius (r), the maximum chord length from the cap's center (d), and the
-// radius of cap's base (a).
-//
-// h = 1 - cos(r)
-// = 2 * sin^2(r/2)
-// d^2 = 2 * h
-// = a^2 + h^2
-//
-// The zero value of Cap is an invalid cap. Use EmptyCap to get a valid empty cap.
-type Cap struct {
- center Point
- radius s1.ChordAngle
-}
-
-// CapFromPoint constructs a cap containing a single point.
-func CapFromPoint(p Point) Cap {
- return CapFromCenterChordAngle(p, 0)
-}
-
-// CapFromCenterAngle constructs a cap with the given center and angle.
-func CapFromCenterAngle(center Point, angle s1.Angle) Cap {
- return CapFromCenterChordAngle(center, s1.ChordAngleFromAngle(angle))
-}
-
-// CapFromCenterChordAngle constructs a cap where the angle is expressed as an
-// s1.ChordAngle. This constructor is more efficient than using an s1.Angle.
-func CapFromCenterChordAngle(center Point, radius s1.ChordAngle) Cap {
- return Cap{
- center: center,
- radius: radius,
- }
-}
-
-// CapFromCenterHeight constructs a cap with the given center and height. A
-// negative height yields an empty cap; a height of 2 or more yields a full cap.
-// The center should be unit length.
-func CapFromCenterHeight(center Point, height float64) Cap {
- return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(2*height))
-}
-
-// CapFromCenterArea constructs a cap with the given center and surface area.
-// Note that the area can also be interpreted as the solid angle subtended by the
-// cap (because the sphere has unit radius). A negative area yields an empty cap;
-// an area of 4*π or more yields a full cap.
-func CapFromCenterArea(center Point, area float64) Cap {
- return CapFromCenterChordAngle(center, s1.ChordAngleFromSquaredLength(area/math.Pi))
-}
-
-// EmptyCap returns a cap that contains no points.
-func EmptyCap() Cap {
- return CapFromCenterChordAngle(centerPoint, s1.NegativeChordAngle)
-}
-
-// FullCap returns a cap that contains all points.
-func FullCap() Cap {
- return CapFromCenterChordAngle(centerPoint, s1.StraightChordAngle)
-}
-
-// IsValid reports whether the Cap is considered valid.
-func (c Cap) IsValid() bool {
- return c.center.Vector.IsUnit() && c.radius <= s1.StraightChordAngle
-}
-
-// IsEmpty reports whether the cap is empty, i.e. it contains no points.
-func (c Cap) IsEmpty() bool {
- return c.radius < 0
-}
-
-// IsFull reports whether the cap is full, i.e. it contains all points.
-func (c Cap) IsFull() bool {
- return c.radius == s1.StraightChordAngle
-}
-
-// Center returns the cap's center point.
-func (c Cap) Center() Point {
- return c.center
-}
-
-// Height returns the height of the cap. This is the distance from the center
-// point to the cutoff plane.
-func (c Cap) Height() float64 {
- return float64(0.5 * c.radius)
-}
-
-// Radius returns the cap radius as an s1.Angle. (Note that the cap angle
-// is stored internally as a ChordAngle, so this method requires a trigonometric
-// operation and may yield a slightly different result than the value passed
-// to CapFromCenterAngle).
-func (c Cap) Radius() s1.Angle {
- return c.radius.Angle()
-}
-
-// Area returns the surface area of the Cap on the unit sphere.
-func (c Cap) Area() float64 {
- return 2.0 * math.Pi * math.Max(0, c.Height())
-}
-
-// Contains reports whether this cap contains the other.
-func (c Cap) Contains(other Cap) bool {
- // In a set containment sense, every cap contains the empty cap.
- if c.IsFull() || other.IsEmpty() {
- return true
- }
- return c.radius >= ChordAngleBetweenPoints(c.center, other.center).Add(other.radius)
-}
-
-// Intersects reports whether this cap intersects the other cap.
-// i.e. whether they have any points in common.
-func (c Cap) Intersects(other Cap) bool {
- if c.IsEmpty() || other.IsEmpty() {
- return false
- }
-
- return c.radius.Add(other.radius) >= ChordAngleBetweenPoints(c.center, other.center)
-}
-
-// InteriorIntersects reports whether this caps interior intersects the other cap.
-func (c Cap) InteriorIntersects(other Cap) bool {
- // Make sure this cap has an interior and the other cap is non-empty.
- if c.radius <= 0 || other.IsEmpty() {
- return false
- }
-
- return c.radius.Add(other.radius) > ChordAngleBetweenPoints(c.center, other.center)
-}
-
-// ContainsPoint reports whether this cap contains the point.
-func (c Cap) ContainsPoint(p Point) bool {
- return ChordAngleBetweenPoints(c.center, p) <= c.radius
-}
-
-// InteriorContainsPoint reports whether the point is within the interior of this cap.
-func (c Cap) InteriorContainsPoint(p Point) bool {
- return c.IsFull() || ChordAngleBetweenPoints(c.center, p) < c.radius
-}
-
-// Complement returns the complement of the interior of the cap. A cap and its
-// complement have the same boundary but do not share any interior points.
-// The complement operator is not a bijection because the complement of a
-// singleton cap (containing a single point) is the same as the complement
-// of an empty cap.
-func (c Cap) Complement() Cap {
- if c.IsFull() {
- return EmptyCap()
- }
- if c.IsEmpty() {
- return FullCap()
- }
-
- return CapFromCenterChordAngle(Point{c.center.Mul(-1)}, s1.StraightChordAngle.Sub(c.radius))
-}
-
-// CapBound returns a bounding spherical cap. This is not guaranteed to be exact.
-func (c Cap) CapBound() Cap {
- return c
-}
-
-// RectBound returns a bounding latitude-longitude rectangle.
-// The bounds are not guaranteed to be tight.
-func (c Cap) RectBound() Rect {
- if c.IsEmpty() {
- return EmptyRect()
- }
-
- capAngle := c.Radius().Radians()
- allLongitudes := false
- lat := r1.Interval{
- Lo: latitude(c.center).Radians() - capAngle,
- Hi: latitude(c.center).Radians() + capAngle,
- }
- lng := s1.FullInterval()
-
- // Check whether cap includes the south pole.
- if lat.Lo <= -math.Pi/2 {
- lat.Lo = -math.Pi / 2
- allLongitudes = true
- }
-
- // Check whether cap includes the north pole.
- if lat.Hi >= math.Pi/2 {
- lat.Hi = math.Pi / 2
- allLongitudes = true
- }
-
- if !allLongitudes {
- // Compute the range of longitudes covered by the cap. We use the law
- // of sines for spherical triangles. Consider the triangle ABC where
- // A is the north pole, B is the center of the cap, and C is the point
- // of tangency between the cap boundary and a line of longitude. Then
- // C is a right angle, and letting a,b,c denote the sides opposite A,B,C,
- // we have sin(a)/sin(A) = sin(c)/sin(C), or sin(A) = sin(a)/sin(c).
- // Here "a" is the cap angle, and "c" is the colatitude (90 degrees
- // minus the latitude). This formula also works for negative latitudes.
- //
- // The formula for sin(a) follows from the relationship h = 1 - cos(a).
- sinA := c.radius.Sin()
- sinC := math.Cos(latitude(c.center).Radians())
- if sinA <= sinC {
- angleA := math.Asin(sinA / sinC)
- lng.Lo = math.Remainder(longitude(c.center).Radians()-angleA, math.Pi*2)
- lng.Hi = math.Remainder(longitude(c.center).Radians()+angleA, math.Pi*2)
- }
- }
- return Rect{lat, lng}
-}
-
-// Equal reports whether this cap is equal to the other cap.
-func (c Cap) Equal(other Cap) bool {
- return (c.radius == other.radius && c.center == other.center) ||
- (c.IsEmpty() && other.IsEmpty()) ||
- (c.IsFull() && other.IsFull())
-}
-
-// ApproxEqual reports whether this cap is equal to the other cap within the given tolerance.
-func (c Cap) ApproxEqual(other Cap) bool {
- const epsilon = 1e-14
- r2 := float64(c.radius)
- otherR2 := float64(other.radius)
- return c.center.ApproxEqual(other.center) &&
- math.Abs(r2-otherR2) <= epsilon ||
- c.IsEmpty() && otherR2 <= epsilon ||
- other.IsEmpty() && r2 <= epsilon ||
- c.IsFull() && otherR2 >= 2-epsilon ||
- other.IsFull() && r2 >= 2-epsilon
-}
-
-// AddPoint increases the cap if necessary to include the given point. If this cap is empty,
-// then the center is set to the point with a zero height. p must be unit-length.
-func (c Cap) AddPoint(p Point) Cap {
- if c.IsEmpty() {
- c.center = p
- c.radius = 0
- return c
- }
-
- // After calling cap.AddPoint(p), cap.Contains(p) must be true. However
- // we don't need to do anything special to achieve this because Contains()
- // does exactly the same distance calculation that we do here.
- if newRad := ChordAngleBetweenPoints(c.center, p); newRad > c.radius {
- c.radius = newRad
- }
- return c
-}
-
-// AddCap increases the cap height if necessary to include the other cap. If this cap is empty,
-// it is set to the other cap.
-func (c Cap) AddCap(other Cap) Cap {
- if c.IsEmpty() {
- return other
- }
- if other.IsEmpty() {
- return c
- }
-
- // We round up the distance to ensure that the cap is actually contained.
- // TODO(roberts): Do some error analysis in order to guarantee this.
- dist := ChordAngleBetweenPoints(c.center, other.center).Add(other.radius)
- if newRad := dist.Expanded(dblEpsilon * float64(dist)); newRad > c.radius {
- c.radius = newRad
- }
- return c
-}
-
-// Expanded returns a new cap expanded by the given angle. If the cap is empty,
-// it returns an empty cap.
-func (c Cap) Expanded(distance s1.Angle) Cap {
- if c.IsEmpty() {
- return EmptyCap()
- }
- return CapFromCenterChordAngle(c.center, c.radius.Add(s1.ChordAngleFromAngle(distance)))
-}
-
-func (c Cap) String() string {
- return fmt.Sprintf("[Center=%v, Radius=%f]", c.center.Vector, c.Radius().Degrees())
-}
-
-// radiusToHeight converts an s1.Angle into the height of the cap.
-func radiusToHeight(r s1.Angle) float64 {
- if r.Radians() < 0 {
- return float64(s1.NegativeChordAngle)
- }
- if r.Radians() >= math.Pi {
- return float64(s1.RightChordAngle)
- }
- return float64(0.5 * s1.ChordAngleFromAngle(r))
-
-}
-
-// ContainsCell reports whether the cap contains the given cell.
-func (c Cap) ContainsCell(cell Cell) bool {
- // If the cap does not contain all cell vertices, return false.
- var vertices [4]Point
- for k := 0; k < 4; k++ {
- vertices[k] = cell.Vertex(k)
- if !c.ContainsPoint(vertices[k]) {
- return false
- }
- }
- // Otherwise, return true if the complement of the cap does not intersect the cell.
- return !c.Complement().intersects(cell, vertices)
-}
-
-// IntersectsCell reports whether the cap intersects the cell.
-func (c Cap) IntersectsCell(cell Cell) bool {
- // If the cap contains any cell vertex, return true.
- var vertices [4]Point
- for k := 0; k < 4; k++ {
- vertices[k] = cell.Vertex(k)
- if c.ContainsPoint(vertices[k]) {
- return true
- }
- }
- return c.intersects(cell, vertices)
-}
-
-// intersects reports whether the cap intersects any point of the cell excluding
-// its vertices (which are assumed to already have been checked).
-func (c Cap) intersects(cell Cell, vertices [4]Point) bool {
- // If the cap is a hemisphere or larger, the cell and the complement of the cap
- // are both convex. Therefore since no vertex of the cell is contained, no other
- // interior point of the cell is contained either.
- if c.radius >= s1.RightChordAngle {
- return false
- }
-
- // We need to check for empty caps due to the center check just below.
- if c.IsEmpty() {
- return false
- }
-
- // Optimization: return true if the cell contains the cap center. This allows half
- // of the edge checks below to be skipped.
- if cell.ContainsPoint(c.center) {
- return true
- }
-
- // At this point we know that the cell does not contain the cap center, and the cap
- // does not contain any cell vertex. The only way that they can intersect is if the
- // cap intersects the interior of some edge.
- sin2Angle := c.radius.Sin2()
- for k := 0; k < 4; k++ {
- edge := cell.Edge(k).Vector
- dot := c.center.Vector.Dot(edge)
- if dot > 0 {
- // The center is in the interior half-space defined by the edge. We do not need
- // to consider these edges, since if the cap intersects this edge then it also
- // intersects the edge on the opposite side of the cell, because the center is
- // not contained with the cell.
- continue
- }
-
- // The Norm2() factor is necessary because "edge" is not normalized.
- if dot*dot > sin2Angle*edge.Norm2() {
- return false
- }
-
- // Otherwise, the great circle containing this edge intersects the interior of the cap. We just
- // need to check whether the point of closest approach occurs between the two edge endpoints.
- dir := edge.Cross(c.center.Vector)
- if dir.Dot(vertices[k].Vector) < 0 && dir.Dot(vertices[(k+1)&3].Vector) > 0 {
- return true
- }
- }
- return false
-}
-
-// CellUnionBound computes a covering of the Cap. In general the covering
-// consists of at most 4 cells except for very large caps, which may need
-// up to 6 cells. The output is not sorted.
-func (c Cap) CellUnionBound() []CellID {
- // TODO(roberts): The covering could be made quite a bit tighter by mapping
- // the cap to a rectangle in (i,j)-space and finding a covering for that.
-
- // Find the maximum level such that the cap contains at most one cell vertex
- // and such that CellID.AppendVertexNeighbors() can be called.
- level := MinWidthMetric.MaxLevel(c.Radius().Radians()) - 1
-
- // If level < 0, more than three face cells are required.
- if level < 0 {
- cellIDs := make([]CellID, 6)
- for face := 0; face < 6; face++ {
- cellIDs[face] = CellIDFromFace(face)
- }
- return cellIDs
- }
- // The covering consists of the 4 cells at the given level that share the
- // cell vertex that is closest to the cap center.
- return cellIDFromPoint(c.center).VertexNeighbors(level)
-}
-
-// Centroid returns the true centroid of the cap multiplied by its surface area
-// The result lies on the ray from the origin through the cap's center, but it
-// is not unit length. Note that if you just want the "surface centroid", i.e.
-// the normalized result, then it is simpler to call Center.
-//
-// The reason for multiplying the result by the cap area is to make it
-// easier to compute the centroid of more complicated shapes. The centroid
-// of a union of disjoint regions can be computed simply by adding their
-// Centroid() results. Caveat: for caps that contain a single point
-// (i.e., zero radius), this method always returns the origin (0, 0, 0).
-// This is because shapes with no area don't affect the centroid of a
-// union whose total area is positive.
-func (c Cap) Centroid() Point {
- // From symmetry, the centroid of the cap must be somewhere on the line
- // from the origin to the center of the cap on the surface of the sphere.
- // When a sphere is divided into slices of constant thickness by a set of
- // parallel planes, all slices have the same surface area. This implies
- // that the radial component of the centroid is simply the midpoint of the
- // range of radial distances spanned by the cap. That is easily computed
- // from the cap height.
- if c.IsEmpty() {
- return Point{}
- }
- r := 1 - 0.5*c.Height()
- return Point{c.center.Mul(r * c.Area())}
-}
-
-// Union returns the smallest cap which encloses this cap and other.
-func (c Cap) Union(other Cap) Cap {
- // If the other cap is larger, swap c and other for the rest of the computations.
- if c.radius < other.radius {
- c, other = other, c
- }
-
- if c.IsFull() || other.IsEmpty() {
- return c
- }
-
- // TODO: This calculation would be more efficient using s1.ChordAngles.
- cRadius := c.Radius()
- otherRadius := other.Radius()
- distance := c.center.Distance(other.center)
- if cRadius >= distance+otherRadius {
- return c
- }
-
- resRadius := 0.5 * (distance + cRadius + otherRadius)
- resCenter := InterpolateAtDistance(0.5*(distance-cRadius+otherRadius), c.center, other.center)
- return CapFromCenterAngle(resCenter, resRadius)
-}
-
-// Encode encodes the Cap.
-func (c Cap) Encode(w io.Writer) error {
- e := &encoder{w: w}
- c.encode(e)
- return e.err
-}
-
-func (c Cap) encode(e *encoder) {
- e.writeFloat64(c.center.X)
- e.writeFloat64(c.center.Y)
- e.writeFloat64(c.center.Z)
- e.writeFloat64(float64(c.radius))
-}
-
-// Decode decodes the Cap.
-func (c *Cap) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- c.decode(d)
- return d.err
-}
-
-func (c *Cap) decode(d *decoder) {
- c.center.X = d.readFloat64()
- c.center.Y = d.readFloat64()
- c.center.Z = d.readFloat64()
- c.radius = s1.ChordAngle(d.readFloat64())
-}
diff --git a/vendor/github.com/golang/geo/s2/cell.go b/vendor/github.com/golang/geo/s2/cell.go
deleted file mode 100644
index 0a01a4f1f..000000000
--- a/vendor/github.com/golang/geo/s2/cell.go
+++ /dev/null
@@ -1,698 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "io"
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r2"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// Cell is an S2 region object that represents a cell. Unlike CellIDs,
-// it supports efficient containment and intersection tests. However, it is
-// also a more expensive representation.
-type Cell struct {
- face int8
- level int8
- orientation int8
- id CellID
- uv r2.Rect
-}
-
-// CellFromCellID constructs a Cell corresponding to the given CellID.
-func CellFromCellID(id CellID) Cell {
- c := Cell{}
- c.id = id
- f, i, j, o := c.id.faceIJOrientation()
- c.face = int8(f)
- c.level = int8(c.id.Level())
- c.orientation = int8(o)
- c.uv = ijLevelToBoundUV(i, j, int(c.level))
- return c
-}
-
-// CellFromPoint constructs a cell for the given Point.
-func CellFromPoint(p Point) Cell {
- return CellFromCellID(cellIDFromPoint(p))
-}
-
-// CellFromLatLng constructs a cell for the given LatLng.
-func CellFromLatLng(ll LatLng) Cell {
- return CellFromCellID(CellIDFromLatLng(ll))
-}
-
-// Face returns the face this cell is on.
-func (c Cell) Face() int {
- return int(c.face)
-}
-
-// oppositeFace returns the face opposite the given face.
-func oppositeFace(face int) int {
- return (face + 3) % 6
-}
-
-// Level returns the level of this cell.
-func (c Cell) Level() int {
- return int(c.level)
-}
-
-// ID returns the CellID this cell represents.
-func (c Cell) ID() CellID {
- return c.id
-}
-
-// IsLeaf returns whether this Cell is a leaf or not.
-func (c Cell) IsLeaf() bool {
- return c.level == maxLevel
-}
-
-// SizeIJ returns the edge length of this cell in (i,j)-space.
-func (c Cell) SizeIJ() int {
- return sizeIJ(int(c.level))
-}
-
-// SizeST returns the edge length of this cell in (s,t)-space.
-func (c Cell) SizeST() float64 {
- return c.id.sizeST(int(c.level))
-}
-
-// Vertex returns the k-th vertex of the cell (k = 0,1,2,3) in CCW order
-// (lower left, lower right, upper right, upper left in the UV plane).
-func (c Cell) Vertex(k int) Point {
- return Point{faceUVToXYZ(int(c.face), c.uv.Vertices()[k].X, c.uv.Vertices()[k].Y).Normalize()}
-}
-
-// Edge returns the inward-facing normal of the great circle passing through
-// the CCW ordered edge from vertex k to vertex k+1 (mod 4) (for k = 0,1,2,3).
-func (c Cell) Edge(k int) Point {
- switch k {
- case 0:
- return Point{vNorm(int(c.face), c.uv.Y.Lo).Normalize()} // Bottom
- case 1:
- return Point{uNorm(int(c.face), c.uv.X.Hi).Normalize()} // Right
- case 2:
- return Point{vNorm(int(c.face), c.uv.Y.Hi).Mul(-1.0).Normalize()} // Top
- default:
- return Point{uNorm(int(c.face), c.uv.X.Lo).Mul(-1.0).Normalize()} // Left
- }
-}
-
-// BoundUV returns the bounds of this cell in (u,v)-space.
-func (c Cell) BoundUV() r2.Rect {
- return c.uv
-}
-
-// Center returns the direction vector corresponding to the center in
-// (s,t)-space of the given cell. This is the point at which the cell is
-// divided into four subcells; it is not necessarily the centroid of the
-// cell in (u,v)-space or (x,y,z)-space
-func (c Cell) Center() Point {
- return Point{c.id.rawPoint().Normalize()}
-}
-
-// Children returns the four direct children of this cell in traversal order
-// and returns true. If this is a leaf cell, or the children could not be created,
-// false is returned.
-// The C++ method is called Subdivide.
-func (c Cell) Children() ([4]Cell, bool) {
- var children [4]Cell
-
- if c.id.IsLeaf() {
- return children, false
- }
-
- // Compute the cell midpoint in uv-space.
- uvMid := c.id.centerUV()
-
- // Create four children with the appropriate bounds.
- cid := c.id.ChildBegin()
- for pos := 0; pos < 4; pos++ {
- children[pos] = Cell{
- face: c.face,
- level: c.level + 1,
- orientation: c.orientation ^ int8(posToOrientation[pos]),
- id: cid,
- }
-
- // We want to split the cell in half in u and v. To decide which
- // side to set equal to the midpoint value, we look at cell's (i,j)
- // position within its parent. The index for i is in bit 1 of ij.
- ij := posToIJ[c.orientation][pos]
- i := ij >> 1
- j := ij & 1
- if i == 1 {
- children[pos].uv.X.Hi = c.uv.X.Hi
- children[pos].uv.X.Lo = uvMid.X
- } else {
- children[pos].uv.X.Lo = c.uv.X.Lo
- children[pos].uv.X.Hi = uvMid.X
- }
- if j == 1 {
- children[pos].uv.Y.Hi = c.uv.Y.Hi
- children[pos].uv.Y.Lo = uvMid.Y
- } else {
- children[pos].uv.Y.Lo = c.uv.Y.Lo
- children[pos].uv.Y.Hi = uvMid.Y
- }
- cid = cid.Next()
- }
- return children, true
-}
-
-// ExactArea returns the area of this cell as accurately as possible.
-func (c Cell) ExactArea() float64 {
- v0, v1, v2, v3 := c.Vertex(0), c.Vertex(1), c.Vertex(2), c.Vertex(3)
- return PointArea(v0, v1, v2) + PointArea(v0, v2, v3)
-}
-
-// ApproxArea returns the approximate area of this cell. This method is accurate
-// to within 3% percent for all cell sizes and accurate to within 0.1% for cells
-// at level 5 or higher (i.e. squares 350km to a side or smaller on the Earth's
-// surface). It is moderately cheap to compute.
-func (c Cell) ApproxArea() float64 {
- // All cells at the first two levels have the same area.
- if c.level < 2 {
- return c.AverageArea()
- }
-
- // First, compute the approximate area of the cell when projected
- // perpendicular to its normal. The cross product of its diagonals gives
- // the normal, and the length of the normal is twice the projected area.
- flatArea := 0.5 * (c.Vertex(2).Sub(c.Vertex(0).Vector).
- Cross(c.Vertex(3).Sub(c.Vertex(1).Vector)).Norm())
-
- // Now, compensate for the curvature of the cell surface by pretending
- // that the cell is shaped like a spherical cap. The ratio of the
- // area of a spherical cap to the area of its projected disc turns out
- // to be 2 / (1 + sqrt(1 - r*r)) where r is the radius of the disc.
- // For example, when r=0 the ratio is 1, and when r=1 the ratio is 2.
- // Here we set Pi*r*r == flatArea to find the equivalent disc.
- return flatArea * 2 / (1 + math.Sqrt(1-math.Min(1/math.Pi*flatArea, 1)))
-}
-
-// AverageArea returns the average area of cells at the level of this cell.
-// This is accurate to within a factor of 1.7.
-func (c Cell) AverageArea() float64 {
- return AvgAreaMetric.Value(int(c.level))
-}
-
-// IntersectsCell reports whether the intersection of this cell and the other cell is not nil.
-func (c Cell) IntersectsCell(oc Cell) bool {
- return c.id.Intersects(oc.id)
-}
-
-// ContainsCell reports whether this cell contains the other cell.
-func (c Cell) ContainsCell(oc Cell) bool {
- return c.id.Contains(oc.id)
-}
-
-// CellUnionBound computes a covering of the Cell.
-func (c Cell) CellUnionBound() []CellID {
- return c.CapBound().CellUnionBound()
-}
-
-// latitude returns the latitude of the cell vertex in radians given by (i,j),
-// where i and j indicate the Hi (1) or Lo (0) corner.
-func (c Cell) latitude(i, j int) float64 {
- var u, v float64
- switch {
- case i == 0 && j == 0:
- u = c.uv.X.Lo
- v = c.uv.Y.Lo
- case i == 0 && j == 1:
- u = c.uv.X.Lo
- v = c.uv.Y.Hi
- case i == 1 && j == 0:
- u = c.uv.X.Hi
- v = c.uv.Y.Lo
- case i == 1 && j == 1:
- u = c.uv.X.Hi
- v = c.uv.Y.Hi
- default:
- panic("i and/or j is out of bounds")
- }
- return latitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
-}
-
-// longitude returns the longitude of the cell vertex in radians given by (i,j),
-// where i and j indicate the Hi (1) or Lo (0) corner.
-func (c Cell) longitude(i, j int) float64 {
- var u, v float64
- switch {
- case i == 0 && j == 0:
- u = c.uv.X.Lo
- v = c.uv.Y.Lo
- case i == 0 && j == 1:
- u = c.uv.X.Lo
- v = c.uv.Y.Hi
- case i == 1 && j == 0:
- u = c.uv.X.Hi
- v = c.uv.Y.Lo
- case i == 1 && j == 1:
- u = c.uv.X.Hi
- v = c.uv.Y.Hi
- default:
- panic("i and/or j is out of bounds")
- }
- return longitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
-}
-
-var (
- poleMinLat = math.Asin(math.Sqrt(1.0/3)) - 0.5*dblEpsilon
-)
-
-// RectBound returns the bounding rectangle of this cell.
-func (c Cell) RectBound() Rect {
- if c.level > 0 {
- // Except for cells at level 0, the latitude and longitude extremes are
- // attained at the vertices. Furthermore, the latitude range is
- // determined by one pair of diagonally opposite vertices and the
- // longitude range is determined by the other pair.
- //
- // We first determine which corner (i,j) of the cell has the largest
- // absolute latitude. To maximize latitude, we want to find the point in
- // the cell that has the largest absolute z-coordinate and the smallest
- // absolute x- and y-coordinates. To do this we look at each coordinate
- // (u and v), and determine whether we want to minimize or maximize that
- // coordinate based on the axis direction and the cell's (u,v) quadrant.
- u := c.uv.X.Lo + c.uv.X.Hi
- v := c.uv.Y.Lo + c.uv.Y.Hi
- var i, j int
- if uAxis(int(c.face)).Z == 0 {
- if u < 0 {
- i = 1
- }
- } else if u > 0 {
- i = 1
- }
- if vAxis(int(c.face)).Z == 0 {
- if v < 0 {
- j = 1
- }
- } else if v > 0 {
- j = 1
- }
- lat := r1.IntervalFromPoint(c.latitude(i, j)).AddPoint(c.latitude(1-i, 1-j))
- lng := s1.EmptyInterval().AddPoint(c.longitude(i, 1-j)).AddPoint(c.longitude(1-i, j))
-
- // We grow the bounds slightly to make sure that the bounding rectangle
- // contains LatLngFromPoint(P) for any point P inside the loop L defined by the
- // four *normalized* vertices. Note that normalization of a vector can
- // change its direction by up to 0.5 * dblEpsilon radians, and it is not
- // enough just to add Normalize calls to the code above because the
- // latitude/longitude ranges are not necessarily determined by diagonally
- // opposite vertex pairs after normalization.
- //
- // We would like to bound the amount by which the latitude/longitude of a
- // contained point P can exceed the bounds computed above. In the case of
- // longitude, the normalization error can change the direction of rounding
- // leading to a maximum difference in longitude of 2 * dblEpsilon. In
- // the case of latitude, the normalization error can shift the latitude by
- // up to 0.5 * dblEpsilon and the other sources of error can cause the
- // two latitudes to differ by up to another 1.5 * dblEpsilon, which also
- // leads to a maximum difference of 2 * dblEpsilon.
- return Rect{lat, lng}.expanded(LatLng{s1.Angle(2 * dblEpsilon), s1.Angle(2 * dblEpsilon)}).PolarClosure()
- }
-
- // The 4 cells around the equator extend to +/-45 degrees latitude at the
- // midpoints of their top and bottom edges. The two cells covering the
- // poles extend down to +/-35.26 degrees at their vertices. The maximum
- // error in this calculation is 0.5 * dblEpsilon.
- var bound Rect
- switch c.face {
- case 0:
- bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-math.Pi / 4, math.Pi / 4}}
- case 1:
- bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{math.Pi / 4, 3 * math.Pi / 4}}
- case 2:
- bound = Rect{r1.Interval{poleMinLat, math.Pi / 2}, s1.FullInterval()}
- case 3:
- bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{3 * math.Pi / 4, -3 * math.Pi / 4}}
- case 4:
- bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-3 * math.Pi / 4, -math.Pi / 4}}
- default:
- bound = Rect{r1.Interval{-math.Pi / 2, -poleMinLat}, s1.FullInterval()}
- }
-
- // Finally, we expand the bound to account for the error when a point P is
- // converted to an LatLng to test for containment. (The bound should be
- // large enough so that it contains the computed LatLng of any contained
- // point, not just the infinite-precision version.) We don't need to expand
- // longitude because longitude is calculated via a single call to math.Atan2,
- // which is guaranteed to be semi-monotonic.
- return bound.expanded(LatLng{s1.Angle(dblEpsilon), s1.Angle(0)})
-}
-
-// CapBound returns the bounding cap of this cell.
-func (c Cell) CapBound() Cap {
- // We use the cell center in (u,v)-space as the cap axis. This vector is very close
- // to GetCenter() and faster to compute. Neither one of these vectors yields the
- // bounding cap with minimal surface area, but they are both pretty close.
- cap := CapFromPoint(Point{faceUVToXYZ(int(c.face), c.uv.Center().X, c.uv.Center().Y).Normalize()})
- for k := 0; k < 4; k++ {
- cap = cap.AddPoint(c.Vertex(k))
- }
- return cap
-}
-
-// ContainsPoint reports whether this cell contains the given point. Note that
-// unlike Loop/Polygon, a Cell is considered to be a closed set. This means
-// that a point on a Cell's edge or vertex belong to the Cell and the relevant
-// adjacent Cells too.
-//
-// If you want every point to be contained by exactly one Cell,
-// you will need to convert the Cell to a Loop.
-func (c Cell) ContainsPoint(p Point) bool {
- var uv r2.Point
- var ok bool
- if uv.X, uv.Y, ok = faceXYZToUV(int(c.face), p); !ok {
- return false
- }
-
- // Expand the (u,v) bound to ensure that
- //
- // CellFromPoint(p).ContainsPoint(p)
- //
- // is always true. To do this, we need to account for the error when
- // converting from (u,v) coordinates to (s,t) coordinates. In the
- // normal case the total error is at most dblEpsilon.
- return c.uv.ExpandedByMargin(dblEpsilon).ContainsPoint(uv)
-}
-
-// Encode encodes the Cell.
-func (c Cell) Encode(w io.Writer) error {
- e := &encoder{w: w}
- c.encode(e)
- return e.err
-}
-
-func (c Cell) encode(e *encoder) {
- c.id.encode(e)
-}
-
-// Decode decodes the Cell.
-func (c *Cell) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- c.decode(d)
- return d.err
-}
-
-func (c *Cell) decode(d *decoder) {
- c.id.decode(d)
- *c = CellFromCellID(c.id)
-}
-
-// vertexChordDist2 returns the squared chord distance from point P to the
-// given corner vertex specified by the Hi or Lo values of each.
-func (c Cell) vertexChordDist2(p Point, xHi, yHi bool) s1.ChordAngle {
- x := c.uv.X.Lo
- y := c.uv.Y.Lo
- if xHi {
- x = c.uv.X.Hi
- }
- if yHi {
- y = c.uv.Y.Hi
- }
-
- return ChordAngleBetweenPoints(p, PointFromCoords(x, y, 1))
-}
-
-// uEdgeIsClosest reports whether a point P is closer to the interior of the specified
-// Cell edge (either the lower or upper edge of the Cell) or to the endpoints.
-func (c Cell) uEdgeIsClosest(p Point, vHi bool) bool {
- u0 := c.uv.X.Lo
- u1 := c.uv.X.Hi
- v := c.uv.Y.Lo
- if vHi {
- v = c.uv.Y.Hi
- }
- // These are the normals to the planes that are perpendicular to the edge
- // and pass through one of its two endpoints.
- dir0 := r3.Vector{v*v + 1, -u0 * v, -u0}
- dir1 := r3.Vector{v*v + 1, -u1 * v, -u1}
- return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
-}
-
-// vEdgeIsClosest reports whether a point P is closer to the interior of the specified
-// Cell edge (either the right or left edge of the Cell) or to the endpoints.
-func (c Cell) vEdgeIsClosest(p Point, uHi bool) bool {
- v0 := c.uv.Y.Lo
- v1 := c.uv.Y.Hi
- u := c.uv.X.Lo
- if uHi {
- u = c.uv.X.Hi
- }
- dir0 := r3.Vector{-u * v0, u*u + 1, -v0}
- dir1 := r3.Vector{-u * v1, u*u + 1, -v1}
- return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
-}
-
-// edgeDistance reports the distance from a Point P to a given Cell edge. The point
-// P is given by its dot product, and the uv edge by its normal in the
-// given coordinate value.
-func edgeDistance(ij, uv float64) s1.ChordAngle {
- // Let P by the target point and let R be the closest point on the given
- // edge AB. The desired distance PR can be expressed as PR^2 = PQ^2 + QR^2
- // where Q is the point P projected onto the plane through the great circle
- // through AB. We can compute the distance PQ^2 perpendicular to the plane
- // from "dirIJ" (the dot product of the target point P with the edge
- // normal) and the squared length the edge normal (1 + uv**2).
- pq2 := (ij * ij) / (1 + uv*uv)
-
- // We can compute the distance QR as (1 - OQ) where O is the sphere origin,
- // and we can compute OQ^2 = 1 - PQ^2 using the Pythagorean theorem.
- // (This calculation loses accuracy as angle POQ approaches Pi/2.)
- qr := 1 - math.Sqrt(1-pq2)
- return s1.ChordAngleFromSquaredLength(pq2 + qr*qr)
-}
-
-// distanceInternal reports the distance from the given point to the interior of
-// the cell if toInterior is true or to the boundary of the cell otherwise.
-func (c Cell) distanceInternal(targetXYZ Point, toInterior bool) s1.ChordAngle {
- // All calculations are done in the (u,v,w) coordinates of this cell's face.
- target := faceXYZtoUVW(int(c.face), targetXYZ)
-
- // Compute dot products with all four upward or rightward-facing edge
- // normals. dirIJ is the dot product for the edge corresponding to axis
- // I, endpoint J. For example, dir01 is the right edge of the Cell
- // (corresponding to the upper endpoint of the u-axis).
- dir00 := target.X - target.Z*c.uv.X.Lo
- dir01 := target.X - target.Z*c.uv.X.Hi
- dir10 := target.Y - target.Z*c.uv.Y.Lo
- dir11 := target.Y - target.Z*c.uv.Y.Hi
- inside := true
- if dir00 < 0 {
- inside = false // Target is to the left of the cell
- if c.vEdgeIsClosest(target, false) {
- return edgeDistance(-dir00, c.uv.X.Lo)
- }
- }
- if dir01 > 0 {
- inside = false // Target is to the right of the cell
- if c.vEdgeIsClosest(target, true) {
- return edgeDistance(dir01, c.uv.X.Hi)
- }
- }
- if dir10 < 0 {
- inside = false // Target is below the cell
- if c.uEdgeIsClosest(target, false) {
- return edgeDistance(-dir10, c.uv.Y.Lo)
- }
- }
- if dir11 > 0 {
- inside = false // Target is above the cell
- if c.uEdgeIsClosest(target, true) {
- return edgeDistance(dir11, c.uv.Y.Hi)
- }
- }
- if inside {
- if toInterior {
- return s1.ChordAngle(0)
- }
- // Although you might think of Cells as rectangles, they are actually
- // arbitrary quadrilaterals after they are projected onto the sphere.
- // Therefore the simplest approach is just to find the minimum distance to
- // any of the four edges.
- return minChordAngle(edgeDistance(-dir00, c.uv.X.Lo),
- edgeDistance(dir01, c.uv.X.Hi),
- edgeDistance(-dir10, c.uv.Y.Lo),
- edgeDistance(dir11, c.uv.Y.Hi))
- }
-
- // Otherwise, the closest point is one of the four cell vertices. Note that
- // it is *not* trivial to narrow down the candidates based on the edge sign
- // tests above, because (1) the edges don't meet at right angles and (2)
- // there are points on the far side of the sphere that are both above *and*
- // below the cell, etc.
- return minChordAngle(c.vertexChordDist2(target, false, false),
- c.vertexChordDist2(target, true, false),
- c.vertexChordDist2(target, false, true),
- c.vertexChordDist2(target, true, true))
-}
-
-// Distance reports the distance from the cell to the given point. Returns zero if
-// the point is inside the cell.
-func (c Cell) Distance(target Point) s1.ChordAngle {
- return c.distanceInternal(target, true)
-}
-
-// MaxDistance reports the maximum distance from the cell (including its interior) to the
-// given point.
-func (c Cell) MaxDistance(target Point) s1.ChordAngle {
- // First check the 4 cell vertices. If all are within the hemisphere
- // centered around target, the max distance will be to one of these vertices.
- targetUVW := faceXYZtoUVW(int(c.face), target)
- maxDist := maxChordAngle(c.vertexChordDist2(targetUVW, false, false),
- c.vertexChordDist2(targetUVW, true, false),
- c.vertexChordDist2(targetUVW, false, true),
- c.vertexChordDist2(targetUVW, true, true))
-
- if maxDist <= s1.RightChordAngle {
- return maxDist
- }
-
- // Otherwise, find the minimum distance dMin to the antipodal point and the
- // maximum distance will be pi - dMin.
- return s1.StraightChordAngle - c.BoundaryDistance(Point{target.Mul(-1)})
-}
-
-// BoundaryDistance reports the distance from the cell boundary to the given point.
-func (c Cell) BoundaryDistance(target Point) s1.ChordAngle {
- return c.distanceInternal(target, false)
-}
-
-// DistanceToEdge returns the minimum distance from the cell to the given edge AB. Returns
-// zero if the edge intersects the cell interior.
-func (c Cell) DistanceToEdge(a, b Point) s1.ChordAngle {
- // Possible optimizations:
- // - Currently the (cell vertex, edge endpoint) distances are computed
- // twice each, and the length of AB is computed 4 times.
- // - To fix this, refactor GetDistance(target) so that it skips calculating
- // the distance to each cell vertex. Instead, compute the cell vertices
- // and distances in this function, and add a low-level UpdateMinDistance
- // that allows the XA, XB, and AB distances to be passed in.
- // - It might also be more efficient to do all calculations in UVW-space,
- // since this would involve transforming 2 points rather than 4.
-
- // First, check the minimum distance to the edge endpoints A and B.
- // (This also detects whether either endpoint is inside the cell.)
- minDist := minChordAngle(c.Distance(a), c.Distance(b))
- if minDist == 0 {
- return minDist
- }
-
- // Otherwise, check whether the edge crosses the cell boundary.
- crosser := NewChainEdgeCrosser(a, b, c.Vertex(3))
- for i := 0; i < 4; i++ {
- if crosser.ChainCrossingSign(c.Vertex(i)) != DoNotCross {
- return 0
- }
- }
-
- // Finally, check whether the minimum distance occurs between a cell vertex
- // and the interior of the edge AB. (Some of this work is redundant, since
- // it also checks the distance to the endpoints A and B again.)
- //
- // Note that we don't need to check the distance from the interior of AB to
- // the interior of a cell edge, because the only way that this distance can
- // be minimal is if the two edges cross (already checked above).
- for i := 0; i < 4; i++ {
- minDist, _ = UpdateMinDistance(c.Vertex(i), a, b, minDist)
- }
- return minDist
-}
-
-// MaxDistanceToEdge returns the maximum distance from the cell (including its interior)
-// to the given edge AB.
-func (c Cell) MaxDistanceToEdge(a, b Point) s1.ChordAngle {
- // If the maximum distance from both endpoints to the cell is less than π/2
- // then the maximum distance from the edge to the cell is the maximum of the
- // two endpoint distances.
- maxDist := maxChordAngle(c.MaxDistance(a), c.MaxDistance(b))
- if maxDist <= s1.RightChordAngle {
- return maxDist
- }
-
- return s1.StraightChordAngle - c.DistanceToEdge(Point{a.Mul(-1)}, Point{b.Mul(-1)})
-}
-
-// DistanceToCell returns the minimum distance from this cell to the given cell.
-// It returns zero if one cell contains the other.
-func (c Cell) DistanceToCell(target Cell) s1.ChordAngle {
- // If the cells intersect, the distance is zero. We use the (u,v) ranges
- // rather than CellID intersects so that cells that share a partial edge or
- // corner are considered to intersect.
- if c.face == target.face && c.uv.Intersects(target.uv) {
- return 0
- }
-
- // Otherwise, the minimum distance always occurs between a vertex of one
- // cell and an edge of the other cell (including the edge endpoints). This
- // represents a total of 32 possible (vertex, edge) pairs.
- //
- // TODO(roberts): This could be optimized to be at least 5x faster by pruning
- // the set of possible closest vertex/edge pairs using the faces and (u,v)
- // ranges of both cells.
- var va, vb [4]Point
- for i := 0; i < 4; i++ {
- va[i] = c.Vertex(i)
- vb[i] = target.Vertex(i)
- }
- minDist := s1.InfChordAngle()
- for i := 0; i < 4; i++ {
- for j := 0; j < 4; j++ {
- minDist, _ = UpdateMinDistance(va[i], vb[j], vb[(j+1)&3], minDist)
- minDist, _ = UpdateMinDistance(vb[i], va[j], va[(j+1)&3], minDist)
- }
- }
- return minDist
-}
-
-// MaxDistanceToCell returns the maximum distance from the cell (including its
-// interior) to the given target cell.
-func (c Cell) MaxDistanceToCell(target Cell) s1.ChordAngle {
- // Need to check the antipodal target for intersection with the cell. If it
- // intersects, the distance is the straight ChordAngle.
- // antipodalUV is the transpose of the original UV, interpreted within the opposite face.
- antipodalUV := r2.Rect{target.uv.Y, target.uv.X}
- if int(c.face) == oppositeFace(int(target.face)) && c.uv.Intersects(antipodalUV) {
- return s1.StraightChordAngle
- }
-
- // Otherwise, the maximum distance always occurs between a vertex of one
- // cell and an edge of the other cell (including the edge endpoints). This
- // represents a total of 32 possible (vertex, edge) pairs.
- //
- // TODO(roberts): When the maximum distance is at most π/2, the maximum is
- // always attained between a pair of vertices, and this could be made much
- // faster by testing each vertex pair once rather than the current 4 times.
- var va, vb [4]Point
- for i := 0; i < 4; i++ {
- va[i] = c.Vertex(i)
- vb[i] = target.Vertex(i)
- }
- maxDist := s1.NegativeChordAngle
- for i := 0; i < 4; i++ {
- for j := 0; j < 4; j++ {
- maxDist, _ = UpdateMaxDistance(va[i], vb[j], vb[(j+1)&3], maxDist)
- maxDist, _ = UpdateMaxDistance(vb[i], va[j], va[(j+1)&3], maxDist)
- }
- }
- return maxDist
-}
diff --git a/vendor/github.com/golang/geo/s2/cellid.go b/vendor/github.com/golang/geo/s2/cellid.go
deleted file mode 100644
index 37d488685..000000000
--- a/vendor/github.com/golang/geo/s2/cellid.go
+++ /dev/null
@@ -1,942 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "bytes"
- "fmt"
- "io"
- "math"
- "sort"
- "strconv"
- "strings"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r2"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// CellID uniquely identifies a cell in the S2 cell decomposition.
-// The most significant 3 bits encode the face number (0-5). The
-// remaining 61 bits encode the position of the center of this cell
-// along the Hilbert curve on that face. The zero value and the value
-// (1<<64)-1 are invalid cell IDs. The first compares less than any
-// valid cell ID, the second as greater than any valid cell ID.
-//
-// Sequentially increasing cell IDs follow a continuous space-filling curve
-// over the entire sphere. They have the following properties:
-//
-// - The ID of a cell at level k consists of a 3-bit face number followed
-// by k bit pairs that recursively select one of the four children of
-// each cell. The next bit is always 1, and all other bits are 0.
-// Therefore, the level of a cell is determined by the position of its
-// lowest-numbered bit that is turned on (for a cell at level k, this
-// position is 2 * (maxLevel - k)).
-//
-// - The ID of a parent cell is at the midpoint of the range of IDs spanned
-// by its children (or by its descendants at any level).
-//
-// Leaf cells are often used to represent points on the unit sphere, and
-// this type provides methods for converting directly between these two
-// representations. For cells that represent 2D regions rather than
-// discrete point, it is better to use Cells.
-type CellID uint64
-
-// SentinelCellID is an invalid cell ID guaranteed to be larger than any
-// valid cell ID. It is used primarily by ShapeIndex. The value is also used
-// by some S2 types when encoding data.
-// Note that the sentinel's RangeMin == RangeMax == itself.
-const SentinelCellID = CellID(^uint64(0))
-
-// sortCellIDs sorts the slice of CellIDs in place.
-func sortCellIDs(ci []CellID) {
- sort.Sort(cellIDs(ci))
-}
-
-// cellIDs implements the Sort interface for slices of CellIDs.
-type cellIDs []CellID
-
-func (c cellIDs) Len() int { return len(c) }
-func (c cellIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
-func (c cellIDs) Less(i, j int) bool { return c[i] < c[j] }
-
-// TODO(dsymonds): Some of these constants should probably be exported.
-const (
- faceBits = 3
- numFaces = 6
-
- // This is the number of levels needed to specify a leaf cell.
- maxLevel = 30
-
- // The extra position bit (61 rather than 60) lets us encode each cell as its
- // Hilbert curve position at the cell center (which is halfway along the
- // portion of the Hilbert curve that fills that cell).
- posBits = 2*maxLevel + 1
-
- // The maximum index of a valid leaf cell plus one. The range of valid leaf
- // cell indices is [0..maxSize-1].
- maxSize = 1 << maxLevel
-
- wrapOffset = uint64(numFaces) << posBits
-)
-
-// CellIDFromFacePosLevel returns a cell given its face in the range
-// [0,5], the 61-bit Hilbert curve position pos within that face, and
-// the level in the range [0,maxLevel]. The position in the cell ID
-// will be truncated to correspond to the Hilbert curve position at
-// the center of the returned cell.
-func CellIDFromFacePosLevel(face int, pos uint64, level int) CellID {
- return CellID(uint64(face)<<posBits + pos | 1).Parent(level)
-}
-
-// CellIDFromFace returns the cell corresponding to a given S2 cube face.
-func CellIDFromFace(face int) CellID {
- return CellID((uint64(face) << posBits) + lsbForLevel(0))
-}
-
-// CellIDFromLatLng returns the leaf cell containing ll.
-func CellIDFromLatLng(ll LatLng) CellID {
- return cellIDFromPoint(PointFromLatLng(ll))
-}
-
-// CellIDFromToken returns a cell given a hex-encoded string of its uint64 ID.
-func CellIDFromToken(s string) CellID {
- if len(s) > 16 {
- return CellID(0)
- }
- n, err := strconv.ParseUint(s, 16, 64)
- if err != nil {
- return CellID(0)
- }
- // Equivalent to right-padding string with zeros to 16 characters.
- if len(s) < 16 {
- n = n << (4 * uint(16-len(s)))
- }
- return CellID(n)
-}
-
-// ToToken returns a hex-encoded string of the uint64 cell id, with leading
-// zeros included but trailing zeros stripped.
-func (ci CellID) ToToken() string {
- s := strings.TrimRight(fmt.Sprintf("%016x", uint64(ci)), "0")
- if len(s) == 0 {
- return "X"
- }
- return s
-}
-
-// IsValid reports whether ci represents a valid cell.
-func (ci CellID) IsValid() bool {
- return ci.Face() < numFaces && (ci.lsb()&0x1555555555555555 != 0)
-}
-
-// Face returns the cube face for this cell ID, in the range [0,5].
-func (ci CellID) Face() int { return int(uint64(ci) >> posBits) }
-
-// Pos returns the position along the Hilbert curve of this cell ID, in the range [0,2^posBits-1].
-func (ci CellID) Pos() uint64 { return uint64(ci) & (^uint64(0) >> faceBits) }
-
-// Level returns the subdivision level of this cell ID, in the range [0, maxLevel].
-func (ci CellID) Level() int {
- return maxLevel - findLSBSetNonZero64(uint64(ci))>>1
-}
-
-// IsLeaf returns whether this cell ID is at the deepest level;
-// that is, the level at which the cells are smallest.
-func (ci CellID) IsLeaf() bool { return uint64(ci)&1 != 0 }
-
-// ChildPosition returns the child position (0..3) of this cell's
-// ancestor at the given level, relative to its parent. The argument
-// should be in the range 1..kMaxLevel. For example,
-// ChildPosition(1) returns the position of this cell's level-1
-// ancestor within its top-level face cell.
-func (ci CellID) ChildPosition(level int) int {
- return int(uint64(ci)>>uint64(2*(maxLevel-level)+1)) & 3
-}
-
-// lsbForLevel returns the lowest-numbered bit that is on for cells at the given level.
-func lsbForLevel(level int) uint64 { return 1 << uint64(2*(maxLevel-level)) }
-
-// Parent returns the cell at the given level, which must be no greater than the current level.
-func (ci CellID) Parent(level int) CellID {
- lsb := lsbForLevel(level)
- return CellID((uint64(ci) & -lsb) | lsb)
-}
-
-// immediateParent is cheaper than Parent, but assumes !ci.isFace().
-func (ci CellID) immediateParent() CellID {
- nlsb := CellID(ci.lsb() << 2)
- return (ci & -nlsb) | nlsb
-}
-
-// isFace returns whether this is a top-level (face) cell.
-func (ci CellID) isFace() bool { return uint64(ci)&(lsbForLevel(0)-1) == 0 }
-
-// lsb returns the least significant bit that is set.
-func (ci CellID) lsb() uint64 { return uint64(ci) & -uint64(ci) }
-
-// Children returns the four immediate children of this cell.
-// If ci is a leaf cell, it returns four identical cells that are not the children.
-func (ci CellID) Children() [4]CellID {
- var ch [4]CellID
- lsb := CellID(ci.lsb())
- ch[0] = ci - lsb + lsb>>2
- lsb >>= 1
- ch[1] = ch[0] + lsb
- ch[2] = ch[1] + lsb
- ch[3] = ch[2] + lsb
- return ch
-}
-
-func sizeIJ(level int) int {
- return 1 << uint(maxLevel-level)
-}
-
-// EdgeNeighbors returns the four cells that are adjacent across the cell's four edges.
-// Edges 0, 1, 2, 3 are in the down, right, up, left directions in the face space.
-// All neighbors are guaranteed to be distinct.
-func (ci CellID) EdgeNeighbors() [4]CellID {
- level := ci.Level()
- size := sizeIJ(level)
- f, i, j, _ := ci.faceIJOrientation()
- return [4]CellID{
- cellIDFromFaceIJWrap(f, i, j-size).Parent(level),
- cellIDFromFaceIJWrap(f, i+size, j).Parent(level),
- cellIDFromFaceIJWrap(f, i, j+size).Parent(level),
- cellIDFromFaceIJWrap(f, i-size, j).Parent(level),
- }
-}
-
-// VertexNeighbors returns the neighboring cellIDs with vertex closest to this cell at the given level.
-// (Normally there are four neighbors, but the closest vertex may only have three neighbors if it is one of
-// the 8 cube vertices.)
-func (ci CellID) VertexNeighbors(level int) []CellID {
- halfSize := sizeIJ(level + 1)
- size := halfSize << 1
- f, i, j, _ := ci.faceIJOrientation()
-
- var isame, jsame bool
- var ioffset, joffset int
- if i&halfSize != 0 {
- ioffset = size
- isame = (i + size) < maxSize
- } else {
- ioffset = -size
- isame = (i - size) >= 0
- }
- if j&halfSize != 0 {
- joffset = size
- jsame = (j + size) < maxSize
- } else {
- joffset = -size
- jsame = (j - size) >= 0
- }
-
- results := []CellID{
- ci.Parent(level),
- cellIDFromFaceIJSame(f, i+ioffset, j, isame).Parent(level),
- cellIDFromFaceIJSame(f, i, j+joffset, jsame).Parent(level),
- }
-
- if isame || jsame {
- results = append(results, cellIDFromFaceIJSame(f, i+ioffset, j+joffset, isame && jsame).Parent(level))
- }
-
- return results
-}
-
-// AllNeighbors returns all neighbors of this cell at the given level. Two
-// cells X and Y are neighbors if their boundaries intersect but their
-// interiors do not. In particular, two cells that intersect at a single
-// point are neighbors. Note that for cells adjacent to a face vertex, the
-// same neighbor may be returned more than once. There could be up to eight
-// neighbors including the diagonal ones that share the vertex.
-//
-// This requires level >= ci.Level().
-func (ci CellID) AllNeighbors(level int) []CellID {
- var neighbors []CellID
-
- face, i, j, _ := ci.faceIJOrientation()
-
- // Find the coordinates of the lower left-hand leaf cell. We need to
- // normalize (i,j) to a known position within the cell because level
- // may be larger than this cell's level.
- size := sizeIJ(ci.Level())
- i &= -size
- j &= -size
-
- nbrSize := sizeIJ(level)
-
- // We compute the top-bottom, left-right, and diagonal neighbors in one
- // pass. The loop test is at the end of the loop to avoid 32-bit overflow.
- for k := -nbrSize; ; k += nbrSize {
- var sameFace bool
- if k < 0 {
- sameFace = (j+k >= 0)
- } else if k >= size {
- sameFace = (j+k < maxSize)
- } else {
- sameFace = true
- // Top and bottom neighbors.
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j-nbrSize,
- j-size >= 0).Parent(level))
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j+size,
- j+size < maxSize).Parent(level))
- }
-
- // Left, right, and diagonal neighbors.
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i-nbrSize, j+k,
- sameFace && i-size >= 0).Parent(level))
- neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+size, j+k,
- sameFace && i+size < maxSize).Parent(level))
-
- if k >= size {
- break
- }
- }
-
- return neighbors
-}
-
-// RangeMin returns the minimum CellID that is contained within this cell.
-func (ci CellID) RangeMin() CellID { return CellID(uint64(ci) - (ci.lsb() - 1)) }
-
-// RangeMax returns the maximum CellID that is contained within this cell.
-func (ci CellID) RangeMax() CellID { return CellID(uint64(ci) + (ci.lsb() - 1)) }
-
-// Contains returns true iff the CellID contains oci.
-func (ci CellID) Contains(oci CellID) bool {
- return uint64(ci.RangeMin()) <= uint64(oci) && uint64(oci) <= uint64(ci.RangeMax())
-}
-
-// Intersects returns true iff the CellID intersects oci.
-func (ci CellID) Intersects(oci CellID) bool {
- return uint64(oci.RangeMin()) <= uint64(ci.RangeMax()) && uint64(oci.RangeMax()) >= uint64(ci.RangeMin())
-}
-
-// String returns the string representation of the cell ID in the form "1/3210".
-func (ci CellID) String() string {
- if !ci.IsValid() {
- return "Invalid: " + strconv.FormatInt(int64(ci), 16)
- }
- var b bytes.Buffer
- b.WriteByte("012345"[ci.Face()]) // values > 5 will have been picked off by !IsValid above
- b.WriteByte('/')
- for level := 1; level <= ci.Level(); level++ {
- b.WriteByte("0123"[ci.ChildPosition(level)])
- }
- return b.String()
-}
-
-// cellIDFromString returns a CellID from a string in the form "1/3210".
-func cellIDFromString(s string) CellID {
- level := len(s) - 2
- if level < 0 || level > maxLevel {
- return CellID(0)
- }
- face := int(s[0] - '0')
- if face < 0 || face > 5 || s[1] != '/' {
- return CellID(0)
- }
- id := CellIDFromFace(face)
- for i := 2; i < len(s); i++ {
- childPos := s[i] - '0'
- if childPos < 0 || childPos > 3 {
- return CellID(0)
- }
- id = id.Children()[childPos]
- }
- return id
-}
-
-// Point returns the center of the s2 cell on the sphere as a Point.
-// The maximum directional error in Point (compared to the exact
-// mathematical result) is 1.5 * dblEpsilon radians, and the maximum length
-// error is 2 * dblEpsilon (the same as Normalize).
-func (ci CellID) Point() Point { return Point{ci.rawPoint().Normalize()} }
-
-// LatLng returns the center of the s2 cell on the sphere as a LatLng.
-func (ci CellID) LatLng() LatLng { return LatLngFromPoint(Point{ci.rawPoint()}) }
-
-// ChildBegin returns the first child in a traversal of the children of this cell, in Hilbert curve order.
-//
-// for ci := c.ChildBegin(); ci != c.ChildEnd(); ci = ci.Next() {
-// ...
-// }
-func (ci CellID) ChildBegin() CellID {
- ol := ci.lsb()
- return CellID(uint64(ci) - ol + ol>>2)
-}
-
-// ChildBeginAtLevel returns the first cell in a traversal of children a given level deeper than this cell, in
-// Hilbert curve order. The given level must be no smaller than the cell's level.
-// See ChildBegin for example use.
-func (ci CellID) ChildBeginAtLevel(level int) CellID {
- return CellID(uint64(ci) - ci.lsb() + lsbForLevel(level))
-}
-
-// ChildEnd returns the first cell after a traversal of the children of this cell in Hilbert curve order.
-// The returned cell may be invalid.
-func (ci CellID) ChildEnd() CellID {
- ol := ci.lsb()
- return CellID(uint64(ci) + ol + ol>>2)
-}
-
-// ChildEndAtLevel returns the first cell after the last child in a traversal of children a given level deeper
-// than this cell, in Hilbert curve order.
-// The given level must be no smaller than the cell's level.
-// The returned cell may be invalid.
-func (ci CellID) ChildEndAtLevel(level int) CellID {
- return CellID(uint64(ci) + ci.lsb() + lsbForLevel(level))
-}
-
-// Next returns the next cell along the Hilbert curve.
-// This is expected to be used with ChildBegin and ChildEnd,
-// or ChildBeginAtLevel and ChildEndAtLevel.
-func (ci CellID) Next() CellID {
- return CellID(uint64(ci) + ci.lsb()<<1)
-}
-
-// Prev returns the previous cell along the Hilbert curve.
-func (ci CellID) Prev() CellID {
- return CellID(uint64(ci) - ci.lsb()<<1)
-}
-
-// NextWrap returns the next cell along the Hilbert curve, wrapping from last to
-// first as necessary. This should not be used with ChildBegin and ChildEnd.
-func (ci CellID) NextWrap() CellID {
- n := ci.Next()
- if uint64(n) < wrapOffset {
- return n
- }
- return CellID(uint64(n) - wrapOffset)
-}
-
-// PrevWrap returns the previous cell along the Hilbert curve, wrapping around from
-// first to last as necessary. This should not be used with ChildBegin and ChildEnd.
-func (ci CellID) PrevWrap() CellID {
- p := ci.Prev()
- if uint64(p) < wrapOffset {
- return p
- }
- return CellID(uint64(p) + wrapOffset)
-}
-
-// AdvanceWrap advances or retreats the indicated number of steps along the
-// Hilbert curve at the current level and returns the new position. The
-// position wraps between the first and last faces as necessary.
-func (ci CellID) AdvanceWrap(steps int64) CellID {
- if steps == 0 {
- return ci
- }
-
- // We clamp the number of steps if necessary to ensure that we do not
- // advance past the End() or before the Begin() of this level.
- shift := uint(2*(maxLevel-ci.Level()) + 1)
- if steps < 0 {
- if min := -int64(uint64(ci) >> shift); steps < min {
- wrap := int64(wrapOffset >> shift)
- steps %= wrap
- if steps < min {
- steps += wrap
- }
- }
- } else {
- // Unlike Advance(), we don't want to return End(level).
- if max := int64((wrapOffset - uint64(ci)) >> shift); steps > max {
- wrap := int64(wrapOffset >> shift)
- steps %= wrap
- if steps > max {
- steps -= wrap
- }
- }
- }
-
- // If steps is negative, then shifting it left has undefined behavior.
- // Cast to uint64 for a 2's complement answer.
- return CellID(uint64(ci) + (uint64(steps) << shift))
-}
-
-// Encode encodes the CellID.
-func (ci CellID) Encode(w io.Writer) error {
- e := &encoder{w: w}
- ci.encode(e)
- return e.err
-}
-
-func (ci CellID) encode(e *encoder) {
- e.writeUint64(uint64(ci))
-}
-
-// Decode decodes the CellID.
-func (ci *CellID) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- ci.decode(d)
- return d.err
-}
-
-func (ci *CellID) decode(d *decoder) {
- *ci = CellID(d.readUint64())
-}
-
-// TODO: the methods below are not exported yet. Settle on the entire API design
-// before doing this. Do we want to mirror the C++ one as closely as possible?
-
-// distanceFromBegin returns the number of steps that this cell is from the first
-// node in the S2 hierarchy at our level. (i.e., FromFace(0).ChildBeginAtLevel(ci.Level())).
-// The return value is always non-negative.
-func (ci CellID) distanceFromBegin() int64 {
- return int64(ci >> uint64(2*(maxLevel-ci.Level())+1))
-}
-
-// rawPoint returns an unnormalized r3 vector from the origin through the center
-// of the s2 cell on the sphere.
-func (ci CellID) rawPoint() r3.Vector {
- face, si, ti := ci.faceSiTi()
- return faceUVToXYZ(face, stToUV((0.5/maxSize)*float64(si)), stToUV((0.5/maxSize)*float64(ti)))
-}
-
-// faceSiTi returns the Face/Si/Ti coordinates of the center of the cell.
-func (ci CellID) faceSiTi() (face int, si, ti uint32) {
- face, i, j, _ := ci.faceIJOrientation()
- delta := 0
- if ci.IsLeaf() {
- delta = 1
- } else {
- if (i^(int(ci)>>2))&1 != 0 {
- delta = 2
- }
- }
- return face, uint32(2*i + delta), uint32(2*j + delta)
-}
-
-// faceIJOrientation uses the global lookupIJ table to unfiddle the bits of ci.
-func (ci CellID) faceIJOrientation() (f, i, j, orientation int) {
- f = ci.Face()
- orientation = f & swapMask
- nbits := maxLevel - 7*lookupBits // first iteration
-
- // Each iteration maps 8 bits of the Hilbert curve position into
- // 4 bits of "i" and "j". The lookup table transforms a key of the
- // form "ppppppppoo" to a value of the form "iiiijjjjoo", where the
- // letters [ijpo] represents bits of "i", "j", the Hilbert curve
- // position, and the Hilbert curve orientation respectively.
- //
- // On the first iteration we need to be careful to clear out the bits
- // representing the cube face.
- for k := 7; k >= 0; k-- {
- orientation += (int(uint64(ci)>>uint64(k*2*lookupBits+1)) & ((1 << uint(2*nbits)) - 1)) << 2
- orientation = lookupIJ[orientation]
- i += (orientation >> (lookupBits + 2)) << uint(k*lookupBits)
- j += ((orientation >> 2) & ((1 << lookupBits) - 1)) << uint(k*lookupBits)
- orientation &= (swapMask | invertMask)
- nbits = lookupBits // following iterations
- }
-
- // The position of a non-leaf cell at level "n" consists of a prefix of
- // 2*n bits that identifies the cell, followed by a suffix of
- // 2*(maxLevel-n)+1 bits of the form 10*. If n==maxLevel, the suffix is
- // just "1" and has no effect. Otherwise, it consists of "10", followed
- // by (maxLevel-n-1) repetitions of "00", followed by "0". The "10" has
- // no effect, while each occurrence of "00" has the effect of reversing
- // the swapMask bit.
- if ci.lsb()&0x1111111111111110 != 0 {
- orientation ^= swapMask
- }
-
- return
-}
-
-// cellIDFromFaceIJ returns a leaf cell given its cube face (range 0..5) and IJ coordinates.
-func cellIDFromFaceIJ(f, i, j int) CellID {
- // Note that this value gets shifted one bit to the left at the end
- // of the function.
- n := uint64(f) << (posBits - 1)
- // Alternating faces have opposite Hilbert curve orientations; this
- // is necessary in order for all faces to have a right-handed
- // coordinate system.
- bits := f & swapMask
- // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert
- // curve position. The lookup table transforms a 10-bit key of the form
- // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the
- // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and
- // Hilbert curve orientation respectively.
- for k := 7; k >= 0; k-- {
- mask := (1 << lookupBits) - 1
- bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2)
- bits += ((j >> uint(k*lookupBits)) & mask) << 2
- bits = lookupPos[bits]
- n |= uint64(bits>>2) << (uint(k) * 2 * lookupBits)
- bits &= (swapMask | invertMask)
- }
- return CellID(n*2 + 1)
-}
-
-func cellIDFromFaceIJWrap(f, i, j int) CellID {
- // Convert i and j to the coordinates of a leaf cell just beyond the
- // boundary of this face. This prevents 32-bit overflow in the case
- // of finding the neighbors of a face cell.
- i = clampInt(i, -1, maxSize)
- j = clampInt(j, -1, maxSize)
-
- // We want to wrap these coordinates onto the appropriate adjacent face.
- // The easiest way to do this is to convert the (i,j) coordinates to (x,y,z)
- // (which yields a point outside the normal face boundary), and then call
- // xyzToFaceUV to project back onto the correct face.
- //
- // The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using
- // the linear projection (u=2*s-1 and v=2*t-1). (The code further below
- // converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1).
- // Any projection would work here, so we use the simplest.) We also clamp
- // the (u,v) coordinates so that the point is barely outside the
- // [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step
- // (which divides by the new z coordinate) might change the other
- // coordinates enough so that we end up in the wrong leaf cell.
- const scale = 1.0 / maxSize
- limit := math.Nextafter(1, 2)
- u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize)))
- v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize)))
-
- // Find the leaf cell coordinates on the adjacent face, and convert
- // them to a cell id at the appropriate level.
- f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v))
- return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1)))
-}
-
-func cellIDFromFaceIJSame(f, i, j int, sameFace bool) CellID {
- if sameFace {
- return cellIDFromFaceIJ(f, i, j)
- }
- return cellIDFromFaceIJWrap(f, i, j)
-}
-
-// ijToSTMin converts the i- or j-index of a leaf cell to the minimum corresponding
-// s- or t-value contained by that cell. The argument must be in the range
-// [0..2**30], i.e. up to one position beyond the normal range of valid leaf
-// cell indices.
-func ijToSTMin(i int) float64 {
- return float64(i) / float64(maxSize)
-}
-
-// stToIJ converts value in ST coordinates to a value in IJ coordinates.
-func stToIJ(s float64) int {
- return clampInt(int(math.Floor(maxSize*s)), 0, maxSize-1)
-}
-
-// cellIDFromPoint returns a leaf cell containing point p. Usually there is
-// exactly one such cell, but for points along the edge of a cell, any
-// adjacent cell may be (deterministically) chosen. This is because
-// s2.CellIDs are considered to be closed sets. The returned cell will
-// always contain the given point, i.e.
-//
-// CellFromPoint(p).ContainsPoint(p)
-//
-// is always true.
-func cellIDFromPoint(p Point) CellID {
- f, u, v := xyzToFaceUV(r3.Vector{p.X, p.Y, p.Z})
- i := stToIJ(uvToST(u))
- j := stToIJ(uvToST(v))
- return cellIDFromFaceIJ(f, i, j)
-}
-
-// ijLevelToBoundUV returns the bounds in (u,v)-space for the cell at the given
-// level containing the leaf cell with the given (i,j)-coordinates.
-func ijLevelToBoundUV(i, j, level int) r2.Rect {
- cellSize := sizeIJ(level)
- xLo := i & -cellSize
- yLo := j & -cellSize
-
- return r2.Rect{
- X: r1.Interval{
- Lo: stToUV(ijToSTMin(xLo)),
- Hi: stToUV(ijToSTMin(xLo + cellSize)),
- },
- Y: r1.Interval{
- Lo: stToUV(ijToSTMin(yLo)),
- Hi: stToUV(ijToSTMin(yLo + cellSize)),
- },
- }
-}
-
-// Constants related to the bit mangling in the Cell ID.
-const (
- lookupBits = 4
- swapMask = 0x01
- invertMask = 0x02
-)
-
-// The following lookup tables are used to convert efficiently between an
-// (i,j) cell index and the corresponding position along the Hilbert curve.
-//
-// lookupPos maps 4 bits of "i", 4 bits of "j", and 2 bits representing the
-// orientation of the current cell into 8 bits representing the order in which
-// that subcell is visited by the Hilbert curve, plus 2 bits indicating the
-// new orientation of the Hilbert curve within that subcell. (Cell
-// orientations are represented as combination of swapMask and invertMask.)
-//
-// lookupIJ is an inverted table used for mapping in the opposite
-// direction.
-//
-// We also experimented with looking up 16 bits at a time (14 bits of position
-// plus 2 of orientation) but found that smaller lookup tables gave better
-// performance. (2KB fits easily in the primary cache.)
-var (
- ijToPos = [4][4]int{
- {0, 1, 3, 2}, // canonical order
- {0, 3, 1, 2}, // axes swapped
- {2, 3, 1, 0}, // bits inverted
- {2, 1, 3, 0}, // swapped & inverted
- }
- posToIJ = [4][4]int{
- {0, 1, 3, 2}, // canonical order: (0,0), (0,1), (1,1), (1,0)
- {0, 2, 3, 1}, // axes swapped: (0,0), (1,0), (1,1), (0,1)
- {3, 2, 0, 1}, // bits inverted: (1,1), (1,0), (0,0), (0,1)
- {3, 1, 0, 2}, // swapped & inverted: (1,1), (0,1), (0,0), (1,0)
- }
- posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask}
- lookupIJ [1 << (2*lookupBits + 2)]int
- lookupPos [1 << (2*lookupBits + 2)]int
-)
-
-func init() {
- initLookupCell(0, 0, 0, 0, 0, 0)
- initLookupCell(0, 0, 0, swapMask, 0, swapMask)
- initLookupCell(0, 0, 0, invertMask, 0, invertMask)
- initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask)
-}
-
-// initLookupCell initializes the lookupIJ table at init time.
-func initLookupCell(level, i, j, origOrientation, pos, orientation int) {
- if level == lookupBits {
- ij := (i << lookupBits) + j
- lookupPos[(ij<<2)+origOrientation] = (pos << 2) + orientation
- lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation
- return
- }
-
- level++
- i <<= 1
- j <<= 1
- pos <<= 2
- r := posToIJ[orientation]
- initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0])
- initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1])
- initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2])
- initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3])
-}
-
-// CommonAncestorLevel returns the level of the common ancestor of the two S2 CellIDs.
-func (ci CellID) CommonAncestorLevel(other CellID) (level int, ok bool) {
- bits := uint64(ci ^ other)
- if bits < ci.lsb() {
- bits = ci.lsb()
- }
- if bits < other.lsb() {
- bits = other.lsb()
- }
-
- msbPos := findMSBSetNonZero64(bits)
- if msbPos > 60 {
- return 0, false
- }
- return (60 - msbPos) >> 1, true
-}
-
-// Advance advances or retreats the indicated number of steps along the
-// Hilbert curve at the current level, and returns the new position. The
-// position is never advanced past End() or before Begin().
-func (ci CellID) Advance(steps int64) CellID {
- if steps == 0 {
- return ci
- }
-
- // We clamp the number of steps if necessary to ensure that we do not
- // advance past the End() or before the Begin() of this level. Note that
- // minSteps and maxSteps always fit in a signed 64-bit integer.
- stepShift := uint(2*(maxLevel-ci.Level()) + 1)
- if steps < 0 {
- minSteps := -int64(uint64(ci) >> stepShift)
- if steps < minSteps {
- steps = minSteps
- }
- } else {
- maxSteps := int64((wrapOffset + ci.lsb() - uint64(ci)) >> stepShift)
- if steps > maxSteps {
- steps = maxSteps
- }
- }
- return ci + CellID(steps)<<stepShift
-}
-
-// centerST return the center of the CellID in (s,t)-space.
-func (ci CellID) centerST() r2.Point {
- _, si, ti := ci.faceSiTi()
- return r2.Point{siTiToST(si), siTiToST(ti)}
-}
-
-// sizeST returns the edge length of this CellID in (s,t)-space at the given level.
-func (ci CellID) sizeST(level int) float64 {
- return ijToSTMin(sizeIJ(level))
-}
-
-// boundST returns the bound of this CellID in (s,t)-space.
-func (ci CellID) boundST() r2.Rect {
- s := ci.sizeST(ci.Level())
- return r2.RectFromCenterSize(ci.centerST(), r2.Point{s, s})
-}
-
-// centerUV returns the center of this CellID in (u,v)-space. Note that
-// the center of the cell is defined as the point at which it is recursively
-// subdivided into four children; in general, it is not at the midpoint of
-// the (u,v) rectangle covered by the cell.
-func (ci CellID) centerUV() r2.Point {
- _, si, ti := ci.faceSiTi()
- return r2.Point{stToUV(siTiToST(si)), stToUV(siTiToST(ti))}
-}
-
-// boundUV returns the bound of this CellID in (u,v)-space.
-func (ci CellID) boundUV() r2.Rect {
- _, i, j, _ := ci.faceIJOrientation()
- return ijLevelToBoundUV(i, j, ci.Level())
-}
-
-// expandEndpoint returns a new u-coordinate u' such that the distance from the
-// line u=u' to the given edge (u,v0)-(u,v1) is exactly the given distance
-// (which is specified as the sine of the angle corresponding to the distance).
-func expandEndpoint(u, maxV, sinDist float64) float64 {
- // This is based on solving a spherical right triangle, similar to the
- // calculation in Cap.RectBound.
- // Given an edge of the form (u,v0)-(u,v1), let maxV = max(abs(v0), abs(v1)).
- sinUShift := sinDist * math.Sqrt((1+u*u+maxV*maxV)/(1+u*u))
- cosUShift := math.Sqrt(1 - sinUShift*sinUShift)
- // The following is an expansion of tan(atan(u) + asin(sinUShift)).
- return (cosUShift*u + sinUShift) / (cosUShift - sinUShift*u)
-}
-
-// expandedByDistanceUV returns a rectangle expanded in (u,v)-space so that it
-// contains all points within the given distance of the boundary, and return the
-// smallest such rectangle. If the distance is negative, then instead shrink this
-// rectangle so that it excludes all points within the given absolute distance
-// of the boundary.
-//
-// Distances are measured *on the sphere*, not in (u,v)-space. For example,
-// you can use this method to expand the (u,v)-bound of an CellID so that
-// it contains all points within 5km of the original cell. You can then
-// test whether a point lies within the expanded bounds like this:
-//
-// if u, v, ok := faceXYZtoUV(face, point); ok && bound.ContainsPoint(r2.Point{u,v}) { ... }
-//
-// Limitations:
-//
-// - Because the rectangle is drawn on one of the six cube-face planes
-// (i.e., {x,y,z} = +/-1), it can cover at most one hemisphere. This
-// limits the maximum amount that a rectangle can be expanded. For
-// example, CellID bounds can be expanded safely by at most 45 degrees
-// (about 5000 km on the Earth's surface).
-//
-// - The implementation is not exact for negative distances. The resulting
-// rectangle will exclude all points within the given distance of the
-// boundary but may be slightly smaller than necessary.
-func expandedByDistanceUV(uv r2.Rect, distance s1.Angle) r2.Rect {
- // Expand each of the four sides of the rectangle just enough to include all
- // points within the given distance of that side. (The rectangle may be
- // expanded by a different amount in (u,v)-space on each side.)
- maxU := math.Max(math.Abs(uv.X.Lo), math.Abs(uv.X.Hi))
- maxV := math.Max(math.Abs(uv.Y.Lo), math.Abs(uv.Y.Hi))
- sinDist := math.Sin(float64(distance))
- return r2.Rect{
- X: r1.Interval{expandEndpoint(uv.X.Lo, maxV, -sinDist),
- expandEndpoint(uv.X.Hi, maxV, sinDist)},
- Y: r1.Interval{expandEndpoint(uv.Y.Lo, maxU, -sinDist),
- expandEndpoint(uv.Y.Hi, maxU, sinDist)}}
-}
-
-// MaxTile returns the largest cell with the same RangeMin such that
-// RangeMax < limit.RangeMin. It returns limit if no such cell exists.
-// This method can be used to generate a small set of CellIDs that covers
-// a given range (a tiling). This example shows how to generate a tiling
-// for a semi-open range of leaf cells [start, limit):
-//
-// for id := start.MaxTile(limit); id != limit; id = id.Next().MaxTile(limit)) { ... }
-//
-// Note that in general the cells in the tiling will be of different sizes;
-// they gradually get larger (near the middle of the range) and then
-// gradually get smaller as limit is approached.
-func (ci CellID) MaxTile(limit CellID) CellID {
- start := ci.RangeMin()
- if start >= limit.RangeMin() {
- return limit
- }
-
- if ci.RangeMax() >= limit {
- // The cell is too large, shrink it. Note that when generating coverings
- // of CellID ranges, this loop usually executes only once. Also because
- // ci.RangeMin() < limit.RangeMin(), we will always exit the loop by the
- // time we reach a leaf cell.
- for {
- ci = ci.Children()[0]
- if ci.RangeMax() < limit {
- break
- }
- }
- return ci
- }
-
- // The cell may be too small. Grow it if necessary. Note that generally
- // this loop only iterates once.
- for !ci.isFace() {
- parent := ci.immediateParent()
- if parent.RangeMin() != start || parent.RangeMax() >= limit {
- break
- }
- ci = parent
- }
- return ci
-}
-
-// centerFaceSiTi returns the (face, si, ti) coordinates of the center of the cell.
-// Note that although (si,ti) coordinates span the range [0,2**31] in general,
-// the cell center coordinates are always in the range [1,2**31-1] and
-// therefore can be represented using a signed 32-bit integer.
-func (ci CellID) centerFaceSiTi() (face, si, ti int) {
- // First we compute the discrete (i,j) coordinates of a leaf cell contained
- // within the given cell. Given that cells are represented by the Hilbert
- // curve position corresponding at their center, it turns out that the cell
- // returned by faceIJOrientation is always one of two leaf cells closest
- // to the center of the cell (unless the given cell is a leaf cell itself,
- // in which case there is only one possibility).
- //
- // Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin,
- // jmin) be the coordinates of its lower left-hand corner, the leaf cell
- // returned by faceIJOrientation is either (imin + s/2, jmin + s/2)
- // (imin + s/2 - 1, jmin + s/2 - 1). The first case is the one we want.
- // We can distinguish these two cases by looking at the low bit of i or
- // j. In the second case the low bit is one, unless s == 2 (i.e. the
- // level just above leaf cells) in which case the low bit is zero.
- //
- // In the code below, the expression ((i ^ (int(id) >> 2)) & 1) is true
- // if we are in the second case described above.
- face, i, j, _ := ci.faceIJOrientation()
- delta := 0
- if ci.IsLeaf() {
- delta = 1
- } else if (int64(i)^(int64(ci)>>2))&1 == 1 {
- delta = 2
- }
-
- // Note that (2 * {i,j} + delta) will never overflow a 32-bit integer.
- return face, 2*i + delta, 2*j + delta
-}
diff --git a/vendor/github.com/golang/geo/s2/cellunion.go b/vendor/github.com/golang/geo/s2/cellunion.go
deleted file mode 100644
index 0654de973..000000000
--- a/vendor/github.com/golang/geo/s2/cellunion.go
+++ /dev/null
@@ -1,590 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "sort"
-
- "github.com/golang/geo/s1"
-)
-
-// A CellUnion is a collection of CellIDs.
-//
-// It is normalized if it is sorted, and does not contain redundancy.
-// Specifically, it may not contain the same CellID twice, nor a CellID that
-// is contained by another, nor the four sibling CellIDs that are children of
-// a single higher level CellID.
-//
-// CellUnions are not required to be normalized, but certain operations will
-// return different results if they are not (e.g. Contains).
-type CellUnion []CellID
-
-// CellUnionFromRange creates a CellUnion that covers the half-open range
-// of leaf cells [begin, end). If begin == end the resulting union is empty.
-// This requires that begin and end are both leaves, and begin <= end.
-// To create a closed-ended range, pass in end.Next().
-func CellUnionFromRange(begin, end CellID) CellUnion {
- // We repeatedly add the largest cell we can.
- var cu CellUnion
- for id := begin.MaxTile(end); id != end; id = id.Next().MaxTile(end) {
- cu = append(cu, id)
- }
- // The output is normalized because the cells are added in order by the iteration.
- return cu
-}
-
-// CellUnionFromUnion creates a CellUnion from the union of the given CellUnions.
-func CellUnionFromUnion(cellUnions ...CellUnion) CellUnion {
- var cu CellUnion
- for _, cellUnion := range cellUnions {
- cu = append(cu, cellUnion...)
- }
- cu.Normalize()
- return cu
-}
-
-// CellUnionFromIntersection creates a CellUnion from the intersection of the given CellUnions.
-func CellUnionFromIntersection(x, y CellUnion) CellUnion {
- var cu CellUnion
-
- // This is a fairly efficient calculation that uses binary search to skip
- // over sections of both input vectors. It takes constant time if all the
- // cells of x come before or after all the cells of y in CellID order.
- var i, j int
- for i < len(x) && j < len(y) {
- iMin := x[i].RangeMin()
- jMin := y[j].RangeMin()
- if iMin > jMin {
- // Either j.Contains(i) or the two cells are disjoint.
- if x[i] <= y[j].RangeMax() {
- cu = append(cu, x[i])
- i++
- } else {
- // Advance j to the first cell possibly contained by x[i].
- j = y.lowerBound(j+1, len(y), iMin)
- // The previous cell y[j-1] may now contain x[i].
- if x[i] <= y[j-1].RangeMax() {
- j--
- }
- }
- } else if jMin > iMin {
- // Identical to the code above with i and j reversed.
- if y[j] <= x[i].RangeMax() {
- cu = append(cu, y[j])
- j++
- } else {
- i = x.lowerBound(i+1, len(x), jMin)
- if y[j] <= x[i-1].RangeMax() {
- i--
- }
- }
- } else {
- // i and j have the same RangeMin(), so one contains the other.
- if x[i] < y[j] {
- cu = append(cu, x[i])
- i++
- } else {
- cu = append(cu, y[j])
- j++
- }
- }
- }
-
- // The output is generated in sorted order.
- cu.Normalize()
- return cu
-}
-
-// CellUnionFromIntersectionWithCellID creates a CellUnion from the intersection
-// of a CellUnion with the given CellID. This can be useful for splitting a
-// CellUnion into chunks.
-func CellUnionFromIntersectionWithCellID(x CellUnion, id CellID) CellUnion {
- var cu CellUnion
- if x.ContainsCellID(id) {
- cu = append(cu, id)
- cu.Normalize()
- return cu
- }
-
- idmax := id.RangeMax()
- for i := x.lowerBound(0, len(x), id.RangeMin()); i < len(x) && x[i] <= idmax; i++ {
- cu = append(cu, x[i])
- }
-
- cu.Normalize()
- return cu
-}
-
-// CellUnionFromDifference creates a CellUnion from the difference (x - y)
-// of the given CellUnions.
-func CellUnionFromDifference(x, y CellUnion) CellUnion {
- // TODO(roberts): This is approximately O(N*log(N)), but could probably
- // use similar techniques as CellUnionFromIntersectionWithCellID to be more efficient.
-
- var cu CellUnion
- for _, xid := range x {
- cu.cellUnionDifferenceInternal(xid, &y)
- }
-
- // The output is generated in sorted order, and there should not be any
- // cells that can be merged (provided that both inputs were normalized).
- return cu
-}
-
-// The C++ constructor methods FromNormalized and FromVerbatim are not necessary
-// since they don't call Normalize, and just set the CellIDs directly on the object,
-// so straight casting is sufficient in Go to replicate this behavior.
-
-// IsValid reports whether the cell union is valid, meaning that the CellIDs are
-// valid, non-overlapping, and sorted in increasing order.
-func (cu *CellUnion) IsValid() bool {
- for i, cid := range *cu {
- if !cid.IsValid() {
- return false
- }
- if i == 0 {
- continue
- }
- if (*cu)[i-1].RangeMax() >= cid.RangeMin() {
- return false
- }
- }
- return true
-}
-
-// IsNormalized reports whether the cell union is normalized, meaning that it is
-// satisfies IsValid and that no four cells have a common parent.
-// Certain operations such as Contains will return a different
-// result if the cell union is not normalized.
-func (cu *CellUnion) IsNormalized() bool {
- for i, cid := range *cu {
- if !cid.IsValid() {
- return false
- }
- if i == 0 {
- continue
- }
- if (*cu)[i-1].RangeMax() >= cid.RangeMin() {
- return false
- }
- if i < 3 {
- continue
- }
- if areSiblings((*cu)[i-3], (*cu)[i-2], (*cu)[i-1], cid) {
- return false
- }
- }
- return true
-}
-
-// Normalize normalizes the CellUnion.
-func (cu *CellUnion) Normalize() {
- sortCellIDs(*cu)
-
- output := make([]CellID, 0, len(*cu)) // the list of accepted cells
- // Loop invariant: output is a sorted list of cells with no redundancy.
- for _, ci := range *cu {
- // The first two passes here either ignore this new candidate,
- // or remove previously accepted cells that are covered by this candidate.
-
- // Ignore this cell if it is contained by the previous one.
- // We only need to check the last accepted cell. The ordering of the
- // cells implies containment (but not the converse), and output has no redundancy,
- // so if this candidate is not contained by the last accepted cell
- // then it cannot be contained by any previously accepted cell.
- if len(output) > 0 && output[len(output)-1].Contains(ci) {
- continue
- }
-
- // Discard any previously accepted cells contained by this one.
- // This could be any contiguous trailing subsequence, but it can't be
- // a discontiguous subsequence because of the containment property of
- // sorted S2 cells mentioned above.
- j := len(output) - 1 // last index to keep
- for j >= 0 {
- if !ci.Contains(output[j]) {
- break
- }
- j--
- }
- output = output[:j+1]
-
- // See if the last three cells plus this one can be collapsed.
- // We loop because collapsing three accepted cells and adding a higher level cell
- // could cascade into previously accepted cells.
- for len(output) >= 3 && areSiblings(output[len(output)-3], output[len(output)-2], output[len(output)-1], ci) {
- // Replace four children by their parent cell.
- output = output[:len(output)-3]
- ci = ci.immediateParent() // checked !ci.isFace above
- }
- output = append(output, ci)
- }
- *cu = output
-}
-
-// IntersectsCellID reports whether this CellUnion intersects the given cell ID.
-func (cu *CellUnion) IntersectsCellID(id CellID) bool {
- // Find index of array item that occurs directly after our probe cell:
- i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] })
-
- if i != len(*cu) && (*cu)[i].RangeMin() <= id.RangeMax() {
- return true
- }
- return i != 0 && (*cu)[i-1].RangeMax() >= id.RangeMin()
-}
-
-// ContainsCellID reports whether the CellUnion contains the given cell ID.
-// Containment is defined with respect to regions, e.g. a cell contains its 4 children.
-//
-// CAVEAT: If you have constructed a non-normalized CellUnion, note that groups
-// of 4 child cells are *not* considered to contain their parent cell. To get
-// this behavior you must use one of the call Normalize() explicitly.
-func (cu *CellUnion) ContainsCellID(id CellID) bool {
- // Find index of array item that occurs directly after our probe cell:
- i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] })
-
- if i != len(*cu) && (*cu)[i].RangeMin() <= id {
- return true
- }
- return i != 0 && (*cu)[i-1].RangeMax() >= id
-}
-
-// Denormalize replaces this CellUnion with an expanded version of the
-// CellUnion where any cell whose level is less than minLevel or where
-// (level - minLevel) is not a multiple of levelMod is replaced by its
-// children, until either both of these conditions are satisfied or the
-// maximum level is reached.
-func (cu *CellUnion) Denormalize(minLevel, levelMod int) {
- var denorm CellUnion
- for _, id := range *cu {
- level := id.Level()
- newLevel := level
- if newLevel < minLevel {
- newLevel = minLevel
- }
- if levelMod > 1 {
- newLevel += (maxLevel - (newLevel - minLevel)) % levelMod
- if newLevel > maxLevel {
- newLevel = maxLevel
- }
- }
- if newLevel == level {
- denorm = append(denorm, id)
- } else {
- end := id.ChildEndAtLevel(newLevel)
- for ci := id.ChildBeginAtLevel(newLevel); ci != end; ci = ci.Next() {
- denorm = append(denorm, ci)
- }
- }
- }
- *cu = denorm
-}
-
-// RectBound returns a Rect that bounds this entity.
-func (cu *CellUnion) RectBound() Rect {
- bound := EmptyRect()
- for _, c := range *cu {
- bound = bound.Union(CellFromCellID(c).RectBound())
- }
- return bound
-}
-
-// CapBound returns a Cap that bounds this entity.
-func (cu *CellUnion) CapBound() Cap {
- if len(*cu) == 0 {
- return EmptyCap()
- }
-
- // Compute the approximate centroid of the region. This won't produce the
- // bounding cap of minimal area, but it should be close enough.
- var centroid Point
-
- for _, ci := range *cu {
- area := AvgAreaMetric.Value(ci.Level())
- centroid = Point{centroid.Add(ci.Point().Mul(area))}
- }
-
- if zero := (Point{}); centroid == zero {
- centroid = PointFromCoords(1, 0, 0)
- } else {
- centroid = Point{centroid.Normalize()}
- }
-
- // Use the centroid as the cap axis, and expand the cap angle so that it
- // contains the bounding caps of all the individual cells. Note that it is
- // *not* sufficient to just bound all the cell vertices because the bounding
- // cap may be concave (i.e. cover more than one hemisphere).
- c := CapFromPoint(centroid)
- for _, ci := range *cu {
- c = c.AddCap(CellFromCellID(ci).CapBound())
- }
-
- return c
-}
-
-// ContainsCell reports whether this cell union contains the given cell.
-func (cu *CellUnion) ContainsCell(c Cell) bool {
- return cu.ContainsCellID(c.id)
-}
-
-// IntersectsCell reports whether this cell union intersects the given cell.
-func (cu *CellUnion) IntersectsCell(c Cell) bool {
- return cu.IntersectsCellID(c.id)
-}
-
-// ContainsPoint reports whether this cell union contains the given point.
-func (cu *CellUnion) ContainsPoint(p Point) bool {
- return cu.ContainsCell(CellFromPoint(p))
-}
-
-// CellUnionBound computes a covering of the CellUnion.
-func (cu *CellUnion) CellUnionBound() []CellID {
- return cu.CapBound().CellUnionBound()
-}
-
-// LeafCellsCovered reports the number of leaf cells covered by this cell union.
-// This will be no more than 6*2^60 for the whole sphere.
-func (cu *CellUnion) LeafCellsCovered() int64 {
- var numLeaves int64
- for _, c := range *cu {
- numLeaves += 1 << uint64((maxLevel-int64(c.Level()))<<1)
- }
- return numLeaves
-}
-
-// Returns true if the given four cells have a common parent.
-// This requires that the four CellIDs are distinct.
-func areSiblings(a, b, c, d CellID) bool {
- // A necessary (but not sufficient) condition is that the XOR of the
- // four cell IDs must be zero. This is also very fast to test.
- if (a ^ b ^ c) != d {
- return false
- }
-
- // Now we do a slightly more expensive but exact test. First, compute a
- // mask that blocks out the two bits that encode the child position of
- // "id" with respect to its parent, then check that the other three
- // children all agree with "mask".
- mask := d.lsb() << 1
- mask = ^(mask + (mask << 1))
- idMasked := (uint64(d) & mask)
- return ((uint64(a)&mask) == idMasked &&
- (uint64(b)&mask) == idMasked &&
- (uint64(c)&mask) == idMasked &&
- !d.isFace())
-}
-
-// Contains reports whether this CellUnion contains all of the CellIDs of the given CellUnion.
-func (cu *CellUnion) Contains(o CellUnion) bool {
- // TODO(roberts): Investigate alternatives such as divide-and-conquer
- // or alternating-skip-search that may be significantly faster in both
- // the average and worst case. This applies to Intersects as well.
- for _, id := range o {
- if !cu.ContainsCellID(id) {
- return false
- }
- }
-
- return true
-}
-
-// Intersects reports whether this CellUnion intersects any of the CellIDs of the given CellUnion.
-func (cu *CellUnion) Intersects(o CellUnion) bool {
- for _, c := range *cu {
- if o.IntersectsCellID(c) {
- return true
- }
- }
-
- return false
-}
-
-// lowerBound returns the index in this CellUnion to the first element whose value
-// is not considered to go before the given cell id. (i.e., either it is equivalent
-// or comes after the given id.) If there is no match, then end is returned.
-func (cu *CellUnion) lowerBound(begin, end int, id CellID) int {
- for i := begin; i < end; i++ {
- if (*cu)[i] >= id {
- return i
- }
- }
-
- return end
-}
-
-// cellUnionDifferenceInternal adds the difference between the CellID and the union to
-// the result CellUnion. If they intersect but the difference is non-empty, it divides
-// and conquers.
-func (cu *CellUnion) cellUnionDifferenceInternal(id CellID, other *CellUnion) {
- if !other.IntersectsCellID(id) {
- (*cu) = append((*cu), id)
- return
- }
-
- if !other.ContainsCellID(id) {
- for _, child := range id.Children() {
- cu.cellUnionDifferenceInternal(child, other)
- }
- }
-}
-
-// ExpandAtLevel expands this CellUnion by adding a rim of cells at expandLevel
-// around the unions boundary.
-//
-// For each cell c in the union, we add all cells at level
-// expandLevel that abut c. There are typically eight of those
-// (four edge-abutting and four sharing a vertex). However, if c is
-// finer than expandLevel, we add all cells abutting
-// c.Parent(expandLevel) as well as c.Parent(expandLevel) itself,
-// as an expandLevel cell rarely abuts a smaller cell.
-//
-// Note that the size of the output is exponential in
-// expandLevel. For example, if expandLevel == 20 and the input
-// has a cell at level 10, there will be on the order of 4000
-// adjacent cells in the output. For most applications the
-// ExpandByRadius method below is easier to use.
-func (cu *CellUnion) ExpandAtLevel(level int) {
- var output CellUnion
- levelLsb := lsbForLevel(level)
- for i := len(*cu) - 1; i >= 0; i-- {
- id := (*cu)[i]
- if id.lsb() < levelLsb {
- id = id.Parent(level)
- // Optimization: skip over any cells contained by this one. This is
- // especially important when very small regions are being expanded.
- for i > 0 && id.Contains((*cu)[i-1]) {
- i--
- }
- }
- output = append(output, id)
- output = append(output, id.AllNeighbors(level)...)
- }
- sortCellIDs(output)
-
- *cu = output
- cu.Normalize()
-}
-
-// ExpandByRadius expands this CellUnion such that it contains all points whose
-// distance to the CellUnion is at most minRadius, but do not use cells that
-// are more than maxLevelDiff levels higher than the largest cell in the input.
-// The second parameter controls the tradeoff between accuracy and output size
-// when a large region is being expanded by a small amount (e.g. expanding Canada
-// by 1km). For example, if maxLevelDiff == 4 the region will always be expanded
-// by approximately 1/16 the width of its largest cell. Note that in the worst case,
-// the number of cells in the output can be up to 4 * (1 + 2 ** maxLevelDiff) times
-// larger than the number of cells in the input.
-func (cu *CellUnion) ExpandByRadius(minRadius s1.Angle, maxLevelDiff int) {
- minLevel := maxLevel
- for _, cid := range *cu {
- minLevel = minInt(minLevel, cid.Level())
- }
-
- // Find the maximum level such that all cells are at least "minRadius" wide.
- radiusLevel := MinWidthMetric.MaxLevel(minRadius.Radians())
- if radiusLevel == 0 && minRadius.Radians() > MinWidthMetric.Value(0) {
- // The requested expansion is greater than the width of a face cell.
- // The easiest way to handle this is to expand twice.
- cu.ExpandAtLevel(0)
- }
- cu.ExpandAtLevel(minInt(minLevel+maxLevelDiff, radiusLevel))
-}
-
-// Equal reports whether the two CellUnions are equal.
-func (cu CellUnion) Equal(o CellUnion) bool {
- if len(cu) != len(o) {
- return false
- }
- for i := 0; i < len(cu); i++ {
- if cu[i] != o[i] {
- return false
- }
- }
- return true
-}
-
-// AverageArea returns the average area of this CellUnion.
-// This is accurate to within a factor of 1.7.
-func (cu *CellUnion) AverageArea() float64 {
- return AvgAreaMetric.Value(maxLevel) * float64(cu.LeafCellsCovered())
-}
-
-// ApproxArea returns the approximate area of this CellUnion. This method is accurate
-// to within 3% percent for all cell sizes and accurate to within 0.1% for cells
-// at level 5 or higher within the union.
-func (cu *CellUnion) ApproxArea() float64 {
- var area float64
- for _, id := range *cu {
- area += CellFromCellID(id).ApproxArea()
- }
- return area
-}
-
-// ExactArea returns the area of this CellUnion as accurately as possible.
-func (cu *CellUnion) ExactArea() float64 {
- var area float64
- for _, id := range *cu {
- area += CellFromCellID(id).ExactArea()
- }
- return area
-}
-
-// Encode encodes the CellUnion.
-func (cu *CellUnion) Encode(w io.Writer) error {
- e := &encoder{w: w}
- cu.encode(e)
- return e.err
-}
-
-func (cu *CellUnion) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeInt64(int64(len(*cu)))
- for _, ci := range *cu {
- ci.encode(e)
- }
-}
-
-// Decode decodes the CellUnion.
-func (cu *CellUnion) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- cu.decode(d)
- return d.err
-}
-
-func (cu *CellUnion) decode(d *decoder) {
- version := d.readInt8()
- if d.err != nil {
- return
- }
- if version != encodingVersion {
- d.err = fmt.Errorf("only version %d is supported", encodingVersion)
- return
- }
- n := d.readInt64()
- if d.err != nil {
- return
- }
- const maxCells = 1000000
- if n > maxCells {
- d.err = fmt.Errorf("too many cells (%d; max is %d)", n, maxCells)
- return
- }
- *cu = make([]CellID, n)
- for i := range *cu {
- (*cu)[i].decode(d)
- }
-}
diff --git a/vendor/github.com/golang/geo/s2/centroids.go b/vendor/github.com/golang/geo/s2/centroids.go
deleted file mode 100644
index e8a91c442..000000000
--- a/vendor/github.com/golang/geo/s2/centroids.go
+++ /dev/null
@@ -1,133 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r3"
-)
-
-// There are several notions of the "centroid" of a triangle. First, there
-// is the planar centroid, which is simply the centroid of the ordinary
-// (non-spherical) triangle defined by the three vertices. Second, there is
-// the surface centroid, which is defined as the intersection of the three
-// medians of the spherical triangle. It is possible to show that this
-// point is simply the planar centroid projected to the surface of the
-// sphere. Finally, there is the true centroid (mass centroid), which is
-// defined as the surface integral over the spherical triangle of (x,y,z)
-// divided by the triangle area. This is the point that the triangle would
-// rotate around if it was spinning in empty space.
-//
-// The best centroid for most purposes is the true centroid. Unlike the
-// planar and surface centroids, the true centroid behaves linearly as
-// regions are added or subtracted. That is, if you split a triangle into
-// pieces and compute the average of their centroids (weighted by triangle
-// area), the result equals the centroid of the original triangle. This is
-// not true of the other centroids.
-//
-// Also note that the surface centroid may be nowhere near the intuitive
-// "center" of a spherical triangle. For example, consider the triangle
-// with vertices A=(1,eps,0), B=(0,0,1), C=(-1,eps,0) (a quarter-sphere).
-// The surface centroid of this triangle is at S=(0, 2*eps, 1), which is
-// within a distance of 2*eps of the vertex B. Note that the median from A
-// (the segment connecting A to the midpoint of BC) passes through S, since
-// this is the shortest path connecting the two endpoints. On the other
-// hand, the true centroid is at M=(0, 0.5, 0.5), which when projected onto
-// the surface is a much more reasonable interpretation of the "center" of
-// this triangle.
-//
-
-// TrueCentroid returns the true centroid of the spherical triangle ABC
-// multiplied by the signed area of spherical triangle ABC. The reasons for
-// multiplying by the signed area are (1) this is the quantity that needs to be
-// summed to compute the centroid of a union or difference of triangles, and
-// (2) it's actually easier to calculate this way. All points must have unit length.
-//
-// Note that the result of this function is defined to be Point(0, 0, 0) if
-// the triangle is degenerate.
-func TrueCentroid(a, b, c Point) Point {
- // Use Distance to get accurate results for small triangles.
- ra := float64(1)
- if sa := float64(b.Distance(c)); sa != 0 {
- ra = sa / math.Sin(sa)
- }
- rb := float64(1)
- if sb := float64(c.Distance(a)); sb != 0 {
- rb = sb / math.Sin(sb)
- }
- rc := float64(1)
- if sc := float64(a.Distance(b)); sc != 0 {
- rc = sc / math.Sin(sc)
- }
-
- // Now compute a point M such that:
- //
- // [Ax Ay Az] [Mx] [ra]
- // [Bx By Bz] [My] = 0.5 * det(A,B,C) * [rb]
- // [Cx Cy Cz] [Mz] [rc]
- //
- // To improve the numerical stability we subtract the first row (A) from the
- // other two rows; this reduces the cancellation error when A, B, and C are
- // very close together. Then we solve it using Cramer's rule.
- //
- // The result is the true centroid of the triangle multiplied by the
- // triangle's area.
- //
- // This code still isn't as numerically stable as it could be.
- // The biggest potential improvement is to compute B-A and C-A more
- // accurately so that (B-A)x(C-A) is always inside triangle ABC.
- x := r3.Vector{a.X, b.X - a.X, c.X - a.X}
- y := r3.Vector{a.Y, b.Y - a.Y, c.Y - a.Y}
- z := r3.Vector{a.Z, b.Z - a.Z, c.Z - a.Z}
- r := r3.Vector{ra, rb - ra, rc - ra}
-
- return Point{r3.Vector{y.Cross(z).Dot(r), z.Cross(x).Dot(r), x.Cross(y).Dot(r)}.Mul(0.5)}
-}
-
-// EdgeTrueCentroid returns the true centroid of the spherical geodesic edge AB
-// multiplied by the length of the edge AB. As with triangles, the true centroid
-// of a collection of line segments may be computed simply by summing the result
-// of this method for each segment.
-//
-// Note that the planar centroid of a line segment is simply 0.5 * (a + b),
-// while the surface centroid is (a + b).Normalize(). However neither of
-// these values is appropriate for computing the centroid of a collection of
-// edges (such as a polyline).
-//
-// Also note that the result of this function is defined to be Point(0, 0, 0)
-// if the edge is degenerate.
-func EdgeTrueCentroid(a, b Point) Point {
- // The centroid (multiplied by length) is a vector toward the midpoint
- // of the edge, whose length is twice the sine of half the angle between
- // the two vertices. Defining theta to be this angle, we have:
- vDiff := a.Sub(b.Vector) // Length == 2*sin(theta)
- vSum := a.Add(b.Vector) // Length == 2*cos(theta)
- sin2 := vDiff.Norm2()
- cos2 := vSum.Norm2()
- if cos2 == 0 {
- return Point{} // Ignore antipodal edges.
- }
- return Point{vSum.Mul(math.Sqrt(sin2 / cos2))} // Length == 2*sin(theta)
-}
-
-// PlanarCentroid returns the centroid of the planar triangle ABC. This can be
-// normalized to unit length to obtain the "surface centroid" of the corresponding
-// spherical triangle, i.e. the intersection of the three medians. However, note
-// that for large spherical triangles the surface centroid may be nowhere near
-// the intuitive "center".
-func PlanarCentroid(a, b, c Point) Point {
- return Point{a.Add(b.Vector).Add(c.Vector).Mul(1. / 3)}
-}
diff --git a/vendor/github.com/golang/geo/s2/contains_point_query.go b/vendor/github.com/golang/geo/s2/contains_point_query.go
deleted file mode 100644
index 3026f3601..000000000
--- a/vendor/github.com/golang/geo/s2/contains_point_query.go
+++ /dev/null
@@ -1,190 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// VertexModel defines whether shapes are considered to contain their vertices.
-// Note that these definitions differ from the ones used by BooleanOperation.
-//
-// Note that points other than vertices are never contained by polylines.
-// If you want need this behavior, use ClosestEdgeQuery's IsDistanceLess
-// with a suitable distance threshold instead.
-type VertexModel int
-
-const (
- // VertexModelOpen means no shapes contain their vertices (not even
- // points). Therefore Contains(Point) returns true if and only if the
- // point is in the interior of some polygon.
- VertexModelOpen VertexModel = iota
-
- // VertexModelSemiOpen means that polygon point containment is defined
- // such that if several polygons tile the region around a vertex, then
- // exactly one of those polygons contains that vertex. Points and
- // polylines still do not contain any vertices.
- VertexModelSemiOpen
-
- // VertexModelClosed means all shapes contain their vertices (including
- // points and polylines).
- VertexModelClosed
-)
-
-// ContainsPointQuery determines whether one or more shapes in a ShapeIndex
-// contain a given Point. The ShapeIndex may contain any number of points,
-// polylines, and/or polygons (possibly overlapping). Shape boundaries may be
-// modeled as Open, SemiOpen, or Closed (this affects whether or not shapes are
-// considered to contain their vertices).
-//
-// This type is not safe for concurrent use.
-//
-// However, note that if you need to do a large number of point containment
-// tests, it is more efficient to re-use the query rather than creating a new
-// one each time.
-type ContainsPointQuery struct {
- model VertexModel
- index *ShapeIndex
- iter *ShapeIndexIterator
-}
-
-// NewContainsPointQuery creates a new instance of the ContainsPointQuery for the index
-// and given vertex model choice.
-func NewContainsPointQuery(index *ShapeIndex, model VertexModel) *ContainsPointQuery {
- return &ContainsPointQuery{
- index: index,
- model: model,
- iter: index.Iterator(),
- }
-}
-
-// Contains reports whether any shape in the queries index contains the point p
-// under the queries vertex model (Open, SemiOpen, or Closed).
-func (q *ContainsPointQuery) Contains(p Point) bool {
- if !q.iter.LocatePoint(p) {
- return false
- }
-
- cell := q.iter.IndexCell()
- for _, clipped := range cell.shapes {
- if q.shapeContains(clipped, q.iter.Center(), p) {
- return true
- }
- }
- return false
-}
-
-// shapeContains reports whether the clippedShape from the iterator's center position contains
-// the given point.
-func (q *ContainsPointQuery) shapeContains(clipped *clippedShape, center, p Point) bool {
- inside := clipped.containsCenter
- numEdges := clipped.numEdges()
- if numEdges <= 0 {
- return inside
- }
-
- shape := q.index.Shape(clipped.shapeID)
- if shape.Dimension() != 2 {
- // Points and polylines can be ignored unless the vertex model is Closed.
- if q.model != VertexModelClosed {
- return false
- }
-
- // Otherwise, the point is contained if and only if it matches a vertex.
- for _, edgeID := range clipped.edges {
- edge := shape.Edge(edgeID)
- if edge.V0 == p || edge.V1 == p {
- return true
- }
- }
- return false
- }
-
- // Test containment by drawing a line segment from the cell center to the
- // given point and counting edge crossings.
- crosser := NewEdgeCrosser(center, p)
- for _, edgeID := range clipped.edges {
- edge := shape.Edge(edgeID)
- sign := crosser.CrossingSign(edge.V0, edge.V1)
- if sign == DoNotCross {
- continue
- }
- if sign == MaybeCross {
- // For the Open and Closed models, check whether p is a vertex.
- if q.model != VertexModelSemiOpen && (edge.V0 == p || edge.V1 == p) {
- return (q.model == VertexModelClosed)
- }
- // C++ plays fast and loose with the int <-> bool conversions here.
- if VertexCrossing(crosser.a, crosser.b, edge.V0, edge.V1) {
- sign = Cross
- } else {
- sign = DoNotCross
- }
- }
- inside = inside != (sign == Cross)
- }
-
- return inside
-}
-
-// ShapeContains reports whether the given shape contains the point under this
-// queries vertex model (Open, SemiOpen, or Closed).
-//
-// This requires the shape belongs to this queries index.
-func (q *ContainsPointQuery) ShapeContains(shape Shape, p Point) bool {
- if !q.iter.LocatePoint(p) {
- return false
- }
-
- clipped := q.iter.IndexCell().findByShapeID(q.index.idForShape(shape))
- if clipped == nil {
- return false
- }
- return q.shapeContains(clipped, q.iter.Center(), p)
-}
-
-// shapeVisitorFunc is a type of function that can be called against shaped in an index.
-type shapeVisitorFunc func(shape Shape) bool
-
-// visitContainingShapes visits all shapes in the given index that contain the
-// given point p, terminating early if the given visitor function returns false,
-// in which case visitContainingShapes returns false. Each shape is
-// visited at most once.
-func (q *ContainsPointQuery) visitContainingShapes(p Point, f shapeVisitorFunc) bool {
- // This function returns false only if the algorithm terminates early
- // because the visitor function returned false.
- if !q.iter.LocatePoint(p) {
- return true
- }
-
- cell := q.iter.IndexCell()
- for _, clipped := range cell.shapes {
- if q.shapeContains(clipped, q.iter.Center(), p) &&
- !f(q.index.Shape(clipped.shapeID)) {
- return false
- }
- }
- return true
-}
-
-// ContainingShapes returns a slice of all shapes that contain the given point.
-func (q *ContainsPointQuery) ContainingShapes(p Point) []Shape {
- var shapes []Shape
- q.visitContainingShapes(p, func(shape Shape) bool {
- shapes = append(shapes, shape)
- return true
- })
- return shapes
-}
-
-// TODO(roberts): Remaining methods from C++
-// type edgeVisitorFunc func(shape ShapeEdge) bool
-// func (q *ContainsPointQuery) visitIncidentEdges(p Point, v edgeVisitorFunc) bool
diff --git a/vendor/github.com/golang/geo/s2/contains_vertex_query.go b/vendor/github.com/golang/geo/s2/contains_vertex_query.go
deleted file mode 100644
index 8e74f9e5b..000000000
--- a/vendor/github.com/golang/geo/s2/contains_vertex_query.go
+++ /dev/null
@@ -1,63 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// ContainsVertexQuery is used to track the edges entering and leaving the
-// given vertex of a Polygon in order to be able to determine if the point is
-// contained by the Polygon.
-//
-// Point containment is defined according to the semi-open boundary model
-// which means that if several polygons tile the region around a vertex,
-// then exactly one of those polygons contains that vertex.
-type ContainsVertexQuery struct {
- target Point
- edgeMap map[Point]int
-}
-
-// NewContainsVertexQuery returns a new query for the given vertex whose
-// containment will be determined.
-func NewContainsVertexQuery(target Point) *ContainsVertexQuery {
- return &ContainsVertexQuery{
- target: target,
- edgeMap: make(map[Point]int),
- }
-}
-
-// AddEdge adds the edge between target and v with the given direction.
-// (+1 = outgoing, -1 = incoming, 0 = degenerate).
-func (q *ContainsVertexQuery) AddEdge(v Point, direction int) {
- q.edgeMap[v] += direction
-}
-
-// ContainsVertex reports a +1 if the target vertex is contained, -1 if it is
-// not contained, and 0 if the incident edges consisted of matched sibling pairs.
-func (q *ContainsVertexQuery) ContainsVertex() int {
- // Find the unmatched edge that is immediately clockwise from Ortho(P).
- referenceDir := Point{q.target.Ortho()}
-
- bestPoint := referenceDir
- bestDir := 0
-
- for k, v := range q.edgeMap {
- if v == 0 {
- continue // This is a "matched" edge.
- }
- if OrderedCCW(referenceDir, bestPoint, k, q.target) {
- bestPoint = k
- bestDir = v
- }
- }
- return bestDir
-}
diff --git a/vendor/github.com/golang/geo/s2/convex_hull_query.go b/vendor/github.com/golang/geo/s2/convex_hull_query.go
deleted file mode 100644
index d1e79d0c1..000000000
--- a/vendor/github.com/golang/geo/s2/convex_hull_query.go
+++ /dev/null
@@ -1,239 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "sort"
-)
-
-// ConvexHullQuery builds the convex hull of any collection of points,
-// polylines, loops, and polygons. It returns a single convex loop.
-//
-// The convex hull is defined as the smallest convex region on the sphere that
-// contains all of your input geometry. Recall that a region is "convex" if
-// for every pair of points inside the region, the straight edge between them
-// is also inside the region. In our case, a "straight" edge is a geodesic,
-// i.e. the shortest path on the sphere between two points.
-//
-// Containment of input geometry is defined as follows:
-//
-// - Each input loop and polygon is contained by the convex hull exactly
-// (i.e., according to Polygon's Contains(Polygon)).
-//
-// - Each input point is either contained by the convex hull or is a vertex
-// of the convex hull. (Recall that S2Loops do not necessarily contain their
-// vertices.)
-//
-// - For each input polyline, the convex hull contains all of its vertices
-// according to the rule for points above. (The definition of convexity
-// then ensures that the convex hull also contains the polyline edges.)
-//
-// To use this type, call the various Add... methods to add your input geometry, and
-// then call ConvexHull. Note that ConvexHull does *not* reset the
-// state; you can continue adding geometry if desired and compute the convex
-// hull again. If you want to start from scratch, simply create a new
-// ConvexHullQuery value.
-//
-// This implement Andrew's monotone chain algorithm, which is a variant of the
-// Graham scan (see https://en.wikipedia.org/wiki/Graham_scan). The time
-// complexity is O(n log n), and the space required is O(n). In fact only the
-// call to "sort" takes O(n log n) time; the rest of the algorithm is linear.
-//
-// Demonstration of the algorithm and code:
-// en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
-//
-// This type is not safe for concurrent use.
-type ConvexHullQuery struct {
- bound Rect
- points []Point
-}
-
-// NewConvexHullQuery creates a new ConvexHullQuery.
-func NewConvexHullQuery() *ConvexHullQuery {
- return &ConvexHullQuery{
- bound: EmptyRect(),
- }
-}
-
-// AddPoint adds the given point to the input geometry.
-func (q *ConvexHullQuery) AddPoint(p Point) {
- q.bound = q.bound.AddPoint(LatLngFromPoint(p))
- q.points = append(q.points, p)
-}
-
-// AddPolyline adds the given polyline to the input geometry.
-func (q *ConvexHullQuery) AddPolyline(p *Polyline) {
- q.bound = q.bound.Union(p.RectBound())
- q.points = append(q.points, (*p)...)
-}
-
-// AddLoop adds the given loop to the input geometry.
-func (q *ConvexHullQuery) AddLoop(l *Loop) {
- q.bound = q.bound.Union(l.RectBound())
- if l.isEmptyOrFull() {
- return
- }
- q.points = append(q.points, l.vertices...)
-}
-
-// AddPolygon adds the given polygon to the input geometry.
-func (q *ConvexHullQuery) AddPolygon(p *Polygon) {
- q.bound = q.bound.Union(p.RectBound())
- for _, l := range p.loops {
- // Only loops at depth 0 can contribute to the convex hull.
- if l.depth == 0 {
- q.AddLoop(l)
- }
- }
-}
-
-// CapBound returns a bounding cap for the input geometry provided.
-//
-// Note that this method does not clear the geometry; you can continue
-// adding to it and call this method again if desired.
-func (q *ConvexHullQuery) CapBound() Cap {
- // We keep track of a rectangular bound rather than a spherical cap because
- // it is easy to compute a tight bound for a union of rectangles, whereas it
- // is quite difficult to compute a tight bound around a union of caps.
- // Also, polygons and polylines implement CapBound() in terms of
- // RectBound() for this same reason, so it is much better to keep track
- // of a rectangular bound as we go along and convert it at the end.
- //
- // TODO(roberts): We could compute an optimal bound by implementing Welzl's
- // algorithm. However we would still need to have special handling of loops
- // and polygons, since if a loop spans more than 180 degrees in any
- // direction (i.e., if it contains two antipodal points), then it is not
- // enough just to bound its vertices. In this case the only convex bounding
- // cap is FullCap(), and the only convex bounding loop is the full loop.
- return q.bound.CapBound()
-}
-
-// ConvexHull returns a Loop representing the convex hull of the input geometry provided.
-//
-// If there is no geometry, this method returns an empty loop containing no
-// points.
-//
-// If the geometry spans more than half of the sphere, this method returns a
-// full loop containing the entire sphere.
-//
-// If the geometry contains 1 or 2 points, or a single edge, this method
-// returns a very small loop consisting of three vertices (which are a
-// superset of the input vertices).
-//
-// Note that this method does not clear the geometry; you can continue
-// adding to the query and call this method again.
-func (q *ConvexHullQuery) ConvexHull() *Loop {
- c := q.CapBound()
- if c.Height() >= 1 {
- // The bounding cap is not convex. The current bounding cap
- // implementation is not optimal, but nevertheless it is likely that the
- // input geometry itself is not contained by any convex polygon. In any
- // case, we need a convex bounding cap to proceed with the algorithm below
- // (in order to construct a point "origin" that is definitely outside the
- // convex hull).
- return FullLoop()
- }
-
- // Remove duplicates. We need to do this before checking whether there are
- // fewer than 3 points.
- x := make(map[Point]bool)
- r, w := 0, 0 // read/write indexes
- for ; r < len(q.points); r++ {
- if x[q.points[r]] {
- continue
- }
- q.points[w] = q.points[r]
- x[q.points[r]] = true
- w++
- }
- q.points = q.points[:w]
-
- // This code implements Andrew's monotone chain algorithm, which is a simple
- // variant of the Graham scan. Rather than sorting by x-coordinate, instead
- // we sort the points in CCW order around an origin O such that all points
- // are guaranteed to be on one side of some geodesic through O. This
- // ensures that as we scan through the points, each new point can only
- // belong at the end of the chain (i.e., the chain is monotone in terms of
- // the angle around O from the starting point).
- origin := Point{c.Center().Ortho()}
- sort.Slice(q.points, func(i, j int) bool {
- return RobustSign(origin, q.points[i], q.points[j]) == CounterClockwise
- })
-
- // Special cases for fewer than 3 points.
- switch len(q.points) {
- case 0:
- return EmptyLoop()
- case 1:
- return singlePointLoop(q.points[0])
- case 2:
- return singleEdgeLoop(q.points[0], q.points[1])
- }
-
- // Generate the lower and upper halves of the convex hull. Each half
- // consists of the maximal subset of vertices such that the edge chain
- // makes only left (CCW) turns.
- lower := q.monotoneChain()
-
- // reverse the points
- for left, right := 0, len(q.points)-1; left < right; left, right = left+1, right-1 {
- q.points[left], q.points[right] = q.points[right], q.points[left]
- }
- upper := q.monotoneChain()
-
- // Remove the duplicate vertices and combine the chains.
- lower = lower[:len(lower)-1]
- upper = upper[:len(upper)-1]
- lower = append(lower, upper...)
-
- return LoopFromPoints(lower)
-}
-
-// monotoneChain iterates through the points, selecting the maximal subset of points
-// such that the edge chain makes only left (CCW) turns.
-func (q *ConvexHullQuery) monotoneChain() []Point {
- var output []Point
- for _, p := range q.points {
- // Remove any points that would cause the chain to make a clockwise turn.
- for len(output) >= 2 && RobustSign(output[len(output)-2], output[len(output)-1], p) != CounterClockwise {
- output = output[:len(output)-1]
- }
- output = append(output, p)
- }
- return output
-}
-
-// singlePointLoop constructs a 3-vertex polygon consisting of "p" and two nearby
-// vertices. Note that ContainsPoint(p) may be false for the resulting loop.
-func singlePointLoop(p Point) *Loop {
- const offset = 1e-15
- d0 := p.Ortho()
- d1 := p.Cross(d0)
- vertices := []Point{
- p,
- {p.Add(d0.Mul(offset)).Normalize()},
- {p.Add(d1.Mul(offset)).Normalize()},
- }
- return LoopFromPoints(vertices)
-}
-
-// singleEdgeLoop constructs a loop consisting of the two vertices and their midpoint.
-func singleEdgeLoop(a, b Point) *Loop {
- vertices := []Point{a, b, {a.Add(b.Vector).Normalize()}}
- loop := LoopFromPoints(vertices)
- // The resulting loop may be clockwise, so invert it if necessary.
- loop.Normalize()
- return loop
-}
diff --git a/vendor/github.com/golang/geo/s2/crossing_edge_query.go b/vendor/github.com/golang/geo/s2/crossing_edge_query.go
deleted file mode 100644
index 51852dab4..000000000
--- a/vendor/github.com/golang/geo/s2/crossing_edge_query.go
+++ /dev/null
@@ -1,409 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "sort"
-
- "github.com/golang/geo/r2"
-)
-
-// CrossingEdgeQuery is used to find the Edge IDs of Shapes that are crossed by
-// a given edge(s).
-//
-// Note that if you need to query many edges, it is more efficient to declare
-// a single CrossingEdgeQuery instance and reuse it.
-//
-// If you want to find *all* the pairs of crossing edges, it is more efficient to
-// use the not yet implemented VisitCrossings in shapeutil.
-type CrossingEdgeQuery struct {
- index *ShapeIndex
-
- // temporary values used while processing a query.
- a, b r2.Point
- iter *ShapeIndexIterator
-
- // candidate cells generated when finding crossings.
- cells []*ShapeIndexCell
-}
-
-// NewCrossingEdgeQuery creates a CrossingEdgeQuery for the given index.
-func NewCrossingEdgeQuery(index *ShapeIndex) *CrossingEdgeQuery {
- c := &CrossingEdgeQuery{
- index: index,
- iter: index.Iterator(),
- }
- return c
-}
-
-// Crossings returns the set of edge of the shape S that intersect the given edge AB.
-// If the CrossingType is Interior, then only intersections at a point interior to both
-// edges are reported, while if it is CrossingTypeAll then edges that share a vertex
-// are also reported.
-func (c *CrossingEdgeQuery) Crossings(a, b Point, shape Shape, crossType CrossingType) []int {
- edges := c.candidates(a, b, shape)
- if len(edges) == 0 {
- return nil
- }
-
- crosser := NewEdgeCrosser(a, b)
- out := 0
- n := len(edges)
-
- for in := 0; in < n; in++ {
- b := shape.Edge(edges[in])
- sign := crosser.CrossingSign(b.V0, b.V1)
- if crossType == CrossingTypeAll && (sign == MaybeCross || sign == Cross) || crossType != CrossingTypeAll && sign == Cross {
- edges[out] = edges[in]
- out++
- }
- }
-
- if out < n {
- edges = edges[0:out]
- }
- return edges
-}
-
-// EdgeMap stores a sorted set of edge ids for each shape.
-type EdgeMap map[Shape][]int
-
-// CrossingsEdgeMap returns the set of all edges in the index that intersect the given
-// edge AB. If crossType is CrossingTypeInterior, then only intersections at a
-// point interior to both edges are reported, while if it is CrossingTypeAll
-// then edges that share a vertex are also reported.
-//
-// The edges are returned as a mapping from shape to the edges of that shape
-// that intersect AB. Every returned shape has at least one crossing edge.
-func (c *CrossingEdgeQuery) CrossingsEdgeMap(a, b Point, crossType CrossingType) EdgeMap {
- edgeMap := c.candidatesEdgeMap(a, b)
- if len(edgeMap) == 0 {
- return nil
- }
-
- crosser := NewEdgeCrosser(a, b)
- for shape, edges := range edgeMap {
- out := 0
- n := len(edges)
- for in := 0; in < n; in++ {
- edge := shape.Edge(edges[in])
- sign := crosser.CrossingSign(edge.V0, edge.V1)
- if (crossType == CrossingTypeAll && (sign == MaybeCross || sign == Cross)) || (crossType != CrossingTypeAll && sign == Cross) {
- edgeMap[shape][out] = edges[in]
- out++
- }
- }
-
- if out == 0 {
- delete(edgeMap, shape)
- } else {
- if out < n {
- edgeMap[shape] = edgeMap[shape][0:out]
- }
- }
- }
- return edgeMap
-}
-
-// candidates returns a superset of the edges of the given shape that intersect
-// the edge AB.
-func (c *CrossingEdgeQuery) candidates(a, b Point, shape Shape) []int {
- var edges []int
-
- // For small loops it is faster to use brute force. The threshold below was
- // determined using benchmarks.
- const maxBruteForceEdges = 27
- maxEdges := shape.NumEdges()
- if maxEdges <= maxBruteForceEdges {
- edges = make([]int, maxEdges)
- for i := 0; i < maxEdges; i++ {
- edges[i] = i
- }
- return edges
- }
-
- // Compute the set of index cells intersected by the query edge.
- c.getCellsForEdge(a, b)
- if len(c.cells) == 0 {
- return nil
- }
-
- // Gather all the edges that intersect those cells and sort them.
- // TODO(roberts): Shapes don't track their ID, so we need to range over
- // the index to find the ID manually.
- var shapeID int32
- for k, v := range c.index.shapes {
- if v == shape {
- shapeID = k
- }
- }
-
- for _, cell := range c.cells {
- if cell == nil {
- continue
- }
- clipped := cell.findByShapeID(shapeID)
- if clipped == nil {
- continue
- }
- edges = append(edges, clipped.edges...)
- }
-
- if len(c.cells) > 1 {
- edges = uniqueInts(edges)
- }
-
- return edges
-}
-
-// uniqueInts returns the sorted uniqued values from the given input.
-func uniqueInts(in []int) []int {
- var edges []int
- m := make(map[int]bool)
- for _, i := range in {
- if m[i] {
- continue
- }
- m[i] = true
- edges = append(edges, i)
- }
- sort.Ints(edges)
- return edges
-}
-
-// candidatesEdgeMap returns a map from shapes to the superse of edges for that
-// shape that intersect the edge AB.
-//
-// CAVEAT: This method may return shapes that have an empty set of candidate edges.
-// However the return value is non-empty only if at least one shape has a candidate edge.
-func (c *CrossingEdgeQuery) candidatesEdgeMap(a, b Point) EdgeMap {
- edgeMap := make(EdgeMap)
-
- // If there are only a few edges then it's faster to use brute force. We
- // only bother with this optimization when there is a single shape.
- if len(c.index.shapes) == 1 {
- // Typically this method is called many times, so it is worth checking
- // whether the edge map is empty or already consists of a single entry for
- // this shape, and skip clearing edge map in that case.
- shape := c.index.Shape(0)
-
- // Note that we leave the edge map non-empty even if there are no candidates
- // (i.e., there is a single entry with an empty set of edges).
- edgeMap[shape] = c.candidates(a, b, shape)
- return edgeMap
- }
-
- // Compute the set of index cells intersected by the query edge.
- c.getCellsForEdge(a, b)
- if len(c.cells) == 0 {
- return edgeMap
- }
-
- // Gather all the edges that intersect those cells and sort them.
- for _, cell := range c.cells {
- for _, clipped := range cell.shapes {
- s := c.index.Shape(clipped.shapeID)
- for j := 0; j < clipped.numEdges(); j++ {
- edgeMap[s] = append(edgeMap[s], clipped.edges[j])
- }
- }
- }
-
- if len(c.cells) > 1 {
- for s, edges := range edgeMap {
- edgeMap[s] = uniqueInts(edges)
- }
- }
-
- return edgeMap
-}
-
-// getCells returns the set of ShapeIndexCells that might contain edges intersecting
-// the edge AB in the given cell root. This method is used primarily by loop and shapeutil.
-func (c *CrossingEdgeQuery) getCells(a, b Point, root *PaddedCell) []*ShapeIndexCell {
- aUV, bUV, ok := ClipToFace(a, b, root.id.Face())
- if ok {
- c.a = aUV
- c.b = bUV
- edgeBound := r2.RectFromPoints(c.a, c.b)
- if root.Bound().Intersects(edgeBound) {
- c.computeCellsIntersected(root, edgeBound)
- }
- }
-
- if len(c.cells) == 0 {
- return nil
- }
-
- return c.cells
-}
-
-// getCellsForEdge populates the cells field to the set of index cells intersected by an edge AB.
-func (c *CrossingEdgeQuery) getCellsForEdge(a, b Point) {
- c.cells = nil
-
- segments := FaceSegments(a, b)
- for _, segment := range segments {
- c.a = segment.a
- c.b = segment.b
-
- // Optimization: rather than always starting the recursive subdivision at
- // the top level face cell, instead we start at the smallest S2CellId that
- // contains the edge (the edge root cell). This typically lets us skip
- // quite a few levels of recursion since most edges are short.
- edgeBound := r2.RectFromPoints(c.a, c.b)
- pcell := PaddedCellFromCellID(CellIDFromFace(segment.face), 0)
- edgeRoot := pcell.ShrinkToFit(edgeBound)
-
- // Now we need to determine how the edge root cell is related to the cells
- // in the spatial index (cellMap). There are three cases:
- //
- // 1. edgeRoot is an index cell or is contained within an index cell.
- // In this case we only need to look at the contents of that cell.
- // 2. edgeRoot is subdivided into one or more index cells. In this case
- // we recursively subdivide to find the cells intersected by AB.
- // 3. edgeRoot does not intersect any index cells. In this case there
- // is nothing to do.
- relation := c.iter.LocateCellID(edgeRoot)
- if relation == Indexed {
- // edgeRoot is an index cell or is contained by an index cell (case 1).
- c.cells = append(c.cells, c.iter.IndexCell())
- } else if relation == Subdivided {
- // edgeRoot is subdivided into one or more index cells (case 2). We
- // find the cells intersected by AB using recursive subdivision.
- if !edgeRoot.isFace() {
- pcell = PaddedCellFromCellID(edgeRoot, 0)
- }
- c.computeCellsIntersected(pcell, edgeBound)
- }
- }
-}
-
-// computeCellsIntersected computes the index cells intersected by the current
-// edge that are descendants of pcell and adds them to this queries set of cells.
-func (c *CrossingEdgeQuery) computeCellsIntersected(pcell *PaddedCell, edgeBound r2.Rect) {
-
- c.iter.seek(pcell.id.RangeMin())
- if c.iter.Done() || c.iter.CellID() > pcell.id.RangeMax() {
- // The index does not contain pcell or any of its descendants.
- return
- }
- if c.iter.CellID() == pcell.id {
- // The index contains this cell exactly.
- c.cells = append(c.cells, c.iter.IndexCell())
- return
- }
-
- // Otherwise, split the edge among the four children of pcell.
- center := pcell.Middle().Lo()
-
- if edgeBound.X.Hi < center.X {
- // Edge is entirely contained in the two left children.
- c.clipVAxis(edgeBound, center.Y, 0, pcell)
- return
- } else if edgeBound.X.Lo >= center.X {
- // Edge is entirely contained in the two right children.
- c.clipVAxis(edgeBound, center.Y, 1, pcell)
- return
- }
-
- childBounds := c.splitUBound(edgeBound, center.X)
- if edgeBound.Y.Hi < center.Y {
- // Edge is entirely contained in the two lower children.
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 0, 0), childBounds[0])
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 1, 0), childBounds[1])
- } else if edgeBound.Y.Lo >= center.Y {
- // Edge is entirely contained in the two upper children.
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 0, 1), childBounds[0])
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 1, 1), childBounds[1])
- } else {
- // The edge bound spans all four children. The edge itself intersects
- // at most three children (since no padding is being used).
- c.clipVAxis(childBounds[0], center.Y, 0, pcell)
- c.clipVAxis(childBounds[1], center.Y, 1, pcell)
- }
-}
-
-// clipVAxis computes the intersected cells recursively for a given padded cell.
-// Given either the left (i=0) or right (i=1) side of a padded cell pcell,
-// determine whether the current edge intersects the lower child, upper child,
-// or both children, and call c.computeCellsIntersected recursively on those children.
-// The center is the v-coordinate at the center of pcell.
-func (c *CrossingEdgeQuery) clipVAxis(edgeBound r2.Rect, center float64, i int, pcell *PaddedCell) {
- if edgeBound.Y.Hi < center {
- // Edge is entirely contained in the lower child.
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 0), edgeBound)
- } else if edgeBound.Y.Lo >= center {
- // Edge is entirely contained in the upper child.
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 1), edgeBound)
- } else {
- // The edge intersects both children.
- childBounds := c.splitVBound(edgeBound, center)
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 0), childBounds[0])
- c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 1), childBounds[1])
- }
-}
-
-// splitUBound returns the bound for two children as a result of spliting the
-// current edge at the given value U.
-func (c *CrossingEdgeQuery) splitUBound(edgeBound r2.Rect, u float64) [2]r2.Rect {
- v := edgeBound.Y.ClampPoint(interpolateFloat64(u, c.a.X, c.b.X, c.a.Y, c.b.Y))
- // diag indicates which diagonal of the bounding box is spanned by AB:
- // it is 0 if AB has positive slope, and 1 if AB has negative slope.
- var diag int
- if (c.a.X > c.b.X) != (c.a.Y > c.b.Y) {
- diag = 1
- }
- return splitBound(edgeBound, 0, diag, u, v)
-}
-
-// splitVBound returns the bound for two children as a result of spliting the
-// current edge into two child edges at the given value V.
-func (c *CrossingEdgeQuery) splitVBound(edgeBound r2.Rect, v float64) [2]r2.Rect {
- u := edgeBound.X.ClampPoint(interpolateFloat64(v, c.a.Y, c.b.Y, c.a.X, c.b.X))
- var diag int
- if (c.a.X > c.b.X) != (c.a.Y > c.b.Y) {
- diag = 1
- }
- return splitBound(edgeBound, diag, 0, u, v)
-}
-
-// splitBound returns the bounds for the two childrenn as a result of spliting
-// the current edge into two child edges at the given point (u,v). uEnd and vEnd
-// indicate which bound endpoints of the first child will be updated.
-func splitBound(edgeBound r2.Rect, uEnd, vEnd int, u, v float64) [2]r2.Rect {
- var childBounds = [2]r2.Rect{
- edgeBound,
- edgeBound,
- }
-
- if uEnd == 1 {
- childBounds[0].X.Lo = u
- childBounds[1].X.Hi = u
- } else {
- childBounds[0].X.Hi = u
- childBounds[1].X.Lo = u
- }
-
- if vEnd == 1 {
- childBounds[0].Y.Lo = v
- childBounds[1].Y.Hi = v
- } else {
- childBounds[0].Y.Hi = v
- childBounds[1].Y.Lo = v
- }
-
- return childBounds
-}
diff --git a/vendor/github.com/golang/geo/s2/distance_target.go b/vendor/github.com/golang/geo/s2/distance_target.go
deleted file mode 100644
index 066bbacfa..000000000
--- a/vendor/github.com/golang/geo/s2/distance_target.go
+++ /dev/null
@@ -1,149 +0,0 @@
-// Copyright 2019 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "github.com/golang/geo/s1"
-)
-
-// The distance interface represents a set of common methods used by algorithms
-// that compute distances between various S2 types.
-type distance interface {
- // chordAngle returns this type as a ChordAngle.
- chordAngle() s1.ChordAngle
-
- // fromChordAngle is used to type convert a ChordAngle to this type.
- // This is to work around needing to be clever in parts of the code
- // where a distanceTarget interface method expects distances, but the
- // user only supplies a ChordAngle, and we need to dynamically cast it
- // to an appropriate distance interface types.
- fromChordAngle(o s1.ChordAngle) distance
-
- // zero returns a zero distance.
- zero() distance
- // negative returns a value smaller than any valid value.
- negative() distance
- // infinity returns a value larger than any valid value.
- infinity() distance
-
- // less is similar to the Less method in Sort. To get minimum values,
- // this would be a less than type operation. For maximum, this would
- // be a greater than type operation.
- less(other distance) bool
-
- // sub subtracts the other value from this one and returns the new value.
- // This is done as a method and not simple mathematical operation to
- // allow closest and furthest to implement this in opposite ways.
- sub(other distance) distance
-
- // chordAngleBound reports the upper bound on a ChordAngle corresponding
- // to this distance. For example, if distance measures WGS84 ellipsoid
- // distance then the corresponding angle needs to be 0.56% larger.
- chordAngleBound() s1.ChordAngle
-
- // updateDistance may update the value this distance represents
- // based on the given input. The updated value and a boolean reporting
- // if the value was changed are returned.
- updateDistance(other distance) (distance, bool)
-}
-
-// distanceTarget is an interface that represents a geometric type to which distances
-// are measured.
-//
-// For example, there are implementations that measure distances to a Point,
-// an Edge, a Cell, a CellUnion, and even to an arbitrary collection of geometry
-// stored in ShapeIndex.
-//
-// The distanceTarget types are provided for the benefit of types that measure
-// distances and/or find nearby geometry, such as ClosestEdgeQuery, FurthestEdgeQuery,
-// ClosestPointQuery, and ClosestCellQuery, etc.
-type distanceTarget interface {
- // capBound returns a Cap that bounds the set of points whose distance to the
- // target is distance.zero().
- capBound() Cap
-
- // updateDistanceToPoint updates the distance if the distance to
- // the point P is within than the given dist.
- // The boolean reports if the value was updated.
- updateDistanceToPoint(p Point, dist distance) (distance, bool)
-
- // updateDistanceToEdge updates the distance if the distance to
- // the edge E is within than the given dist.
- // The boolean reports if the value was updated.
- updateDistanceToEdge(e Edge, dist distance) (distance, bool)
-
- // updateDistanceToCell updates the distance if the distance to the cell C
- // (including its interior) is within than the given dist.
- // The boolean reports if the value was updated.
- updateDistanceToCell(c Cell, dist distance) (distance, bool)
-
- // setMaxError potentially updates the value of MaxError, and reports if
- // the specific type supports altering it. Whenever one of the
- // updateDistanceTo... methods above returns true, the returned distance
- // is allowed to be up to maxError larger than the true minimum distance.
- // In other words, it gives this target object permission to terminate its
- // distance calculation as soon as it has determined that (1) the minimum
- // distance is less than minDist and (2) the best possible further
- // improvement is less than maxError.
- //
- // If the target takes advantage of maxError to optimize its distance
- // calculation, this method must return true. (Most target types will
- // default to return false.)
- setMaxError(maxErr s1.ChordAngle) bool
-
- // maxBruteForceIndexSize reports the maximum number of indexed objects for
- // which it is faster to compute the distance by brute force (e.g., by testing
- // every edge) rather than by using an index.
- //
- // The following method is provided as a convenience for types that compute
- // distances to a collection of indexed geometry, such as ClosestEdgeQuery
- // and ClosestPointQuery.
- //
- // Types that do not support this should return a -1.
- maxBruteForceIndexSize() int
-
- // distance returns an instance of the underlying distance type this
- // target uses. This is to work around the use of Templates in the C++.
- distance() distance
-
- // visitContainingShapes finds all polygons in the given index that
- // completely contain a connected component of the target geometry. (For
- // example, if the target consists of 10 points, this method finds
- // polygons that contain any of those 10 points.) For each such polygon,
- // the visit function is called with the Shape of the polygon along with
- // a point of the target geometry that is contained by that polygon.
- //
- // Optionally, any polygon that intersects the target geometry may also be
- // returned. In other words, this method returns all polygons that
- // contain any connected component of the target, along with an arbitrary
- // subset of the polygons that intersect the target.
- //
- // For example, suppose that the index contains two abutting polygons
- // A and B. If the target consists of two points "a" contained by A and
- // "b" contained by B, then both A and B are returned. But if the target
- // consists of the edge "ab", then any subset of {A, B} could be returned
- // (because both polygons intersect the target but neither one contains
- // the edge "ab").
- //
- // If the visit function returns false, this method terminates early and
- // returns false as well. Otherwise returns true.
- //
- // NOTE(roberts): This method exists only for the purpose of implementing
- // edgeQuery IncludeInteriors efficiently.
- visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool
-}
-
-// shapePointVisitorFunc defines a type of function the visitContainingShapes can call.
-type shapePointVisitorFunc func(containingShape Shape, targetPoint Point) bool
diff --git a/vendor/github.com/golang/geo/s2/doc.go b/vendor/github.com/golang/geo/s2/doc.go
deleted file mode 100644
index 43e7a6344..000000000
--- a/vendor/github.com/golang/geo/s2/doc.go
+++ /dev/null
@@ -1,29 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/*
-Package s2 is a library for working with geometry in S² (spherical geometry).
-
-Its related packages, parallel to this one, are s1 (operates on S¹), r1 (operates on ℝ¹),
-r2 (operates on ℝ²) and r3 (operates on ℝ³).
-
-This package provides types and functions for the S2 cell hierarchy and coordinate systems.
-The S2 cell hierarchy is a hierarchical decomposition of the surface of a unit sphere (S²)
-into ``cells''; it is highly efficient, scales from continental size to under 1 cm²
-and preserves spatial locality (nearby cells have close IDs).
-
-More information including an in-depth introduction to S2 can be found on the
-S2 website https://s2geometry.io/
-*/
-package s2
diff --git a/vendor/github.com/golang/geo/s2/edge_clipping.go b/vendor/github.com/golang/geo/s2/edge_clipping.go
deleted file mode 100644
index 57a53bf0f..000000000
--- a/vendor/github.com/golang/geo/s2/edge_clipping.go
+++ /dev/null
@@ -1,672 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// This file contains a collection of methods for:
-//
-// (1) Robustly clipping geodesic edges to the faces of the S2 biunit cube
-// (see s2stuv), and
-//
-// (2) Robustly clipping 2D edges against 2D rectangles.
-//
-// These functions can be used to efficiently find the set of CellIDs that
-// are intersected by a geodesic edge (e.g., see CrossingEdgeQuery).
-
-import (
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r2"
- "github.com/golang/geo/r3"
-)
-
-const (
- // edgeClipErrorUVCoord is the maximum error in a u- or v-coordinate
- // compared to the exact result, assuming that the points A and B are in
- // the rectangle [-1,1]x[1,1] or slightly outside it (by 1e-10 or less).
- edgeClipErrorUVCoord = 2.25 * dblEpsilon
-
- // edgeClipErrorUVDist is the maximum distance from a clipped point to
- // the corresponding exact result. It is equal to the error in a single
- // coordinate because at most one coordinate is subject to error.
- edgeClipErrorUVDist = 2.25 * dblEpsilon
-
- // faceClipErrorRadians is the maximum angle between a returned vertex
- // and the nearest point on the exact edge AB. It is equal to the
- // maximum directional error in PointCross, plus the error when
- // projecting points onto a cube face.
- faceClipErrorRadians = 3 * dblEpsilon
-
- // faceClipErrorDist is the same angle expressed as a maximum distance
- // in (u,v)-space. In other words, a returned vertex is at most this far
- // from the exact edge AB projected into (u,v)-space.
- faceClipErrorUVDist = 9 * dblEpsilon
-
- // faceClipErrorUVCoord is the maximum angle between a returned vertex
- // and the nearest point on the exact edge AB expressed as the maximum error
- // in an individual u- or v-coordinate. In other words, for each
- // returned vertex there is a point on the exact edge AB whose u- and
- // v-coordinates differ from the vertex by at most this amount.
- faceClipErrorUVCoord = 9.0 * (1.0 / math.Sqrt2) * dblEpsilon
-
- // intersectsRectErrorUVDist is the maximum error when computing if a point
- // intersects with a given Rect. If some point of AB is inside the
- // rectangle by at least this distance, the result is guaranteed to be true;
- // if all points of AB are outside the rectangle by at least this distance,
- // the result is guaranteed to be false. This bound assumes that rect is
- // a subset of the rectangle [-1,1]x[-1,1] or extends slightly outside it
- // (e.g., by 1e-10 or less).
- intersectsRectErrorUVDist = 3 * math.Sqrt2 * dblEpsilon
-)
-
-// ClipToFace returns the (u,v) coordinates for the portion of the edge AB that
-// intersects the given face, or false if the edge AB does not intersect.
-// This method guarantees that the clipped vertices lie within the [-1,1]x[-1,1]
-// cube face rectangle and are within faceClipErrorUVDist of the line AB, but
-// the results may differ from those produced by FaceSegments.
-func ClipToFace(a, b Point, face int) (aUV, bUV r2.Point, intersects bool) {
- return ClipToPaddedFace(a, b, face, 0.0)
-}
-
-// ClipToPaddedFace returns the (u,v) coordinates for the portion of the edge AB that
-// intersects the given face, but rather than clipping to the square [-1,1]x[-1,1]
-// in (u,v) space, this method clips to [-R,R]x[-R,R] where R=(1+padding).
-// Padding must be non-negative.
-func ClipToPaddedFace(a, b Point, f int, padding float64) (aUV, bUV r2.Point, intersects bool) {
- // Fast path: both endpoints are on the given face.
- if face(a.Vector) == f && face(b.Vector) == f {
- au, av := validFaceXYZToUV(f, a.Vector)
- bu, bv := validFaceXYZToUV(f, b.Vector)
- return r2.Point{au, av}, r2.Point{bu, bv}, true
- }
-
- // Convert everything into the (u,v,w) coordinates of the given face. Note
- // that the cross product *must* be computed in the original (x,y,z)
- // coordinate system because PointCross (unlike the mathematical cross
- // product) can produce different results in different coordinate systems
- // when one argument is a linear multiple of the other, due to the use of
- // symbolic perturbations.
- normUVW := pointUVW(faceXYZtoUVW(f, a.PointCross(b)))
- aUVW := pointUVW(faceXYZtoUVW(f, a))
- bUVW := pointUVW(faceXYZtoUVW(f, b))
-
- // Padding is handled by scaling the u- and v-components of the normal.
- // Letting R=1+padding, this means that when we compute the dot product of
- // the normal with a cube face vertex (such as (-1,-1,1)), we will actually
- // compute the dot product with the scaled vertex (-R,-R,1). This allows
- // methods such as intersectsFace, exitAxis, etc, to handle padding
- // with no further modifications.
- scaleUV := 1 + padding
- scaledN := pointUVW{r3.Vector{X: scaleUV * normUVW.X, Y: scaleUV * normUVW.Y, Z: normUVW.Z}}
- if !scaledN.intersectsFace() {
- return aUV, bUV, false
- }
-
- // TODO(roberts): This is a workaround for extremely small vectors where some
- // loss of precision can occur in Normalize causing underflow. When PointCross
- // is updated to work around this, this can be removed.
- if math.Max(math.Abs(normUVW.X), math.Max(math.Abs(normUVW.Y), math.Abs(normUVW.Z))) < math.Ldexp(1, -511) {
- normUVW = pointUVW{normUVW.Mul(math.Ldexp(1, 563))}
- }
-
- normUVW = pointUVW{normUVW.Normalize()}
-
- aTan := pointUVW{normUVW.Cross(aUVW.Vector)}
- bTan := pointUVW{bUVW.Cross(normUVW.Vector)}
-
- // As described in clipDestination, if the sum of the scores from clipping the two
- // endpoints is 3 or more, then the segment does not intersect this face.
- aUV, aScore := clipDestination(bUVW, aUVW, pointUVW{scaledN.Mul(-1)}, bTan, aTan, scaleUV)
- bUV, bScore := clipDestination(aUVW, bUVW, scaledN, aTan, bTan, scaleUV)
-
- return aUV, bUV, aScore+bScore < 3
-}
-
-// ClipEdge returns the portion of the edge defined by AB that is contained by the
-// given rectangle. If there is no intersection, false is returned and aClip and bClip
-// are undefined.
-func ClipEdge(a, b r2.Point, clip r2.Rect) (aClip, bClip r2.Point, intersects bool) {
- // Compute the bounding rectangle of AB, clip it, and then extract the new
- // endpoints from the clipped bound.
- bound := r2.RectFromPoints(a, b)
- if bound, intersects = clipEdgeBound(a, b, clip, bound); !intersects {
- return aClip, bClip, false
- }
- ai := 0
- if a.X > b.X {
- ai = 1
- }
- aj := 0
- if a.Y > b.Y {
- aj = 1
- }
-
- return bound.VertexIJ(ai, aj), bound.VertexIJ(1-ai, 1-aj), true
-}
-
-// The three functions below (sumEqual, intersectsFace, intersectsOppositeEdges)
-// all compare a sum (u + v) to a third value w. They are implemented in such a
-// way that they produce an exact result even though all calculations are done
-// with ordinary floating-point operations. Here are the principles on which these
-// functions are based:
-//
-// A. If u + v < w in floating-point, then u + v < w in exact arithmetic.
-//
-// B. If u + v < w in exact arithmetic, then at least one of the following
-// expressions is true in floating-point:
-// u + v < w
-// u < w - v
-// v < w - u
-//
-// Proof: By rearranging terms and substituting ">" for "<", we can assume
-// that all values are non-negative. Now clearly "w" is not the smallest
-// value, so assume WLOG that "u" is the smallest. We want to show that
-// u < w - v in floating-point. If v >= w/2, the calculation of w - v is
-// exact since the result is smaller in magnitude than either input value,
-// so the result holds. Otherwise we have u <= v < w/2 and w - v >= w/2
-// (even in floating point), so the result also holds.
-
-// sumEqual reports whether u + v == w exactly.
-func sumEqual(u, v, w float64) bool {
- return (u+v == w) && (u == w-v) && (v == w-u)
-}
-
-// pointUVW represents a Point in (u,v,w) coordinate space of a cube face.
-type pointUVW Point
-
-// intersectsFace reports whether a given directed line L intersects the cube face F.
-// The line L is defined by its normal N in the (u,v,w) coordinates of F.
-func (p pointUVW) intersectsFace() bool {
- // L intersects the [-1,1]x[-1,1] square in (u,v) if and only if the dot
- // products of N with the four corner vertices (-1,-1,1), (1,-1,1), (1,1,1),
- // and (-1,1,1) do not all have the same sign. This is true exactly when
- // |Nu| + |Nv| >= |Nw|. The code below evaluates this expression exactly.
- u := math.Abs(p.X)
- v := math.Abs(p.Y)
- w := math.Abs(p.Z)
-
- // We only need to consider the cases where u or v is the smallest value,
- // since if w is the smallest then both expressions below will have a
- // positive LHS and a negative RHS.
- return (v >= w-u) && (u >= w-v)
-}
-
-// intersectsOppositeEdges reports whether a directed line L intersects two
-// opposite edges of a cube face F. This includs the case where L passes
-// exactly through a corner vertex of F. The directed line L is defined
-// by its normal N in the (u,v,w) coordinates of F.
-func (p pointUVW) intersectsOppositeEdges() bool {
- // The line L intersects opposite edges of the [-1,1]x[-1,1] (u,v) square if
- // and only exactly two of the corner vertices lie on each side of L. This
- // is true exactly when ||Nu| - |Nv|| >= |Nw|. The code below evaluates this
- // expression exactly.
- u := math.Abs(p.X)
- v := math.Abs(p.Y)
- w := math.Abs(p.Z)
-
- // If w is the smallest, the following line returns an exact result.
- if math.Abs(u-v) != w {
- return math.Abs(u-v) >= w
- }
-
- // Otherwise u - v = w exactly, or w is not the smallest value. In either
- // case the following returns the correct result.
- if u >= v {
- return u-w >= v
- }
- return v-w >= u
-}
-
-// axis represents the possible results of exitAxis.
-type axis int
-
-const (
- axisU axis = iota
- axisV
-)
-
-// exitAxis reports which axis the directed line L exits the cube face F on.
-// The directed line L is represented by its CCW normal N in the (u,v,w) coordinates
-// of F. It returns axisU if L exits through the u=-1 or u=+1 edge, and axisV if L exits
-// through the v=-1 or v=+1 edge. Either result is acceptable if L exits exactly
-// through a corner vertex of the cube face.
-func (p pointUVW) exitAxis() axis {
- if p.intersectsOppositeEdges() {
- // The line passes through through opposite edges of the face.
- // It exits through the v=+1 or v=-1 edge if the u-component of N has a
- // larger absolute magnitude than the v-component.
- if math.Abs(p.X) >= math.Abs(p.Y) {
- return axisV
- }
- return axisU
- }
-
- // The line passes through through two adjacent edges of the face.
- // It exits the v=+1 or v=-1 edge if an even number of the components of N
- // are negative. We test this using signbit() rather than multiplication
- // to avoid the possibility of underflow.
- var x, y, z int
- if math.Signbit(p.X) {
- x = 1
- }
- if math.Signbit(p.Y) {
- y = 1
- }
- if math.Signbit(p.Z) {
- z = 1
- }
-
- if x^y^z == 0 {
- return axisV
- }
- return axisU
-}
-
-// exitPoint returns the UV coordinates of the point where a directed line L (represented
-// by the CCW normal of this point), exits the cube face this point is derived from along
-// the given axis.
-func (p pointUVW) exitPoint(a axis) r2.Point {
- if a == axisU {
- u := -1.0
- if p.Y > 0 {
- u = 1.0
- }
- return r2.Point{u, (-u*p.X - p.Z) / p.Y}
- }
-
- v := -1.0
- if p.X < 0 {
- v = 1.0
- }
- return r2.Point{(-v*p.Y - p.Z) / p.X, v}
-}
-
-// clipDestination returns a score which is used to indicate if the clipped edge AB
-// on the given face intersects the face at all. This function returns the score for
-// the given endpoint, which is an integer ranging from 0 to 3. If the sum of the scores
-// from both of the endpoints is 3 or more, then edge AB does not intersect this face.
-//
-// First, it clips the line segment AB to find the clipped destination B' on a given
-// face. (The face is specified implicitly by expressing *all arguments* in the (u,v,w)
-// coordinates of that face.) Second, it partially computes whether the segment AB
-// intersects this face at all. The actual condition is fairly complicated, but it
-// turns out that it can be expressed as a "score" that can be computed independently
-// when clipping the two endpoints A and B.
-func clipDestination(a, b, scaledN, aTan, bTan pointUVW, scaleUV float64) (r2.Point, int) {
- var uv r2.Point
-
- // Optimization: if B is within the safe region of the face, use it.
- maxSafeUVCoord := 1 - faceClipErrorUVCoord
- if b.Z > 0 {
- uv = r2.Point{b.X / b.Z, b.Y / b.Z}
- if math.Max(math.Abs(uv.X), math.Abs(uv.Y)) <= maxSafeUVCoord {
- return uv, 0
- }
- }
-
- // Otherwise find the point B' where the line AB exits the face.
- uv = scaledN.exitPoint(scaledN.exitAxis()).Mul(scaleUV)
-
- p := pointUVW(Point{r3.Vector{uv.X, uv.Y, 1.0}})
-
- // Determine if the exit point B' is contained within the segment. We do this
- // by computing the dot products with two inward-facing tangent vectors at A
- // and B. If either dot product is negative, we say that B' is on the "wrong
- // side" of that point. As the point B' moves around the great circle AB past
- // the segment endpoint B, it is initially on the wrong side of B only; as it
- // moves further it is on the wrong side of both endpoints; and then it is on
- // the wrong side of A only. If the exit point B' is on the wrong side of
- // either endpoint, we can't use it; instead the segment is clipped at the
- // original endpoint B.
- //
- // We reject the segment if the sum of the scores of the two endpoints is 3
- // or more. Here is what that rule encodes:
- // - If B' is on the wrong side of A, then the other clipped endpoint A'
- // must be in the interior of AB (otherwise AB' would go the wrong way
- // around the circle). There is a similar rule for A'.
- // - If B' is on the wrong side of either endpoint (and therefore we must
- // use the original endpoint B instead), then it must be possible to
- // project B onto this face (i.e., its w-coordinate must be positive).
- // This rule is only necessary to handle certain zero-length edges (A=B).
- score := 0
- if p.Sub(a.Vector).Dot(aTan.Vector) < 0 {
- score = 2 // B' is on wrong side of A.
- } else if p.Sub(b.Vector).Dot(bTan.Vector) < 0 {
- score = 1 // B' is on wrong side of B.
- }
-
- if score > 0 { // B' is not in the interior of AB.
- if b.Z <= 0 {
- score = 3 // B cannot be projected onto this face.
- } else {
- uv = r2.Point{b.X / b.Z, b.Y / b.Z}
- }
- }
-
- return uv, score
-}
-
-// updateEndpoint returns the interval with the specified endpoint updated to
-// the given value. If the value lies beyond the opposite endpoint, nothing is
-// changed and false is returned.
-func updateEndpoint(bound r1.Interval, highEndpoint bool, value float64) (r1.Interval, bool) {
- if !highEndpoint {
- if bound.Hi < value {
- return bound, false
- }
- if bound.Lo < value {
- bound.Lo = value
- }
- return bound, true
- }
-
- if bound.Lo > value {
- return bound, false
- }
- if bound.Hi > value {
- bound.Hi = value
- }
- return bound, true
-}
-
-// clipBoundAxis returns the clipped versions of the bounding intervals for the given
-// axes for the line segment from (a0,a1) to (b0,b1) so that neither extends beyond the
-// given clip interval. negSlope is a precomputed helper variable that indicates which
-// diagonal of the bounding box is spanned by AB; it is false if AB has positive slope,
-// and true if AB has negative slope. If the clipping interval doesn't overlap the bounds,
-// false is returned.
-func clipBoundAxis(a0, b0 float64, bound0 r1.Interval, a1, b1 float64, bound1 r1.Interval,
- negSlope bool, clip r1.Interval) (bound0c, bound1c r1.Interval, updated bool) {
-
- if bound0.Lo < clip.Lo {
- // If the upper bound is below the clips lower bound, there is nothing to do.
- if bound0.Hi < clip.Lo {
- return bound0, bound1, false
- }
- // narrow the intervals lower bound to the clip bound.
- bound0.Lo = clip.Lo
- if bound1, updated = updateEndpoint(bound1, negSlope, interpolateFloat64(clip.Lo, a0, b0, a1, b1)); !updated {
- return bound0, bound1, false
- }
- }
-
- if bound0.Hi > clip.Hi {
- // If the lower bound is above the clips upper bound, there is nothing to do.
- if bound0.Lo > clip.Hi {
- return bound0, bound1, false
- }
- // narrow the intervals upper bound to the clip bound.
- bound0.Hi = clip.Hi
- if bound1, updated = updateEndpoint(bound1, !negSlope, interpolateFloat64(clip.Hi, a0, b0, a1, b1)); !updated {
- return bound0, bound1, false
- }
- }
- return bound0, bound1, true
-}
-
-// edgeIntersectsRect reports whether the edge defined by AB intersects the
-// given closed rectangle to within the error bound.
-func edgeIntersectsRect(a, b r2.Point, r r2.Rect) bool {
- // First check whether the bounds of a Rect around AB intersects the given rect.
- if !r.Intersects(r2.RectFromPoints(a, b)) {
- return false
- }
-
- // Otherwise AB intersects the rect if and only if all four vertices of rect
- // do not lie on the same side of the extended line AB. We test this by finding
- // the two vertices of rect with minimum and maximum projections onto the normal
- // of AB, and computing their dot products with the edge normal.
- n := b.Sub(a).Ortho()
-
- i := 0
- if n.X >= 0 {
- i = 1
- }
- j := 0
- if n.Y >= 0 {
- j = 1
- }
-
- max := n.Dot(r.VertexIJ(i, j).Sub(a))
- min := n.Dot(r.VertexIJ(1-i, 1-j).Sub(a))
-
- return (max >= 0) && (min <= 0)
-}
-
-// clippedEdgeBound returns the bounding rectangle of the portion of the edge defined
-// by AB intersected by clip. The resulting bound may be empty. This is a convenience
-// function built on top of clipEdgeBound.
-func clippedEdgeBound(a, b r2.Point, clip r2.Rect) r2.Rect {
- bound := r2.RectFromPoints(a, b)
- if b1, intersects := clipEdgeBound(a, b, clip, bound); intersects {
- return b1
- }
- return r2.EmptyRect()
-}
-
-// clipEdgeBound clips an edge AB to sequence of rectangles efficiently.
-// It represents the clipped edges by their bounding boxes rather than as a pair of
-// endpoints. Specifically, let A'B' be some portion of an edge AB, and let bound be
-// a tight bound of A'B'. This function returns the bound that is a tight bound
-// of A'B' intersected with a given rectangle. If A'B' does not intersect clip,
-// it returns false and the original bound.
-func clipEdgeBound(a, b r2.Point, clip, bound r2.Rect) (r2.Rect, bool) {
- // negSlope indicates which diagonal of the bounding box is spanned by AB: it
- // is false if AB has positive slope, and true if AB has negative slope. This is
- // used to determine which interval endpoints need to be updated each time
- // the edge is clipped.
- negSlope := (a.X > b.X) != (a.Y > b.Y)
-
- b0x, b0y, up1 := clipBoundAxis(a.X, b.X, bound.X, a.Y, b.Y, bound.Y, negSlope, clip.X)
- if !up1 {
- return bound, false
- }
- b1y, b1x, up2 := clipBoundAxis(a.Y, b.Y, b0y, a.X, b.X, b0x, negSlope, clip.Y)
- if !up2 {
- return r2.Rect{b0x, b0y}, false
- }
- return r2.Rect{X: b1x, Y: b1y}, true
-}
-
-// interpolateFloat64 returns a value with the same combination of a1 and b1 as the
-// given value x is of a and b. This function makes the following guarantees:
-// - If x == a, then x1 = a1 (exactly).
-// - If x == b, then x1 = b1 (exactly).
-// - If a <= x <= b, then a1 <= x1 <= b1 (even if a1 == b1).
-// This requires a != b.
-func interpolateFloat64(x, a, b, a1, b1 float64) float64 {
- // To get results that are accurate near both A and B, we interpolate
- // starting from the closer of the two points.
- if math.Abs(a-x) <= math.Abs(b-x) {
- return a1 + (b1-a1)*(x-a)/(b-a)
- }
- return b1 + (a1-b1)*(x-b)/(a-b)
-}
-
-// FaceSegment represents an edge AB clipped to an S2 cube face. It is
-// represented by a face index and a pair of (u,v) coordinates.
-type FaceSegment struct {
- face int
- a, b r2.Point
-}
-
-// FaceSegments subdivides the given edge AB at every point where it crosses the
-// boundary between two S2 cube faces and returns the corresponding FaceSegments.
-// The segments are returned in order from A toward B. The input points must be
-// unit length.
-//
-// This function guarantees that the returned segments form a continuous path
-// from A to B, and that all vertices are within faceClipErrorUVDist of the
-// line AB. All vertices lie within the [-1,1]x[-1,1] cube face rectangles.
-// The results are consistent with Sign, i.e. the edge is well-defined even its
-// endpoints are antipodal.
-// TODO(roberts): Extend the implementation of PointCross so that this is true.
-func FaceSegments(a, b Point) []FaceSegment {
- var segment FaceSegment
-
- // Fast path: both endpoints are on the same face.
- var aFace, bFace int
- aFace, segment.a.X, segment.a.Y = xyzToFaceUV(a.Vector)
- bFace, segment.b.X, segment.b.Y = xyzToFaceUV(b.Vector)
- if aFace == bFace {
- segment.face = aFace
- return []FaceSegment{segment}
- }
-
- // Starting at A, we follow AB from face to face until we reach the face
- // containing B. The following code is designed to ensure that we always
- // reach B, even in the presence of numerical errors.
- //
- // First we compute the normal to the plane containing A and B. This normal
- // becomes the ultimate definition of the line AB; it is used to resolve all
- // questions regarding where exactly the line goes. Unfortunately due to
- // numerical errors, the line may not quite intersect the faces containing
- // the original endpoints. We handle this by moving A and/or B slightly if
- // necessary so that they are on faces intersected by the line AB.
- ab := a.PointCross(b)
-
- aFace, segment.a = moveOriginToValidFace(aFace, a, ab, segment.a)
- bFace, segment.b = moveOriginToValidFace(bFace, b, Point{ab.Mul(-1)}, segment.b)
-
- // Now we simply follow AB from face to face until we reach B.
- var segments []FaceSegment
- segment.face = aFace
- bSaved := segment.b
-
- for face := aFace; face != bFace; {
- // Complete the current segment by finding the point where AB
- // exits the current face.
- z := faceXYZtoUVW(face, ab)
- n := pointUVW{z.Vector}
-
- exitAxis := n.exitAxis()
- segment.b = n.exitPoint(exitAxis)
- segments = append(segments, segment)
-
- // Compute the next face intersected by AB, and translate the exit
- // point of the current segment into the (u,v) coordinates of the
- // next face. This becomes the first point of the next segment.
- exitXyz := faceUVToXYZ(face, segment.b.X, segment.b.Y)
- face = nextFace(face, segment.b, exitAxis, n, bFace)
- exitUvw := faceXYZtoUVW(face, Point{exitXyz})
- segment.face = face
- segment.a = r2.Point{exitUvw.X, exitUvw.Y}
- }
- // Finish the last segment.
- segment.b = bSaved
- return append(segments, segment)
-}
-
-// moveOriginToValidFace updates the origin point to a valid face if necessary.
-// Given a line segment AB whose origin A has been projected onto a given cube
-// face, determine whether it is necessary to project A onto a different face
-// instead. This can happen because the normal of the line AB is not computed
-// exactly, so that the line AB (defined as the set of points perpendicular to
-// the normal) may not intersect the cube face containing A. Even if it does
-// intersect the face, the exit point of the line from that face may be on
-// the wrong side of A (i.e., in the direction away from B). If this happens,
-// we reproject A onto the adjacent face where the line AB approaches A most
-// closely. This moves the origin by a small amount, but never more than the
-// error tolerances.
-func moveOriginToValidFace(face int, a, ab Point, aUV r2.Point) (int, r2.Point) {
- // Fast path: if the origin is sufficiently far inside the face, it is
- // always safe to use it.
- const maxSafeUVCoord = 1 - faceClipErrorUVCoord
- if math.Max(math.Abs((aUV).X), math.Abs((aUV).Y)) <= maxSafeUVCoord {
- return face, aUV
- }
-
- // Otherwise check whether the normal AB even intersects this face.
- z := faceXYZtoUVW(face, ab)
- n := pointUVW{z.Vector}
- if n.intersectsFace() {
- // Check whether the point where the line AB exits this face is on the
- // wrong side of A (by more than the acceptable error tolerance).
- uv := n.exitPoint(n.exitAxis())
- exit := faceUVToXYZ(face, uv.X, uv.Y)
- aTangent := ab.Normalize().Cross(a.Vector)
-
- // We can use the given face.
- if exit.Sub(a.Vector).Dot(aTangent) >= -faceClipErrorRadians {
- return face, aUV
- }
- }
-
- // Otherwise we reproject A to the nearest adjacent face. (If line AB does
- // not pass through a given face, it must pass through all adjacent faces.)
- var dir int
- if math.Abs((aUV).X) >= math.Abs((aUV).Y) {
- // U-axis
- if aUV.X > 0 {
- dir = 1
- }
- face = uvwFace(face, 0, dir)
- } else {
- // V-axis
- if aUV.Y > 0 {
- dir = 1
- }
- face = uvwFace(face, 1, dir)
- }
-
- aUV.X, aUV.Y = validFaceXYZToUV(face, a.Vector)
- aUV.X = math.Max(-1.0, math.Min(1.0, aUV.X))
- aUV.Y = math.Max(-1.0, math.Min(1.0, aUV.Y))
-
- return face, aUV
-}
-
-// nextFace returns the next face that should be visited by FaceSegments, given that
-// we have just visited face and we are following the line AB (represented
-// by its normal N in the (u,v,w) coordinates of that face). The other
-// arguments include the point where AB exits face, the corresponding
-// exit axis, and the target face containing the destination point B.
-func nextFace(face int, exit r2.Point, axis axis, n pointUVW, targetFace int) int {
- // this bit is to work around C++ cleverly casting bools to ints for you.
- exitA := exit.X
- exit1MinusA := exit.Y
-
- if axis == axisV {
- exitA = exit.Y
- exit1MinusA = exit.X
- }
- exitAPos := 0
- if exitA > 0 {
- exitAPos = 1
- }
- exit1MinusAPos := 0
- if exit1MinusA > 0 {
- exit1MinusAPos = 1
- }
-
- // We return the face that is adjacent to the exit point along the given
- // axis. If line AB exits *exactly* through a corner of the face, there are
- // two possible next faces. If one is the target face containing B, then
- // we guarantee that we advance to that face directly.
- //
- // The three conditions below check that (1) AB exits approximately through
- // a corner, (2) the adjacent face along the non-exit axis is the target
- // face, and (3) AB exits *exactly* through the corner. (The sumEqual
- // code checks whether the dot product of (u,v,1) and n is exactly zero.)
- if math.Abs(exit1MinusA) == 1 &&
- uvwFace(face, int(1-axis), exit1MinusAPos) == targetFace &&
- sumEqual(exit.X*n.X, exit.Y*n.Y, -n.Z) {
- return targetFace
- }
-
- // Otherwise return the face that is adjacent to the exit point in the
- // direction of the exit axis.
- return uvwFace(face, int(axis), exitAPos)
-}
diff --git a/vendor/github.com/golang/geo/s2/edge_crosser.go b/vendor/github.com/golang/geo/s2/edge_crosser.go
deleted file mode 100644
index 69c6da6b9..000000000
--- a/vendor/github.com/golang/geo/s2/edge_crosser.go
+++ /dev/null
@@ -1,227 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-)
-
-// EdgeCrosser allows edges to be efficiently tested for intersection with a
-// given fixed edge AB. It is especially efficient when testing for
-// intersection with an edge chain connecting vertices v0, v1, v2, ...
-//
-// Example usage:
-//
-// func CountIntersections(a, b Point, edges []Edge) int {
-// count := 0
-// crosser := NewEdgeCrosser(a, b)
-// for _, edge := range edges {
-// if crosser.CrossingSign(&edge.First, &edge.Second) != DoNotCross {
-// count++
-// }
-// }
-// return count
-// }
-//
-type EdgeCrosser struct {
- a Point
- b Point
- aXb Point
-
- // To reduce the number of calls to expensiveSign, we compute an
- // outward-facing tangent at A and B if necessary. If the plane
- // perpendicular to one of these tangents separates AB from CD (i.e., one
- // edge on each side) then there is no intersection.
- aTangent Point // Outward-facing tangent at A.
- bTangent Point // Outward-facing tangent at B.
-
- // The fields below are updated for each vertex in the chain.
- c Point // Previous vertex in the vertex chain.
- acb Direction // The orientation of triangle ACB.
-}
-
-// NewEdgeCrosser returns an EdgeCrosser with the fixed edge AB.
-func NewEdgeCrosser(a, b Point) *EdgeCrosser {
- norm := a.PointCross(b)
- return &EdgeCrosser{
- a: a,
- b: b,
- aXb: Point{a.Cross(b.Vector)},
- aTangent: Point{a.Cross(norm.Vector)},
- bTangent: Point{norm.Cross(b.Vector)},
- }
-}
-
-// CrossingSign reports whether the edge AB intersects the edge CD. If any two
-// vertices from different edges are the same, returns MaybeCross. If either edge
-// is degenerate (A == B or C == D), returns either DoNotCross or MaybeCross.
-//
-// Properties of CrossingSign:
-//
-// (1) CrossingSign(b,a,c,d) == CrossingSign(a,b,c,d)
-// (2) CrossingSign(c,d,a,b) == CrossingSign(a,b,c,d)
-// (3) CrossingSign(a,b,c,d) == MaybeCross if a==c, a==d, b==c, b==d
-// (3) CrossingSign(a,b,c,d) == DoNotCross or MaybeCross if a==b or c==d
-//
-// Note that if you want to check an edge against a chain of other edges,
-// it is slightly more efficient to use the single-argument version
-// ChainCrossingSign below.
-func (e *EdgeCrosser) CrossingSign(c, d Point) Crossing {
- if c != e.c {
- e.RestartAt(c)
- }
- return e.ChainCrossingSign(d)
-}
-
-// EdgeOrVertexCrossing reports whether if CrossingSign(c, d) > 0, or AB and
-// CD share a vertex and VertexCrossing(a, b, c, d) is true.
-//
-// This method extends the concept of a "crossing" to the case where AB
-// and CD have a vertex in common. The two edges may or may not cross,
-// according to the rules defined in VertexCrossing above. The rules
-// are designed so that point containment tests can be implemented simply
-// by counting edge crossings. Similarly, determining whether one edge
-// chain crosses another edge chain can be implemented by counting.
-func (e *EdgeCrosser) EdgeOrVertexCrossing(c, d Point) bool {
- if c != e.c {
- e.RestartAt(c)
- }
- return e.EdgeOrVertexChainCrossing(d)
-}
-
-// NewChainEdgeCrosser is a convenience constructor that uses AB as the fixed edge,
-// and C as the first vertex of the vertex chain (equivalent to calling RestartAt(c)).
-//
-// You don't need to use this or any of the chain functions unless you're trying to
-// squeeze out every last drop of performance. Essentially all you are saving is a test
-// whether the first vertex of the current edge is the same as the second vertex of the
-// previous edge.
-func NewChainEdgeCrosser(a, b, c Point) *EdgeCrosser {
- e := NewEdgeCrosser(a, b)
- e.RestartAt(c)
- return e
-}
-
-// RestartAt sets the current point of the edge crosser to be c.
-// Call this method when your chain 'jumps' to a new place.
-// The argument must point to a value that persists until the next call.
-func (e *EdgeCrosser) RestartAt(c Point) {
- e.c = c
- e.acb = -triageSign(e.a, e.b, e.c)
-}
-
-// ChainCrossingSign is like CrossingSign, but uses the last vertex passed to one of
-// the crossing methods (or RestartAt) as the first vertex of the current edge.
-func (e *EdgeCrosser) ChainCrossingSign(d Point) Crossing {
- // For there to be an edge crossing, the triangles ACB, CBD, BDA, DAC must
- // all be oriented the same way (CW or CCW). We keep the orientation of ACB
- // as part of our state. When each new point D arrives, we compute the
- // orientation of BDA and check whether it matches ACB. This checks whether
- // the points C and D are on opposite sides of the great circle through AB.
-
- // Recall that triageSign is invariant with respect to rotating its
- // arguments, i.e. ABD has the same orientation as BDA.
- bda := triageSign(e.a, e.b, d)
- if e.acb == -bda && bda != Indeterminate {
- // The most common case -- triangles have opposite orientations. Save the
- // current vertex D as the next vertex C, and also save the orientation of
- // the new triangle ACB (which is opposite to the current triangle BDA).
- e.c = d
- e.acb = -bda
- return DoNotCross
- }
- return e.crossingSign(d, bda)
-}
-
-// EdgeOrVertexChainCrossing is like EdgeOrVertexCrossing, but uses the last vertex
-// passed to one of the crossing methods (or RestartAt) as the first vertex of the current edge.
-func (e *EdgeCrosser) EdgeOrVertexChainCrossing(d Point) bool {
- // We need to copy e.c since it is clobbered by ChainCrossingSign.
- c := e.c
- switch e.ChainCrossingSign(d) {
- case DoNotCross:
- return false
- case Cross:
- return true
- }
- return VertexCrossing(e.a, e.b, c, d)
-}
-
-// crossingSign handle the slow path of CrossingSign.
-func (e *EdgeCrosser) crossingSign(d Point, bda Direction) Crossing {
- // Compute the actual result, and then save the current vertex D as the next
- // vertex C, and save the orientation of the next triangle ACB (which is
- // opposite to the current triangle BDA).
- defer func() {
- e.c = d
- e.acb = -bda
- }()
-
- // At this point, a very common situation is that A,B,C,D are four points on
- // a line such that AB does not overlap CD. (For example, this happens when
- // a line or curve is sampled finely, or when geometry is constructed by
- // computing the union of S2CellIds.) Most of the time, we can determine
- // that AB and CD do not intersect using the two outward-facing
- // tangents at A and B (parallel to AB) and testing whether AB and CD are on
- // opposite sides of the plane perpendicular to one of these tangents. This
- // is moderately expensive but still much cheaper than expensiveSign.
-
- // The error in RobustCrossProd is insignificant. The maximum error in
- // the call to CrossProd (i.e., the maximum norm of the error vector) is
- // (0.5 + 1/sqrt(3)) * dblEpsilon. The maximum error in each call to
- // DotProd below is dblEpsilon. (There is also a small relative error
- // term that is insignificant because we are comparing the result against a
- // constant that is very close to zero.)
- maxError := (1.5 + 1/math.Sqrt(3)) * dblEpsilon
- if (e.c.Dot(e.aTangent.Vector) > maxError && d.Dot(e.aTangent.Vector) > maxError) || (e.c.Dot(e.bTangent.Vector) > maxError && d.Dot(e.bTangent.Vector) > maxError) {
- return DoNotCross
- }
-
- // Otherwise, eliminate the cases where two vertices from different edges are
- // equal. (These cases could be handled in the code below, but we would rather
- // avoid calling ExpensiveSign if possible.)
- if e.a == e.c || e.a == d || e.b == e.c || e.b == d {
- return MaybeCross
- }
-
- // Eliminate the cases where an input edge is degenerate. (Note that in
- // most cases, if CD is degenerate then this method is not even called
- // because acb and bda have different signs.)
- if e.a == e.b || e.c == d {
- return DoNotCross
- }
-
- // Otherwise it's time to break out the big guns.
- if e.acb == Indeterminate {
- e.acb = -expensiveSign(e.a, e.b, e.c)
- }
- if bda == Indeterminate {
- bda = expensiveSign(e.a, e.b, d)
- }
-
- if bda != e.acb {
- return DoNotCross
- }
-
- cbd := -RobustSign(e.c, d, e.b)
- if cbd != e.acb {
- return DoNotCross
- }
- dac := RobustSign(e.c, d, e.a)
- if dac != e.acb {
- return DoNotCross
- }
- return Cross
-}
diff --git a/vendor/github.com/golang/geo/s2/edge_crossings.go b/vendor/github.com/golang/geo/s2/edge_crossings.go
deleted file mode 100644
index a98ec76ff..000000000
--- a/vendor/github.com/golang/geo/s2/edge_crossings.go
+++ /dev/null
@@ -1,396 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "math"
-
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-const (
- // intersectionError can be set somewhat arbitrarily, because the algorithm
- // uses more precision if necessary in order to achieve the specified error.
- // The only strict requirement is that intersectionError >= dblEpsilon
- // radians. However, using a larger error tolerance makes the algorithm more
- // efficient because it reduces the number of cases where exact arithmetic is
- // needed.
- intersectionError = s1.Angle(8 * dblError)
-
- // intersectionMergeRadius is used to ensure that intersection points that
- // are supposed to be coincident are merged back together into a single
- // vertex. This is required in order for various polygon operations (union,
- // intersection, etc) to work correctly. It is twice the intersection error
- // because two coincident intersection points might have errors in
- // opposite directions.
- intersectionMergeRadius = 2 * intersectionError
-)
-
-// A Crossing indicates how edges cross.
-type Crossing int
-
-const (
- // Cross means the edges cross.
- Cross Crossing = iota
- // MaybeCross means two vertices from different edges are the same.
- MaybeCross
- // DoNotCross means the edges do not cross.
- DoNotCross
-)
-
-func (c Crossing) String() string {
- switch c {
- case Cross:
- return "Cross"
- case MaybeCross:
- return "MaybeCross"
- case DoNotCross:
- return "DoNotCross"
- default:
- return fmt.Sprintf("(BAD CROSSING %d)", c)
- }
-}
-
-// CrossingSign reports whether the edge AB intersects the edge CD.
-// If AB crosses CD at a point that is interior to both edges, Cross is returned.
-// If any two vertices from different edges are the same it returns MaybeCross.
-// Otherwise it returns DoNotCross.
-// If either edge is degenerate (A == B or C == D), the return value is MaybeCross
-// if two vertices from different edges are the same and DoNotCross otherwise.
-//
-// Properties of CrossingSign:
-//
-// (1) CrossingSign(b,a,c,d) == CrossingSign(a,b,c,d)
-// (2) CrossingSign(c,d,a,b) == CrossingSign(a,b,c,d)
-// (3) CrossingSign(a,b,c,d) == MaybeCross if a==c, a==d, b==c, b==d
-// (3) CrossingSign(a,b,c,d) == DoNotCross or MaybeCross if a==b or c==d
-//
-// This method implements an exact, consistent perturbation model such
-// that no three points are ever considered to be collinear. This means
-// that even if you have 4 points A, B, C, D that lie exactly in a line
-// (say, around the equator), C and D will be treated as being slightly to
-// one side or the other of AB. This is done in a way such that the
-// results are always consistent (see RobustSign).
-func CrossingSign(a, b, c, d Point) Crossing {
- crosser := NewChainEdgeCrosser(a, b, c)
- return crosser.ChainCrossingSign(d)
-}
-
-// VertexCrossing reports whether two edges "cross" in such a way that point-in-polygon
-// containment tests can be implemented by counting the number of edge crossings.
-//
-// Given two edges AB and CD where at least two vertices are identical
-// (i.e. CrossingSign(a,b,c,d) == 0), the basic rule is that a "crossing"
-// occurs if AB is encountered after CD during a CCW sweep around the shared
-// vertex starting from a fixed reference point.
-//
-// Note that according to this rule, if AB crosses CD then in general CD
-// does not cross AB. However, this leads to the correct result when
-// counting polygon edge crossings. For example, suppose that A,B,C are
-// three consecutive vertices of a CCW polygon. If we now consider the edge
-// crossings of a segment BP as P sweeps around B, the crossing number
-// changes parity exactly when BP crosses BA or BC.
-//
-// Useful properties of VertexCrossing (VC):
-//
-// (1) VC(a,a,c,d) == VC(a,b,c,c) == false
-// (2) VC(a,b,a,b) == VC(a,b,b,a) == true
-// (3) VC(a,b,c,d) == VC(a,b,d,c) == VC(b,a,c,d) == VC(b,a,d,c)
-// (3) If exactly one of a,b equals one of c,d, then exactly one of
-// VC(a,b,c,d) and VC(c,d,a,b) is true
-//
-// It is an error to call this method with 4 distinct vertices.
-func VertexCrossing(a, b, c, d Point) bool {
- // If A == B or C == D there is no intersection. We need to check this
- // case first in case 3 or more input points are identical.
- if a == b || c == d {
- return false
- }
-
- // If any other pair of vertices is equal, there is a crossing if and only
- // if OrderedCCW indicates that the edge AB is further CCW around the
- // shared vertex O (either A or B) than the edge CD, starting from an
- // arbitrary fixed reference point.
-
- // Optimization: if AB=CD or AB=DC, we can avoid most of the calculations.
- switch {
- case a == c:
- return (b == d) || OrderedCCW(Point{a.Ortho()}, d, b, a)
- case b == d:
- return OrderedCCW(Point{b.Ortho()}, c, a, b)
- case a == d:
- return (b == c) || OrderedCCW(Point{a.Ortho()}, c, b, a)
- case b == c:
- return OrderedCCW(Point{b.Ortho()}, d, a, b)
- }
-
- return false
-}
-
-// EdgeOrVertexCrossing is a convenience function that calls CrossingSign to
-// handle cases where all four vertices are distinct, and VertexCrossing to
-// handle cases where two or more vertices are the same. This defines a crossing
-// function such that point-in-polygon containment tests can be implemented
-// by simply counting edge crossings.
-func EdgeOrVertexCrossing(a, b, c, d Point) bool {
- switch CrossingSign(a, b, c, d) {
- case DoNotCross:
- return false
- case Cross:
- return true
- default:
- return VertexCrossing(a, b, c, d)
- }
-}
-
-// Intersection returns the intersection point of two edges AB and CD that cross
-// (CrossingSign(a,b,c,d) == Crossing).
-//
-// Useful properties of Intersection:
-//
-// (1) Intersection(b,a,c,d) == Intersection(a,b,d,c) == Intersection(a,b,c,d)
-// (2) Intersection(c,d,a,b) == Intersection(a,b,c,d)
-//
-// The returned intersection point X is guaranteed to be very close to the
-// true intersection point of AB and CD, even if the edges intersect at a
-// very small angle.
-func Intersection(a0, a1, b0, b1 Point) Point {
- // It is difficult to compute the intersection point of two edges accurately
- // when the angle between the edges is very small. Previously we handled
- // this by only guaranteeing that the returned intersection point is within
- // intersectionError of each edge. However, this means that when the edges
- // cross at a very small angle, the computed result may be very far from the
- // true intersection point.
- //
- // Instead this function now guarantees that the result is always within
- // intersectionError of the true intersection. This requires using more
- // sophisticated techniques and in some cases extended precision.
- //
- // - intersectionStable computes the intersection point using
- // projection and interpolation, taking care to minimize cancellation
- // error.
- //
- // - intersectionExact computes the intersection point using precision
- // arithmetic and converts the final result back to an Point.
- pt, ok := intersectionStable(a0, a1, b0, b1)
- if !ok {
- pt = intersectionExact(a0, a1, b0, b1)
- }
-
- // Make sure the intersection point is on the correct side of the sphere.
- // Since all vertices are unit length, and edges are less than 180 degrees,
- // (a0 + a1) and (b0 + b1) both have positive dot product with the
- // intersection point. We use the sum of all vertices to make sure that the
- // result is unchanged when the edges are swapped or reversed.
- if pt.Dot((a0.Add(a1.Vector)).Add(b0.Add(b1.Vector))) < 0 {
- pt = Point{pt.Mul(-1)}
- }
-
- return pt
-}
-
-// Computes the cross product of two vectors, normalized to be unit length.
-// Also returns the length of the cross
-// product before normalization, which is useful for estimating the amount of
-// error in the result. For numerical stability, the vectors should both be
-// approximately unit length.
-func robustNormalWithLength(x, y r3.Vector) (r3.Vector, float64) {
- var pt r3.Vector
- // This computes 2 * (x.Cross(y)), but has much better numerical
- // stability when x and y are unit length.
- tmp := x.Sub(y).Cross(x.Add(y))
- length := tmp.Norm()
- if length != 0 {
- pt = tmp.Mul(1 / length)
- }
- return pt, 0.5 * length // Since tmp == 2 * (x.Cross(y))
-}
-
-/*
-// intersectionSimple is not used by the C++ so it is skipped here.
-*/
-
-// projection returns the projection of aNorm onto X (x.Dot(aNorm)), and a bound
-// on the error in the result. aNorm is not necessarily unit length.
-//
-// The remaining parameters (the length of aNorm (aNormLen) and the edge endpoints
-// a0 and a1) allow this dot product to be computed more accurately and efficiently.
-func projection(x, aNorm r3.Vector, aNormLen float64, a0, a1 Point) (proj, bound float64) {
- // The error in the dot product is proportional to the lengths of the input
- // vectors, so rather than using x itself (a unit-length vector) we use
- // the vectors from x to the closer of the two edge endpoints. This
- // typically reduces the error by a huge factor.
- x0 := x.Sub(a0.Vector)
- x1 := x.Sub(a1.Vector)
- x0Dist2 := x0.Norm2()
- x1Dist2 := x1.Norm2()
-
- // If both distances are the same, we need to be careful to choose one
- // endpoint deterministically so that the result does not change if the
- // order of the endpoints is reversed.
- var dist float64
- if x0Dist2 < x1Dist2 || (x0Dist2 == x1Dist2 && x0.Cmp(x1) == -1) {
- dist = math.Sqrt(x0Dist2)
- proj = x0.Dot(aNorm)
- } else {
- dist = math.Sqrt(x1Dist2)
- proj = x1.Dot(aNorm)
- }
-
- // This calculation bounds the error from all sources: the computation of
- // the normal, the subtraction of one endpoint, and the dot product itself.
- // dblError appears because the input points are assumed to be
- // normalized in double precision.
- //
- // For reference, the bounds that went into this calculation are:
- // ||N'-N|| <= ((1 + 2 * sqrt(3))||N|| + 32 * sqrt(3) * dblError) * epsilon
- // |(A.B)'-(A.B)| <= (1.5 * (A.B) + 1.5 * ||A|| * ||B||) * epsilon
- // ||(X-Y)'-(X-Y)|| <= ||X-Y|| * epsilon
- bound = (((3.5+2*math.Sqrt(3))*aNormLen+32*math.Sqrt(3)*dblError)*dist + 1.5*math.Abs(proj)) * epsilon
- return proj, bound
-}
-
-// compareEdges reports whether (a0,a1) is less than (b0,b1) with respect to a total
-// ordering on edges that is invariant under edge reversals.
-func compareEdges(a0, a1, b0, b1 Point) bool {
- if a0.Cmp(a1.Vector) != -1 {
- a0, a1 = a1, a0
- }
- if b0.Cmp(b1.Vector) != -1 {
- b0, b1 = b1, b0
- }
- return a0.Cmp(b0.Vector) == -1 || (a0 == b0 && b0.Cmp(b1.Vector) == -1)
-}
-
-// intersectionStable returns the intersection point of the edges (a0,a1) and
-// (b0,b1) if it can be computed to within an error of at most intersectionError
-// by this function.
-//
-// The intersection point is not guaranteed to have the correct sign because we
-// choose to use the longest of the two edges first. The sign is corrected by
-// Intersection.
-func intersectionStable(a0, a1, b0, b1 Point) (Point, bool) {
- // Sort the two edges so that (a0,a1) is longer, breaking ties in a
- // deterministic way that does not depend on the ordering of the endpoints.
- // This is desirable for two reasons:
- // - So that the result doesn't change when edges are swapped or reversed.
- // - It reduces error, since the first edge is used to compute the edge
- // normal (where a longer edge means less error), and the second edge
- // is used for interpolation (where a shorter edge means less error).
- aLen2 := a1.Sub(a0.Vector).Norm2()
- bLen2 := b1.Sub(b0.Vector).Norm2()
- if aLen2 < bLen2 || (aLen2 == bLen2 && compareEdges(a0, a1, b0, b1)) {
- return intersectionStableSorted(b0, b1, a0, a1)
- }
- return intersectionStableSorted(a0, a1, b0, b1)
-}
-
-// intersectionStableSorted is a helper function for intersectionStable.
-// It expects that the edges (a0,a1) and (b0,b1) have been sorted so that
-// the first edge passed in is longer.
-func intersectionStableSorted(a0, a1, b0, b1 Point) (Point, bool) {
- var pt Point
-
- // Compute the normal of the plane through (a0, a1) in a stable way.
- aNorm := a0.Sub(a1.Vector).Cross(a0.Add(a1.Vector))
- aNormLen := aNorm.Norm()
- bLen := b1.Sub(b0.Vector).Norm()
-
- // Compute the projection (i.e., signed distance) of b0 and b1 onto the
- // plane through (a0, a1). Distances are scaled by the length of aNorm.
- b0Dist, b0Error := projection(b0.Vector, aNorm, aNormLen, a0, a1)
- b1Dist, b1Error := projection(b1.Vector, aNorm, aNormLen, a0, a1)
-
- // The total distance from b0 to b1 measured perpendicularly to (a0,a1) is
- // |b0Dist - b1Dist|. Note that b0Dist and b1Dist generally have
- // opposite signs because b0 and b1 are on opposite sides of (a0, a1). The
- // code below finds the intersection point by interpolating along the edge
- // (b0, b1) to a fractional distance of b0Dist / (b0Dist - b1Dist).
- //
- // It can be shown that the maximum error in the interpolation fraction is
- //
- // (b0Dist * b1Error - b1Dist * b0Error) / (distSum * (distSum - errorSum))
- //
- // We save ourselves some work by scaling the result and the error bound by
- // "distSum", since the result is normalized to be unit length anyway.
- distSum := math.Abs(b0Dist - b1Dist)
- errorSum := b0Error + b1Error
- if distSum <= errorSum {
- return pt, false // Error is unbounded in this case.
- }
-
- x := b1.Mul(b0Dist).Sub(b0.Mul(b1Dist))
- err := bLen*math.Abs(b0Dist*b1Error-b1Dist*b0Error)/
- (distSum-errorSum) + 2*distSum*epsilon
-
- // Finally we normalize the result, compute the corresponding error, and
- // check whether the total error is acceptable.
- xLen := x.Norm()
- maxError := intersectionError
- if err > (float64(maxError)-epsilon)*xLen {
- return pt, false
- }
-
- return Point{x.Mul(1 / xLen)}, true
-}
-
-// intersectionExact returns the intersection point of (a0, a1) and (b0, b1)
-// using precise arithmetic. Note that the result is not exact because it is
-// rounded down to double precision at the end. Also, the intersection point
-// is not guaranteed to have the correct sign (i.e., the return value may need
-// to be negated).
-func intersectionExact(a0, a1, b0, b1 Point) Point {
- // Since we are using presice arithmetic, we don't need to worry about
- // numerical stability.
- a0P := r3.PreciseVectorFromVector(a0.Vector)
- a1P := r3.PreciseVectorFromVector(a1.Vector)
- b0P := r3.PreciseVectorFromVector(b0.Vector)
- b1P := r3.PreciseVectorFromVector(b1.Vector)
- aNormP := a0P.Cross(a1P)
- bNormP := b0P.Cross(b1P)
- xP := aNormP.Cross(bNormP)
-
- // The final Normalize() call is done in double precision, which creates a
- // directional error of up to 2*dblError. (Precise conversion and Normalize()
- // each contribute up to dblError of directional error.)
- x := xP.Vector()
-
- if x == (r3.Vector{}) {
- // The two edges are exactly collinear, but we still consider them to be
- // "crossing" because of simulation of simplicity. Out of the four
- // endpoints, exactly two lie in the interior of the other edge. Of
- // those two we return the one that is lexicographically smallest.
- x = r3.Vector{10, 10, 10} // Greater than any valid S2Point
-
- aNorm := Point{aNormP.Vector()}
- bNorm := Point{bNormP.Vector()}
- if OrderedCCW(b0, a0, b1, bNorm) && a0.Cmp(x) == -1 {
- return a0
- }
- if OrderedCCW(b0, a1, b1, bNorm) && a1.Cmp(x) == -1 {
- return a1
- }
- if OrderedCCW(a0, b0, a1, aNorm) && b0.Cmp(x) == -1 {
- return b0
- }
- if OrderedCCW(a0, b1, a1, aNorm) && b1.Cmp(x) == -1 {
- return b1
- }
- }
-
- return Point{x}
-}
diff --git a/vendor/github.com/golang/geo/s2/edge_distances.go b/vendor/github.com/golang/geo/s2/edge_distances.go
deleted file mode 100644
index ca197af1d..000000000
--- a/vendor/github.com/golang/geo/s2/edge_distances.go
+++ /dev/null
@@ -1,408 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// This file defines a collection of methods for computing the distance to an edge,
-// interpolating along an edge, projecting points onto edges, etc.
-
-import (
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// DistanceFromSegment returns the distance of point X from line segment AB.
-// The points are expected to be normalized. The result is very accurate for small
-// distances but may have some numerical error if the distance is large
-// (approximately pi/2 or greater). The case A == B is handled correctly.
-func DistanceFromSegment(x, a, b Point) s1.Angle {
- var minDist s1.ChordAngle
- minDist, _ = updateMinDistance(x, a, b, minDist, true)
- return minDist.Angle()
-}
-
-// IsDistanceLess reports whether the distance from X to the edge AB is less
-// than limit. (For less than or equal to, specify limit.Successor()).
-// This method is faster than DistanceFromSegment(). If you want to
-// compare against a fixed s1.Angle, you should convert it to an s1.ChordAngle
-// once and save the value, since this conversion is relatively expensive.
-func IsDistanceLess(x, a, b Point, limit s1.ChordAngle) bool {
- _, less := UpdateMinDistance(x, a, b, limit)
- return less
-}
-
-// UpdateMinDistance checks if the distance from X to the edge AB is less
-// than minDist, and if so, returns the updated value and true.
-// The case A == B is handled correctly.
-//
-// Use this method when you want to compute many distances and keep track of
-// the minimum. It is significantly faster than using DistanceFromSegment
-// because (1) using s1.ChordAngle is much faster than s1.Angle, and (2) it
-// can save a lot of work by not actually computing the distance when it is
-// obviously larger than the current minimum.
-func UpdateMinDistance(x, a, b Point, minDist s1.ChordAngle) (s1.ChordAngle, bool) {
- return updateMinDistance(x, a, b, minDist, false)
-}
-
-// UpdateMaxDistance checks if the distance from X to the edge AB is greater
-// than maxDist, and if so, returns the updated value and true.
-// Otherwise it returns false. The case A == B is handled correctly.
-func UpdateMaxDistance(x, a, b Point, maxDist s1.ChordAngle) (s1.ChordAngle, bool) {
- dist := maxChordAngle(ChordAngleBetweenPoints(x, a), ChordAngleBetweenPoints(x, b))
- if dist > s1.RightChordAngle {
- dist, _ = updateMinDistance(Point{x.Mul(-1)}, a, b, dist, true)
- dist = s1.StraightChordAngle - dist
- }
- if maxDist < dist {
- return dist, true
- }
-
- return maxDist, false
-}
-
-// IsInteriorDistanceLess reports whether the minimum distance from X to the edge
-// AB is attained at an interior point of AB (i.e., not an endpoint), and that
-// distance is less than limit. (Specify limit.Successor() for less than or equal to).
-func IsInteriorDistanceLess(x, a, b Point, limit s1.ChordAngle) bool {
- _, less := UpdateMinInteriorDistance(x, a, b, limit)
- return less
-}
-
-// UpdateMinInteriorDistance reports whether the minimum distance from X to AB
-// is attained at an interior point of AB (i.e., not an endpoint), and that distance
-// is less than minDist. If so, the value of minDist is updated and true is returned.
-// Otherwise it is unchanged and returns false.
-func UpdateMinInteriorDistance(x, a, b Point, minDist s1.ChordAngle) (s1.ChordAngle, bool) {
- return interiorDist(x, a, b, minDist, false)
-}
-
-// Project returns the point along the edge AB that is closest to the point X.
-// The fractional distance of this point along the edge AB can be obtained
-// using DistanceFraction.
-//
-// This requires that all points are unit length.
-func Project(x, a, b Point) Point {
- aXb := a.PointCross(b)
- // Find the closest point to X along the great circle through AB.
- p := x.Sub(aXb.Mul(x.Dot(aXb.Vector) / aXb.Vector.Norm2()))
-
- // If this point is on the edge AB, then it's the closest point.
- if Sign(aXb, a, Point{p}) && Sign(Point{p}, b, aXb) {
- return Point{p.Normalize()}
- }
-
- // Otherwise, the closest point is either A or B.
- if x.Sub(a.Vector).Norm2() <= x.Sub(b.Vector).Norm2() {
- return a
- }
- return b
-}
-
-// DistanceFraction returns the distance ratio of the point X along an edge AB.
-// If X is on the line segment AB, this is the fraction T such
-// that X == Interpolate(T, A, B).
-//
-// This requires that A and B are distinct.
-func DistanceFraction(x, a, b Point) float64 {
- d0 := x.Angle(a.Vector)
- d1 := x.Angle(b.Vector)
- return float64(d0 / (d0 + d1))
-}
-
-// Interpolate returns the point X along the line segment AB whose distance from A
-// is the given fraction "t" of the distance AB. Does NOT require that "t" be
-// between 0 and 1. Note that all distances are measured on the surface of
-// the sphere, so this is more complicated than just computing (1-t)*a + t*b
-// and normalizing the result.
-func Interpolate(t float64, a, b Point) Point {
- if t == 0 {
- return a
- }
- if t == 1 {
- return b
- }
- ab := a.Angle(b.Vector)
- return InterpolateAtDistance(s1.Angle(t)*ab, a, b)
-}
-
-// InterpolateAtDistance returns the point X along the line segment AB whose
-// distance from A is the angle ax.
-func InterpolateAtDistance(ax s1.Angle, a, b Point) Point {
- aRad := ax.Radians()
-
- // Use PointCross to compute the tangent vector at A towards B. The
- // result is always perpendicular to A, even if A=B or A=-B, but it is not
- // necessarily unit length. (We effectively normalize it below.)
- normal := a.PointCross(b)
- tangent := normal.Vector.Cross(a.Vector)
-
- // Now compute the appropriate linear combination of A and "tangent". With
- // infinite precision the result would always be unit length, but we
- // normalize it anyway to ensure that the error is within acceptable bounds.
- // (Otherwise errors can build up when the result of one interpolation is
- // fed into another interpolation.)
- return Point{(a.Mul(math.Cos(aRad)).Add(tangent.Mul(math.Sin(aRad) / tangent.Norm()))).Normalize()}
-}
-
-// minUpdateDistanceMaxError returns the maximum error in the result of
-// UpdateMinDistance (and the associated functions such as
-// UpdateMinInteriorDistance, IsDistanceLess, etc), assuming that all
-// input points are normalized to within the bounds guaranteed by r3.Vector's
-// Normalize. The error can be added or subtracted from an s1.ChordAngle
-// using its Expanded method.
-func minUpdateDistanceMaxError(dist s1.ChordAngle) float64 {
- // There are two cases for the maximum error in UpdateMinDistance(),
- // depending on whether the closest point is interior to the edge.
- return math.Max(minUpdateInteriorDistanceMaxError(dist), dist.MaxPointError())
-}
-
-// minUpdateInteriorDistanceMaxError returns the maximum error in the result of
-// UpdateMinInteriorDistance, assuming that all input points are normalized
-// to within the bounds guaranteed by Point's Normalize. The error can be added
-// or subtracted from an s1.ChordAngle using its Expanded method.
-//
-// Note that accuracy goes down as the distance approaches 0 degrees or 180
-// degrees (for different reasons). Near 0 degrees the error is acceptable
-// for all practical purposes (about 1.2e-15 radians ~= 8 nanometers). For
-// exactly antipodal points the maximum error is quite high (0.5 meters),
-// but this error drops rapidly as the points move away from antipodality
-// (approximately 1 millimeter for points that are 50 meters from antipodal,
-// and 1 micrometer for points that are 50km from antipodal).
-//
-// TODO(roberts): Currently the error bound does not hold for edges whose endpoints
-// are antipodal to within about 1e-15 radians (less than 1 micron). This could
-// be fixed by extending PointCross to use higher precision when necessary.
-func minUpdateInteriorDistanceMaxError(dist s1.ChordAngle) float64 {
- // If a point is more than 90 degrees from an edge, then the minimum
- // distance is always to one of the endpoints, not to the edge interior.
- if dist >= s1.RightChordAngle {
- return 0.0
- }
-
- // This bound includes all source of error, assuming that the input points
- // are normalized. a and b are components of chord length that are
- // perpendicular and parallel to a plane containing the edge respectively.
- b := math.Min(1.0, 0.5*float64(dist))
- a := math.Sqrt(b * (2 - b))
- return ((2.5+2*math.Sqrt(3)+8.5*a)*a +
- (2+2*math.Sqrt(3)/3+6.5*(1-b))*b +
- (23+16/math.Sqrt(3))*dblEpsilon) * dblEpsilon
-}
-
-// updateMinDistance computes the distance from a point X to a line segment AB,
-// and if either the distance was less than the given minDist, or alwaysUpdate is
-// true, the value and whether it was updated are returned.
-func updateMinDistance(x, a, b Point, minDist s1.ChordAngle, alwaysUpdate bool) (s1.ChordAngle, bool) {
- if d, ok := interiorDist(x, a, b, minDist, alwaysUpdate); ok {
- // Minimum distance is attained along the edge interior.
- return d, true
- }
-
- // Otherwise the minimum distance is to one of the endpoints.
- xa2, xb2 := (x.Sub(a.Vector)).Norm2(), x.Sub(b.Vector).Norm2()
- dist := s1.ChordAngle(math.Min(xa2, xb2))
- if !alwaysUpdate && dist >= minDist {
- return minDist, false
- }
- return dist, true
-}
-
-// interiorDist returns the shortest distance from point x to edge ab, assuming
-// that the closest point to X is interior to AB. If the closest point is not
-// interior to AB, interiorDist returns (minDist, false). If alwaysUpdate is set to
-// false, the distance is only updated when the value exceeds certain the given minDist.
-func interiorDist(x, a, b Point, minDist s1.ChordAngle, alwaysUpdate bool) (s1.ChordAngle, bool) {
- // Chord distance of x to both end points a and b.
- xa2, xb2 := (x.Sub(a.Vector)).Norm2(), x.Sub(b.Vector).Norm2()
-
- // The closest point on AB could either be one of the two vertices (the
- // vertex case) or in the interior (the interior case). Let C = A x B.
- // If X is in the spherical wedge extending from A to B around the axis
- // through C, then we are in the interior case. Otherwise we are in the
- // vertex case.
- //
- // Check whether we might be in the interior case. For this to be true, XAB
- // and XBA must both be acute angles. Checking this condition exactly is
- // expensive, so instead we consider the planar triangle ABX (which passes
- // through the sphere's interior). The planar angles XAB and XBA are always
- // less than the corresponding spherical angles, so if we are in the
- // interior case then both of these angles must be acute.
- //
- // We check this by computing the squared edge lengths of the planar
- // triangle ABX, and testing whether angles XAB and XBA are both acute using
- // the law of cosines:
- //
- // | XA^2 - XB^2 | < AB^2 (*)
- //
- // This test must be done conservatively (taking numerical errors into
- // account) since otherwise we might miss a situation where the true minimum
- // distance is achieved by a point on the edge interior.
- //
- // There are two sources of error in the expression above (*). The first is
- // that points are not normalized exactly; they are only guaranteed to be
- // within 2 * dblEpsilon of unit length. Under the assumption that the two
- // sides of (*) are nearly equal, the total error due to normalization errors
- // can be shown to be at most
- //
- // 2 * dblEpsilon * (XA^2 + XB^2 + AB^2) + 8 * dblEpsilon ^ 2 .
- //
- // The other source of error is rounding of results in the calculation of (*).
- // Each of XA^2, XB^2, AB^2 has a maximum relative error of 2.5 * dblEpsilon,
- // plus an additional relative error of 0.5 * dblEpsilon in the final
- // subtraction which we further bound as 0.25 * dblEpsilon * (XA^2 + XB^2 +
- // AB^2) for convenience. This yields a final error bound of
- //
- // 4.75 * dblEpsilon * (XA^2 + XB^2 + AB^2) + 8 * dblEpsilon ^ 2 .
- ab2 := a.Sub(b.Vector).Norm2()
- maxError := (4.75*dblEpsilon*(xa2+xb2+ab2) + 8*dblEpsilon*dblEpsilon)
- if math.Abs(xa2-xb2) >= ab2+maxError {
- return minDist, false
- }
-
- // The minimum distance might be to a point on the edge interior. Let R
- // be closest point to X that lies on the great circle through AB. Rather
- // than computing the geodesic distance along the surface of the sphere,
- // instead we compute the "chord length" through the sphere's interior.
- //
- // The squared chord length XR^2 can be expressed as XQ^2 + QR^2, where Q
- // is the point X projected onto the plane through the great circle AB.
- // The distance XQ^2 can be written as (X.C)^2 / |C|^2 where C = A x B.
- // We ignore the QR^2 term and instead use XQ^2 as a lower bound, since it
- // is faster and the corresponding distance on the Earth's surface is
- // accurate to within 1% for distances up to about 1800km.
- c := a.PointCross(b)
- c2 := c.Norm2()
- xDotC := x.Dot(c.Vector)
- xDotC2 := xDotC * xDotC
- if !alwaysUpdate && xDotC2 > c2*float64(minDist) {
- // The closest point on the great circle AB is too far away. We need to
- // test this using ">" rather than ">=" because the actual minimum bound
- // on the distance is (xDotC2 / c2), which can be rounded differently
- // than the (more efficient) multiplicative test above.
- return minDist, false
- }
-
- // Otherwise we do the exact, more expensive test for the interior case.
- // This test is very likely to succeed because of the conservative planar
- // test we did initially.
- //
- // TODO(roberts): Ensure that the errors in test are accurately reflected in the
- // minUpdateInteriorDistanceMaxError.
- cx := c.Cross(x.Vector)
- if a.Sub(x.Vector).Dot(cx) >= 0 || b.Sub(x.Vector).Dot(cx) <= 0 {
- return minDist, false
- }
-
- // Compute the squared chord length XR^2 = XQ^2 + QR^2 (see above).
- // This calculation has good accuracy for all chord lengths since it
- // is based on both the dot product and cross product (rather than
- // deriving one from the other). However, note that the chord length
- // representation itself loses accuracy as the angle approaches π.
- qr := 1 - math.Sqrt(cx.Norm2()/c2)
- dist := s1.ChordAngle((xDotC2 / c2) + (qr * qr))
-
- if !alwaysUpdate && dist >= minDist {
- return minDist, false
- }
-
- return dist, true
-}
-
-// updateEdgePairMinDistance computes the minimum distance between the given
-// pair of edges. If the two edges cross, the distance is zero. The cases
-// a0 == a1 and b0 == b1 are handled correctly.
-func updateEdgePairMinDistance(a0, a1, b0, b1 Point, minDist s1.ChordAngle) (s1.ChordAngle, bool) {
- if minDist == 0 {
- return 0, false
- }
- if CrossingSign(a0, a1, b0, b1) == Cross {
- minDist = 0
- return 0, true
- }
-
- // Otherwise, the minimum distance is achieved at an endpoint of at least
- // one of the two edges. We ensure that all four possibilities are always checked.
- //
- // The calculation below computes each of the six vertex-vertex distances
- // twice (this could be optimized).
- var ok1, ok2, ok3, ok4 bool
- minDist, ok1 = UpdateMinDistance(a0, b0, b1, minDist)
- minDist, ok2 = UpdateMinDistance(a1, b0, b1, minDist)
- minDist, ok3 = UpdateMinDistance(b0, a0, a1, minDist)
- minDist, ok4 = UpdateMinDistance(b1, a0, a1, minDist)
- return minDist, ok1 || ok2 || ok3 || ok4
-}
-
-// updateEdgePairMaxDistance reports the minimum distance between the given pair of edges.
-// If one edge crosses the antipodal reflection of the other, the distance is pi.
-func updateEdgePairMaxDistance(a0, a1, b0, b1 Point, maxDist s1.ChordAngle) (s1.ChordAngle, bool) {
- if maxDist == s1.StraightChordAngle {
- return s1.StraightChordAngle, false
- }
- if CrossingSign(a0, a1, Point{b0.Mul(-1)}, Point{b1.Mul(-1)}) == Cross {
- return s1.StraightChordAngle, true
- }
-
- // Otherwise, the maximum distance is achieved at an endpoint of at least
- // one of the two edges. We ensure that all four possibilities are always checked.
- //
- // The calculation below computes each of the six vertex-vertex distances
- // twice (this could be optimized).
- var ok1, ok2, ok3, ok4 bool
- maxDist, ok1 = UpdateMaxDistance(a0, b0, b1, maxDist)
- maxDist, ok2 = UpdateMaxDistance(a1, b0, b1, maxDist)
- maxDist, ok3 = UpdateMaxDistance(b0, a0, a1, maxDist)
- maxDist, ok4 = UpdateMaxDistance(b1, a0, a1, maxDist)
- return maxDist, ok1 || ok2 || ok3 || ok4
-}
-
-// EdgePairClosestPoints returns the pair of points (a, b) that achieves the
-// minimum distance between edges a0a1 and b0b1, where a is a point on a0a1 and
-// b is a point on b0b1. If the two edges intersect, a and b are both equal to
-// the intersection point. Handles a0 == a1 and b0 == b1 correctly.
-func EdgePairClosestPoints(a0, a1, b0, b1 Point) (Point, Point) {
- if CrossingSign(a0, a1, b0, b1) == Cross {
- x := Intersection(a0, a1, b0, b1)
- return x, x
- }
- // We save some work by first determining which vertex/edge pair achieves
- // the minimum distance, and then computing the closest point on that edge.
- var minDist s1.ChordAngle
- var ok bool
-
- minDist, ok = updateMinDistance(a0, b0, b1, minDist, true)
- closestVertex := 0
- if minDist, ok = UpdateMinDistance(a1, b0, b1, minDist); ok {
- closestVertex = 1
- }
- if minDist, ok = UpdateMinDistance(b0, a0, a1, minDist); ok {
- closestVertex = 2
- }
- if minDist, ok = UpdateMinDistance(b1, a0, a1, minDist); ok {
- closestVertex = 3
- }
- switch closestVertex {
- case 0:
- return a0, Project(a0, b0, b1)
- case 1:
- return a1, Project(a1, b0, b1)
- case 2:
- return Project(b0, a0, a1), b0
- case 3:
- return Project(b1, a0, a1), b1
- default:
- panic("illegal case reached")
- }
-}
diff --git a/vendor/github.com/golang/geo/s2/edge_query.go b/vendor/github.com/golang/geo/s2/edge_query.go
deleted file mode 100644
index 3942c2bc5..000000000
--- a/vendor/github.com/golang/geo/s2/edge_query.go
+++ /dev/null
@@ -1,512 +0,0 @@
-// Copyright 2019 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "sort"
-
- "github.com/golang/geo/s1"
-)
-
-// EdgeQueryOptions holds the options for controlling how EdgeQuery operates.
-//
-// Options can be chained together builder-style:
-//
-// opts = NewClosestEdgeQueryOptions().
-// MaxResults(1).
-// DistanceLimit(s1.ChordAngleFromAngle(3 * s1.Degree)).
-// MaxError(s1.ChordAngleFromAngle(0.001 * s1.Degree))
-// query = NewClosestEdgeQuery(index, opts)
-//
-// or set individually:
-//
-// opts = NewClosestEdgeQueryOptions()
-// opts.IncludeInteriors(true)
-//
-// or just inline:
-//
-// query = NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions().MaxResults(3))
-//
-// If you pass a nil as the options you get the default values for the options.
-type EdgeQueryOptions struct {
- common *queryOptions
-}
-
-// DistanceLimit specifies that only edges whose distance to the target is
-// within, this distance should be returned. Edges whose distance is equal
-// are not returned. To include values that are equal, specify the limit with
-// the next largest representable distance. i.e. limit.Successor().
-func (e *EdgeQueryOptions) DistanceLimit(limit s1.ChordAngle) *EdgeQueryOptions {
- e.common = e.common.DistanceLimit(limit)
- return e
-}
-
-// IncludeInteriors specifies whether polygon interiors should be
-// included when measuring distances.
-func (e *EdgeQueryOptions) IncludeInteriors(x bool) *EdgeQueryOptions {
- e.common = e.common.IncludeInteriors(x)
- return e
-}
-
-// UseBruteForce sets or disables the use of brute force in a query.
-func (e *EdgeQueryOptions) UseBruteForce(x bool) *EdgeQueryOptions {
- e.common = e.common.UseBruteForce(x)
- return e
-}
-
-// MaxError specifies that edges up to dist away than the true
-// matching edges may be substituted in the result set, as long as such
-// edges satisfy all the remaining search criteria (such as DistanceLimit).
-// This option only has an effect if MaxResults is also specified;
-// otherwise all edges closer than MaxDistance will always be returned.
-func (e *EdgeQueryOptions) MaxError(dist s1.ChordAngle) *EdgeQueryOptions {
- e.common = e.common.MaxError(dist)
- return e
-}
-
-// MaxResults specifies that at most MaxResults edges should be returned.
-// This must be at least 1.
-func (e *EdgeQueryOptions) MaxResults(n int) *EdgeQueryOptions {
- e.common = e.common.MaxResults(n)
- return e
-}
-
-// NewClosestEdgeQueryOptions returns a set of edge query options suitable
-// for performing closest edge queries.
-func NewClosestEdgeQueryOptions() *EdgeQueryOptions {
- return &EdgeQueryOptions{
- common: newQueryOptions(minDistance(0)),
- }
-}
-
-// NewFurthestEdgeQueryOptions returns a set of edge query options suitable
-// for performing furthest edge queries.
-func NewFurthestEdgeQueryOptions() *EdgeQueryOptions {
- return &EdgeQueryOptions{
- common: newQueryOptions(maxDistance(0)),
- }
-}
-
-// EdgeQueryResult represents an edge that meets the target criteria for the
-// query. Note the following special cases:
-//
-// - ShapeID >= 0 && EdgeID < 0 represents the interior of a shape.
-// Such results may be returned when the option IncludeInteriors is true.
-//
-// - ShapeID < 0 && EdgeID < 0 is returned to indicate that no edge
-// satisfies the requested query options.
-type EdgeQueryResult struct {
- distance distance
- shapeID int32
- edgeID int32
-}
-
-// Distance reports the distance between the edge in this shape that satisfied
-// the query's parameters.
-func (e EdgeQueryResult) Distance() s1.ChordAngle { return e.distance.chordAngle() }
-
-// ShapeID reports the ID of the Shape this result is for.
-func (e EdgeQueryResult) ShapeID() int32 { return e.shapeID }
-
-// EdgeID reports the ID of the edge in the results Shape.
-func (e EdgeQueryResult) EdgeID() int32 { return e.edgeID }
-
-// newEdgeQueryResult returns a result instance with default values.
-func newEdgeQueryResult(target distanceTarget) EdgeQueryResult {
- return EdgeQueryResult{
- distance: target.distance().infinity(),
- shapeID: -1,
- edgeID: -1,
- }
-}
-
-// IsInterior reports if this result represents the interior of a Shape.
-func (e EdgeQueryResult) IsInterior() bool {
- return e.shapeID >= 0 && e.edgeID < 0
-}
-
-// IsEmpty reports if this has no edge that satisfies the given edge query options.
-// This result is only returned in one special case, namely when FindEdge() does
-// not find any suitable edges.
-func (e EdgeQueryResult) IsEmpty() bool {
- return e.shapeID < 0
-}
-
-// Less reports if this results is less that the other first by distance,
-// then by (shapeID, edgeID). This is used for sorting.
-func (e EdgeQueryResult) Less(other EdgeQueryResult) bool {
- if e.distance.less(other.distance) {
- return true
- }
- if other.distance.less(e.distance) {
- return false
- }
- if e.shapeID < other.shapeID {
- return true
- }
- if other.shapeID < e.shapeID {
- return false
- }
- return e.edgeID < other.edgeID
-}
-
-// EdgeQuery is used to find the edge(s) between two geometries that match a
-// given set of options. It is flexible enough so that it can be adapted to
-// compute maximum distances and even potentially Hausdorff distances.
-//
-// By using the appropriate options, this type can answer questions such as:
-//
-// - Find the minimum distance between two geometries A and B.
-// - Find all edges of geometry A that are within a distance D of geometry B.
-// - Find the k edges of geometry A that are closest to a given point P.
-//
-// You can also specify whether polygons should include their interiors (i.e.,
-// if a point is contained by a polygon, should the distance be zero or should
-// it be measured to the polygon boundary?)
-//
-// The input geometries may consist of any number of points, polylines, and
-// polygons (collectively referred to as "shapes"). Shapes do not need to be
-// disjoint; they may overlap or intersect arbitrarily. The implementation is
-// designed to be fast for both simple and complex geometries.
-type EdgeQuery struct {
- index *ShapeIndex
- opts *queryOptions
- target distanceTarget
-
- // True if opts.maxError must be subtracted from ShapeIndex cell distances
- // in order to ensure that such distances are measured conservatively. This
- // is true only if the target takes advantage of maxError in order to
- // return faster results, and 0 < maxError < distanceLimit.
- useConservativeCellDistance bool
-
- // The decision about whether to use the brute force algorithm is based on
- // counting the total number of edges in the index. However if the index
- // contains a large number of shapes, this in itself might take too long.
- // So instead we only count edges up to (maxBruteForceIndexSize() + 1)
- // for the current target type (stored as indexNumEdgesLimit).
- indexNumEdges int
- indexNumEdgesLimit int
-
- // The distance beyond which we can safely ignore further candidate edges.
- // (Candidates that are exactly at the limit are ignored; this is more
- // efficient for UpdateMinDistance and should not affect clients since
- // distance measurements have a small amount of error anyway.)
- //
- // Initially this is the same as the maximum distance specified by the user,
- // but it can also be updated by the algorithm (see maybeAddResult).
- distanceLimit distance
-
- // The current set of results of the query.
- results []EdgeQueryResult
-
- // This field is true when duplicates must be avoided explicitly. This
- // is achieved by maintaining a separate set keyed by (shapeID, edgeID)
- // only, and checking whether each edge is in that set before computing the
- // distance to it.
- avoidDuplicates bool
-
- // testedEdges tracks the set of shape and edges that have already been tested.
- testedEdges map[ShapeEdgeID]uint32
-}
-
-// NewClosestEdgeQuery returns an EdgeQuery that is used for finding the
-// closest edge(s) to a given Point, Edge, Cell, or geometry collection.
-//
-// You can find either the k closest edges, or all edges within a given
-// radius, or both (i.e., the k closest edges up to a given maximum radius).
-// E.g. to find all the edges within 5 kilometers, set the DistanceLimit in
-// the options.
-//
-// By default *all* edges are returned, so you should always specify either
-// MaxResults or DistanceLimit options or both.
-//
-// Note that by default, distances are measured to the boundary and interior
-// of polygons. For example, if a point is inside a polygon then its distance
-// is zero. To change this behavior, set the IncludeInteriors option to false.
-//
-// If you only need to test whether the distance is above or below a given
-// threshold (e.g., 10 km), you can use the IsDistanceLess() method. This is
-// much faster than actually calculating the distance with FindEdge,
-// since the implementation can stop as soon as it can prove that the minimum
-// distance is either above or below the threshold.
-func NewClosestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery {
- if opts == nil {
- opts = NewClosestEdgeQueryOptions()
- }
- return &EdgeQuery{
- testedEdges: make(map[ShapeEdgeID]uint32),
- index: index,
- opts: opts.common,
- }
-}
-
-// NewFurthestEdgeQuery returns an EdgeQuery that is used for finding the
-// furthest edge(s) to a given Point, Edge, Cell, or geometry collection.
-//
-// The furthest edge is defined as the one which maximizes the
-// distance from any point on that edge to any point on the target geometry.
-//
-// Similar to the example in NewClosestEdgeQuery, to find the 5 furthest edges
-// from a given Point:
-func NewFurthestEdgeQuery(index *ShapeIndex, opts *EdgeQueryOptions) *EdgeQuery {
- if opts == nil {
- opts = NewFurthestEdgeQueryOptions()
- }
- return &EdgeQuery{
- testedEdges: make(map[ShapeEdgeID]uint32),
- index: index,
- opts: opts.common,
- }
-}
-
-// FindEdges returns the edges for the given target that satisfy the current options.
-//
-// Note that if opts.IncludeInteriors is true, the results may include some
-// entries with edge_id == -1. This indicates that the target intersects
-// the indexed polygon with the given ShapeID.
-func (e *EdgeQuery) FindEdges(target distanceTarget) []EdgeQueryResult {
- return e.findEdges(target, e.opts)
-}
-
-// Distance reports the distance to the target. If the index or target is empty,
-// returns the EdgeQuery's maximal sentinel.
-//
-// Use IsDistanceLess()/IsDistanceGreater() if you only want to compare the
-// distance against a threshold value, since it is often much faster.
-func (e *EdgeQuery) Distance(target distanceTarget) s1.ChordAngle {
- return e.findEdge(target, e.opts).Distance()
-}
-
-// IsDistanceLess reports if the distance to target is less than the given limit.
-//
-// This method is usually much faster than Distance(), since it is much
-// less work to determine whether the minimum distance is above or below a
-// threshold than it is to calculate the actual minimum distance.
-//
-// If you wish to check if the distance is less than or equal to the limit, use:
-//
-// query.IsDistanceLess(target, limit.Successor())
-//
-func (e *EdgeQuery) IsDistanceLess(target distanceTarget, limit s1.ChordAngle) bool {
- opts := e.opts
- opts = opts.MaxResults(1).
- DistanceLimit(limit).
- MaxError(s1.StraightChordAngle)
- return !e.findEdge(target, opts).IsEmpty()
-}
-
-// IsDistanceGreater reports if the distance to target is greater than limit.
-//
-// This method is usually much faster than Distance, since it is much
-// less work to determine whether the maximum distance is above or below a
-// threshold than it is to calculate the actual maximum distance.
-// If you wish to check if the distance is less than or equal to the limit, use:
-//
-// query.IsDistanceGreater(target, limit.Predecessor())
-//
-func (e *EdgeQuery) IsDistanceGreater(target distanceTarget, limit s1.ChordAngle) bool {
- return e.IsDistanceLess(target, limit)
-}
-
-// IsConservativeDistanceLessOrEqual reports if the distance to target is less
-// or equal to the limit, where the limit has been expanded by the maximum error
-// for the distance calculation.
-//
-// For example, suppose that we want to test whether two geometries might
-// intersect each other after they are snapped together using Builder
-// (using the IdentitySnapFunction with a given "snap radius"). Since
-// Builder uses exact distance predicates (s2predicates), we need to
-// measure the distance between the two geometries conservatively. If the
-// distance is definitely greater than "snap radius", then the geometries
-// are guaranteed to not intersect after snapping.
-func (e *EdgeQuery) IsConservativeDistanceLessOrEqual(target distanceTarget, limit s1.ChordAngle) bool {
- return e.IsDistanceLess(target, limit.Expanded(minUpdateDistanceMaxError(limit)))
-}
-
-// IsConservativeDistanceGreaterOrEqual reports if the distance to the target is greater
-// than or equal to the given limit with some small tolerance.
-func (e *EdgeQuery) IsConservativeDistanceGreaterOrEqual(target distanceTarget, limit s1.ChordAngle) bool {
- return e.IsDistanceGreater(target, limit.Expanded(-minUpdateDistanceMaxError(limit)))
-}
-
-// findEdges returns the closest edges to the given target that satisfy the given options.
-//
-// Note that if opts.includeInteriors is true, the results may include some
-// entries with edgeID == -1. This indicates that the target intersects the
-// indexed polygon with the given shapeID.
-func (e *EdgeQuery) findEdges(target distanceTarget, opts *queryOptions) []EdgeQueryResult {
- e.findEdgesInternal(target, opts)
- // TODO(roberts): Revisit this if there is a heap or other sorted and
- // uniquing datastructure we can use instead of just a slice.
- e.results = sortAndUniqueResults(e.results)
- if len(e.results) > e.opts.maxResults {
- e.results = e.results[:e.opts.maxResults]
- }
- return e.results
-}
-
-func sortAndUniqueResults(results []EdgeQueryResult) []EdgeQueryResult {
- if len(results) <= 1 {
- return results
- }
- sort.Slice(results, func(i, j int) bool { return results[i].Less(results[j]) })
- j := 0
- for i := 1; i < len(results); i++ {
- if results[j] == results[i] {
- continue
- }
- j++
- results[j] = results[i]
- }
- return results[:j+1]
-}
-
-// findEdge is a convenience method that returns exactly one edge, and if no
-// edges satisfy the given search criteria, then a default Result is returned.
-//
-// This is primarily to ease the usage of a number of the methods in the DistanceTargets
-// and in EdgeQuery.
-func (e *EdgeQuery) findEdge(target distanceTarget, opts *queryOptions) EdgeQueryResult {
- opts.MaxResults(1)
- e.findEdges(target, opts)
- if len(e.results) > 0 {
- return e.results[0]
- }
-
- return newEdgeQueryResult(target)
-}
-
-// findEdgesInternal does the actual work for find edges that match the given options.
-func (e *EdgeQuery) findEdgesInternal(target distanceTarget, opts *queryOptions) {
- e.target = target
- e.opts = opts
-
- e.testedEdges = make(map[ShapeEdgeID]uint32)
- e.distanceLimit = target.distance().fromChordAngle(opts.distanceLimit)
- e.results = make([]EdgeQueryResult, 0)
-
- if e.distanceLimit == target.distance().zero() {
- return
- }
-
- if opts.includeInteriors {
- shapeIDs := map[int32]struct{}{}
- e.target.visitContainingShapes(e.index, func(containingShape Shape, targetPoint Point) bool {
- shapeIDs[e.index.idForShape(containingShape)] = struct{}{}
- return len(shapeIDs) < opts.maxResults
- })
- for shapeID := range shapeIDs {
- e.addResult(EdgeQueryResult{target.distance().zero(), shapeID, -1})
- }
-
- if e.distanceLimit == target.distance().zero() {
- return
- }
- }
-
- // If maxError > 0 and the target takes advantage of this, then we may
- // need to adjust the distance estimates to ShapeIndex cells to ensure
- // that they are always a lower bound on the true distance. For example,
- // suppose max_distance == 100, maxError == 30, and we compute the distance
- // to the target from some cell C0 as d(C0) == 80. Then because the target
- // takes advantage of maxError, the true distance could be as low as 50.
- // In order not to miss edges contained by such cells, we need to subtract
- // maxError from the distance estimates. This behavior is controlled by
- // the useConservativeCellDistance flag.
- //
- // However there is one important case where this adjustment is not
- // necessary, namely when distanceLimit < maxError, This is because
- // maxError only affects the algorithm once at least maxEdges edges
- // have been found that satisfy the given distance limit. At that point,
- // maxError is subtracted from distanceLimit in order to ensure that
- // any further matches are closer by at least that amount. But when
- // distanceLimit < maxError, this reduces the distance limit to 0,
- // i.e. all remaining candidate cells and edges can safely be discarded.
- // (This is how IsDistanceLess() and friends are implemented.)
- targetUsesMaxError := opts.maxError != target.distance().zero().chordAngle() &&
- e.target.setMaxError(opts.maxError)
-
- // Note that we can't compare maxError and distanceLimit directly
- // because one is a Delta and one is a Distance. Instead we subtract them.
- e.useConservativeCellDistance = targetUsesMaxError &&
- (e.distanceLimit == target.distance().infinity() ||
- target.distance().zero().less(e.distanceLimit.sub(target.distance().fromChordAngle(opts.maxError))))
-
- // Use the brute force algorithm if the index is small enough. To avoid
- // spending too much time counting edges when there are many shapes, we stop
- // counting once there are too many edges. We may need to recount the edges
- // if we later see a target with a larger brute force edge threshold.
- minOptimizedEdges := e.target.maxBruteForceIndexSize() + 1
- if minOptimizedEdges > e.indexNumEdgesLimit && e.indexNumEdges >= e.indexNumEdgesLimit {
- e.indexNumEdges = e.index.NumEdgesUpTo(minOptimizedEdges)
- e.indexNumEdgesLimit = minOptimizedEdges
- }
-
- if opts.useBruteForce || e.indexNumEdges < minOptimizedEdges {
- // The brute force algorithm already considers each edge exactly once.
- e.avoidDuplicates = false
- e.findEdgesBruteForce()
- } else {
- // If the target takes advantage of maxError then we need to avoid
- // duplicate edges explicitly. (Otherwise it happens automatically.)
- e.avoidDuplicates = targetUsesMaxError && opts.maxResults > 1
-
- // TODO(roberts): Uncomment when optimized is completed.
- e.findEdgesBruteForce()
- //e.findEdgesOptimized()
- }
-}
-
-func (e *EdgeQuery) addResult(r EdgeQueryResult) {
- e.results = append(e.results, r)
- if e.opts.maxResults == 1 {
- // Optimization for the common case where only the closest edge is wanted.
- e.distanceLimit = r.distance.sub(e.target.distance().fromChordAngle(e.opts.maxError))
- }
- // TODO(roberts): Add the other if/else cases when a different data structure
- // is used for the results.
-}
-
-func (e *EdgeQuery) maybeAddResult(shape Shape, edgeID int32) {
- if _, ok := e.testedEdges[ShapeEdgeID{e.index.idForShape(shape), edgeID}]; e.avoidDuplicates && !ok {
- return
- }
- edge := shape.Edge(int(edgeID))
- dist := e.distanceLimit
-
- if dist, ok := e.target.updateDistanceToEdge(edge, dist); ok {
- e.addResult(EdgeQueryResult{dist, e.index.idForShape(shape), edgeID})
- }
-}
-
-func (e *EdgeQuery) findEdgesBruteForce() {
- // Range over all shapes in the index. Does order matter here? if so
- // switch to for i = 0 .. n?
- for _, shape := range e.index.shapes {
- // TODO(roberts): can this happen if we are only ranging over current entries?
- if shape == nil {
- continue
- }
- for edgeID := int32(0); edgeID < int32(shape.NumEdges()); edgeID++ {
- e.maybeAddResult(shape, edgeID)
- }
- }
-}
-
-// TODO(roberts): Remaining pieces
-// Add clear/reset/re-init method to empty out the state of the query.
-// findEdgesOptimized and related methods.
-// GetEdge
-// Project
diff --git a/vendor/github.com/golang/geo/s2/edge_tessellator.go b/vendor/github.com/golang/geo/s2/edge_tessellator.go
deleted file mode 100644
index 5ad63bea2..000000000
--- a/vendor/github.com/golang/geo/s2/edge_tessellator.go
+++ /dev/null
@@ -1,167 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r2"
- "github.com/golang/geo/s1"
-)
-
-const (
- // MinTessellationTolerance is the minimum supported tolerance (which
- // corresponds to a distance less than 1 micrometer on the Earth's
- // surface, but is still much larger than the expected projection and
- // interpolation errors).
- MinTessellationTolerance s1.Angle = 1e-13
-)
-
-// EdgeTessellator converts an edge in a given projection (e.g., Mercator) into
-// a chain of spherical geodesic edges such that the maximum distance between
-// the original edge and the geodesic edge chain is at most the requested
-// tolerance. Similarly, it can convert a spherical geodesic edge into a chain
-// of edges in a given 2D projection such that the maximum distance between the
-// geodesic edge and the chain of projected edges is at most the requested tolerance.
-//
-// Method | Input | Output
-// ------------|------------------------|-----------------------
-// Projected | S2 geodesics | Planar projected edges
-// Unprojected | Planar projected edges | S2 geodesics
-type EdgeTessellator struct {
- projection Projection
- tolerance s1.ChordAngle
- wrapDistance r2.Point
-}
-
-// NewEdgeTessellator creates a new edge tessellator for the given projection and tolerance.
-func NewEdgeTessellator(p Projection, tolerance s1.Angle) *EdgeTessellator {
- return &EdgeTessellator{
- projection: p,
- tolerance: s1.ChordAngleFromAngle(maxAngle(tolerance, MinTessellationTolerance)),
- wrapDistance: p.WrapDistance(),
- }
-}
-
-// AppendProjected converts the spherical geodesic edge AB to a chain of planar edges
-// in the given projection and returns the corresponding vertices.
-//
-// If the given projection has one or more coordinate axes that wrap, then
-// every vertex's coordinates will be as close as possible to the previous
-// vertex's coordinates. Note that this may yield vertices whose
-// coordinates are outside the usual range. For example, tessellating the
-// edge (0:170, 0:-170) (in lat:lng notation) yields (0:170, 0:190).
-func (e *EdgeTessellator) AppendProjected(a, b Point, vertices []r2.Point) []r2.Point {
- pa := e.projection.Project(a)
- if len(vertices) == 0 {
- vertices = []r2.Point{pa}
- } else {
- pa = e.wrapDestination(vertices[len(vertices)-1], pa)
- }
-
- pb := e.wrapDestination(pa, e.projection.Project(b))
- return e.appendProjected(pa, a, pb, b, vertices)
-}
-
-// appendProjected splits a geodesic edge AB as necessary and returns the
-// projected vertices appended to the given vertices.
-//
-// The maximum recursion depth is (math.Pi / MinTessellationTolerance) < 45
-func (e *EdgeTessellator) appendProjected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []r2.Point) []r2.Point {
- // It's impossible to robustly test whether a projected edge is close enough
- // to a geodesic edge without knowing the details of the projection
- // function, but the following heuristic works well for a wide range of map
- // projections. The idea is simply to test whether the midpoint of the
- // projected edge is close enough to the midpoint of the geodesic edge.
- //
- // This measures the distance between the two edges by treating them as
- // parametric curves rather than geometric ones. The problem with
- // measuring, say, the minimum distance from the projected midpoint to the
- // geodesic edge is that this is a lower bound on the value we want, because
- // the maximum separation between the two curves is generally not attained
- // at the midpoint of the projected edge. The distance between the curve
- // midpoints is at least an upper bound on the distance from either midpoint
- // to opposite curve. It's not necessarily an upper bound on the maximum
- // distance between the two curves, but it is a powerful requirement because
- // it demands that the two curves stay parametrically close together. This
- // turns out to be much more robust with respect for projections with
- // singularities (e.g., the North and South poles in the rectangular and
- // Mercator projections) because the curve parameterization speed changes
- // rapidly near such singularities.
- mid := Point{a.Add(b.Vector).Normalize()}
- testMid := e.projection.Unproject(e.projection.Interpolate(0.5, pa, pb))
-
- if ChordAngleBetweenPoints(mid, testMid) < e.tolerance {
- return append(vertices, pb)
- }
-
- pmid := e.wrapDestination(pa, e.projection.Project(mid))
- vertices = e.appendProjected(pa, a, pmid, mid, vertices)
- return e.appendProjected(pmid, mid, pb, b, vertices)
-}
-
-// AppendUnprojected converts the planar edge AB in the given projection to a chain of
-// spherical geodesic edges and returns the vertices.
-//
-// Note that to construct a Loop, you must eliminate the duplicate first and last
-// vertex. Note also that if the given projection involves coordinate wrapping
-// (e.g. across the 180 degree meridian) then the first and last vertices may not
-// be exactly the same.
-func (e *EdgeTessellator) AppendUnprojected(pa, pb r2.Point, vertices []Point) []Point {
- pb2 := e.wrapDestination(pa, pb)
- a := e.projection.Unproject(pa)
- b := e.projection.Unproject(pb)
-
- if len(vertices) == 0 {
- vertices = []Point{a}
- }
-
- // Note that coordinate wrapping can create a small amount of error. For
- // example in the edge chain "0:-175, 0:179, 0:-177", the first edge is
- // transformed into "0:-175, 0:-181" while the second is transformed into
- // "0:179, 0:183". The two coordinate pairs for the middle vertex
- // ("0:-181" and "0:179") may not yield exactly the same S2Point.
- return e.appendUnprojected(pa, a, pb2, b, vertices)
-}
-
-// appendUnprojected interpolates a projected edge and appends the corresponding
-// points on the sphere.
-func (e *EdgeTessellator) appendUnprojected(pa r2.Point, a Point, pb r2.Point, b Point, vertices []Point) []Point {
- pmid := e.projection.Interpolate(0.5, pa, pb)
- mid := e.projection.Unproject(pmid)
- testMid := Point{a.Add(b.Vector).Normalize()}
-
- if ChordAngleBetweenPoints(mid, testMid) < e.tolerance {
- return append(vertices, b)
- }
-
- vertices = e.appendUnprojected(pa, a, pmid, mid, vertices)
- return e.appendUnprojected(pmid, mid, pb, b, vertices)
-}
-
-// wrapDestination returns the coordinates of the edge destination wrapped if
-// necessary to obtain the shortest edge.
-func (e *EdgeTessellator) wrapDestination(pa, pb r2.Point) r2.Point {
- x := pb.X
- y := pb.Y
- // The code below ensures that pb is unmodified unless wrapping is required.
- if e.wrapDistance.X > 0 && math.Abs(x-pa.X) > 0.5*e.wrapDistance.X {
- x = pa.X + math.Remainder(x-pa.X, e.wrapDistance.X)
- }
- if e.wrapDistance.Y > 0 && math.Abs(y-pa.Y) > 0.5*e.wrapDistance.Y {
- y = pa.Y + math.Remainder(y-pa.Y, e.wrapDistance.Y)
- }
- return r2.Point{x, y}
-}
diff --git a/vendor/github.com/golang/geo/s2/encode.go b/vendor/github.com/golang/geo/s2/encode.go
deleted file mode 100644
index 49ef364af..000000000
--- a/vendor/github.com/golang/geo/s2/encode.go
+++ /dev/null
@@ -1,237 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "encoding/binary"
- "io"
-)
-
-const (
- // encodingVersion is the current version of the encoding
- // format that is compatible with C++ and other S2 libraries.
- encodingVersion = int8(1)
-
- // encodingCompressedVersion is the current version of the
- // compressed format.
- encodingCompressedVersion = int8(4)
-)
-
-// encoder handles the specifics of encoding for S2 types.
-type encoder struct {
- w io.Writer // the real writer passed to Encode
- err error
-}
-
-func (e *encoder) writeUvarint(x uint64) {
- if e.err != nil {
- return
- }
- var buf [binary.MaxVarintLen64]byte
- n := binary.PutUvarint(buf[:], x)
- _, e.err = e.w.Write(buf[:n])
-}
-
-func (e *encoder) writeBool(x bool) {
- if e.err != nil {
- return
- }
- var val int8
- if x {
- val = 1
- }
- e.err = binary.Write(e.w, binary.LittleEndian, val)
-}
-
-func (e *encoder) writeInt8(x int8) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-func (e *encoder) writeInt16(x int16) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-func (e *encoder) writeInt32(x int32) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-func (e *encoder) writeInt64(x int64) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-func (e *encoder) writeUint8(x uint8) {
- if e.err != nil {
- return
- }
- _, e.err = e.w.Write([]byte{x})
-}
-
-func (e *encoder) writeUint32(x uint32) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-func (e *encoder) writeUint64(x uint64) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-func (e *encoder) writeFloat32(x float32) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-func (e *encoder) writeFloat64(x float64) {
- if e.err != nil {
- return
- }
- e.err = binary.Write(e.w, binary.LittleEndian, x)
-}
-
-type byteReader interface {
- io.Reader
- io.ByteReader
-}
-
-// byteReaderAdapter embellishes an io.Reader with a ReadByte method,
-// so that it implements the io.ByteReader interface.
-type byteReaderAdapter struct {
- io.Reader
-}
-
-func (b byteReaderAdapter) ReadByte() (byte, error) {
- buf := []byte{0}
- _, err := io.ReadFull(b, buf)
- return buf[0], err
-}
-
-func asByteReader(r io.Reader) byteReader {
- if br, ok := r.(byteReader); ok {
- return br
- }
- return byteReaderAdapter{r}
-}
-
-type decoder struct {
- r byteReader // the real reader passed to Decode
- err error
-}
-
-func (d *decoder) readBool() (x bool) {
- if d.err != nil {
- return
- }
- var val int8
- d.err = binary.Read(d.r, binary.LittleEndian, &val)
- return val == 1
-}
-
-func (d *decoder) readInt8() (x int8) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readInt16() (x int16) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readInt32() (x int32) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readInt64() (x int64) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readUint8() (x uint8) {
- if d.err != nil {
- return
- }
- x, d.err = d.r.ReadByte()
- return
-}
-
-func (d *decoder) readUint32() (x uint32) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readUint64() (x uint64) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readFloat32() (x float32) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readFloat64() (x float64) {
- if d.err != nil {
- return
- }
- d.err = binary.Read(d.r, binary.LittleEndian, &x)
- return
-}
-
-func (d *decoder) readUvarint() (x uint64) {
- if d.err != nil {
- return
- }
- x, d.err = binary.ReadUvarint(d.r)
- return
-}
diff --git a/vendor/github.com/golang/geo/s2/interleave.go b/vendor/github.com/golang/geo/s2/interleave.go
deleted file mode 100644
index 6ac6ef58d..000000000
--- a/vendor/github.com/golang/geo/s2/interleave.go
+++ /dev/null
@@ -1,143 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-/*
-The lookup table below can convert a sequence of interleaved 8 bits into
-non-interleaved 4 bits. The table can convert both odd and even bits at the
-same time, and lut[x & 0x55] converts the even bits (bits 0, 2, 4 and 6),
-while lut[x & 0xaa] converts the odd bits (bits 1, 3, 5 and 7).
-
-The lookup table below was generated using the following python code:
-
- def deinterleave(bits):
- if bits == 0: return 0
- if bits < 4: return 1
- return deinterleave(bits / 4) * 2 + deinterleave(bits & 3)
-
- for i in range(256): print "0x%x," % deinterleave(i),
-*/
-var deinterleaveLookup = [256]uint32{
- 0x0, 0x1, 0x1, 0x1, 0x2, 0x3, 0x3, 0x3,
- 0x2, 0x3, 0x3, 0x3, 0x2, 0x3, 0x3, 0x3,
- 0x4, 0x5, 0x5, 0x5, 0x6, 0x7, 0x7, 0x7,
- 0x6, 0x7, 0x7, 0x7, 0x6, 0x7, 0x7, 0x7,
- 0x4, 0x5, 0x5, 0x5, 0x6, 0x7, 0x7, 0x7,
- 0x6, 0x7, 0x7, 0x7, 0x6, 0x7, 0x7, 0x7,
- 0x4, 0x5, 0x5, 0x5, 0x6, 0x7, 0x7, 0x7,
- 0x6, 0x7, 0x7, 0x7, 0x6, 0x7, 0x7, 0x7,
-
- 0x8, 0x9, 0x9, 0x9, 0xa, 0xb, 0xb, 0xb,
- 0xa, 0xb, 0xb, 0xb, 0xa, 0xb, 0xb, 0xb,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
-
- 0x8, 0x9, 0x9, 0x9, 0xa, 0xb, 0xb, 0xb,
- 0xa, 0xb, 0xb, 0xb, 0xa, 0xb, 0xb, 0xb,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
-
- 0x8, 0x9, 0x9, 0x9, 0xa, 0xb, 0xb, 0xb,
- 0xa, 0xb, 0xb, 0xb, 0xa, 0xb, 0xb, 0xb,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
- 0xc, 0xd, 0xd, 0xd, 0xe, 0xf, 0xf, 0xf,
- 0xe, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
-}
-
-// deinterleaveUint32 decodes the interleaved values.
-func deinterleaveUint32(code uint64) (uint32, uint32) {
- x := (deinterleaveLookup[code&0x55]) |
- (deinterleaveLookup[(code>>8)&0x55] << 4) |
- (deinterleaveLookup[(code>>16)&0x55] << 8) |
- (deinterleaveLookup[(code>>24)&0x55] << 12) |
- (deinterleaveLookup[(code>>32)&0x55] << 16) |
- (deinterleaveLookup[(code>>40)&0x55] << 20) |
- (deinterleaveLookup[(code>>48)&0x55] << 24) |
- (deinterleaveLookup[(code>>56)&0x55] << 28)
- y := (deinterleaveLookup[code&0xaa]) |
- (deinterleaveLookup[(code>>8)&0xaa] << 4) |
- (deinterleaveLookup[(code>>16)&0xaa] << 8) |
- (deinterleaveLookup[(code>>24)&0xaa] << 12) |
- (deinterleaveLookup[(code>>32)&0xaa] << 16) |
- (deinterleaveLookup[(code>>40)&0xaa] << 20) |
- (deinterleaveLookup[(code>>48)&0xaa] << 24) |
- (deinterleaveLookup[(code>>56)&0xaa] << 28)
- return x, y
-}
-
-var interleaveLookup = [256]uint64{
- 0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
- 0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
- 0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
- 0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
- 0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
- 0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
- 0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
- 0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
-
- 0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
- 0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
- 0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
- 0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
- 0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
- 0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
- 0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
- 0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
-
- 0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
- 0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
- 0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
- 0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
- 0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
- 0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
- 0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
- 0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
-
- 0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
- 0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
- 0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
- 0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
- 0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
- 0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
- 0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
- 0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555,
-}
-
-// interleaveUint32 interleaves the given arguments into the return value.
-//
-// The 0-bit in val0 will be the 0-bit in the return value.
-// The 0-bit in val1 will be the 1-bit in the return value.
-// The 1-bit of val0 will be the 2-bit in the return value, and so on.
-func interleaveUint32(x, y uint32) uint64 {
- return (interleaveLookup[x&0xff]) |
- (interleaveLookup[(x>>8)&0xff] << 16) |
- (interleaveLookup[(x>>16)&0xff] << 32) |
- (interleaveLookup[x>>24] << 48) |
- (interleaveLookup[y&0xff] << 1) |
- (interleaveLookup[(y>>8)&0xff] << 17) |
- (interleaveLookup[(y>>16)&0xff] << 33) |
- (interleaveLookup[y>>24] << 49)
-}
diff --git a/vendor/github.com/golang/geo/s2/latlng.go b/vendor/github.com/golang/geo/s2/latlng.go
deleted file mode 100644
index a750304ab..000000000
--- a/vendor/github.com/golang/geo/s2/latlng.go
+++ /dev/null
@@ -1,101 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "math"
-
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-const (
- northPoleLat = s1.Angle(math.Pi/2) * s1.Radian
- southPoleLat = -northPoleLat
-)
-
-// LatLng represents a point on the unit sphere as a pair of angles.
-type LatLng struct {
- Lat, Lng s1.Angle
-}
-
-// LatLngFromDegrees returns a LatLng for the coordinates given in degrees.
-func LatLngFromDegrees(lat, lng float64) LatLng {
- return LatLng{s1.Angle(lat) * s1.Degree, s1.Angle(lng) * s1.Degree}
-}
-
-// IsValid returns true iff the LatLng is normalized, with Lat ∈ [-π/2,π/2] and Lng ∈ [-π,π].
-func (ll LatLng) IsValid() bool {
- return math.Abs(ll.Lat.Radians()) <= math.Pi/2 && math.Abs(ll.Lng.Radians()) <= math.Pi
-}
-
-// Normalized returns the normalized version of the LatLng,
-// with Lat clamped to [-π/2,π/2] and Lng wrapped in [-π,π].
-func (ll LatLng) Normalized() LatLng {
- lat := ll.Lat
- if lat > northPoleLat {
- lat = northPoleLat
- } else if lat < southPoleLat {
- lat = southPoleLat
- }
- lng := s1.Angle(math.Remainder(ll.Lng.Radians(), 2*math.Pi)) * s1.Radian
- return LatLng{lat, lng}
-}
-
-func (ll LatLng) String() string { return fmt.Sprintf("[%v, %v]", ll.Lat, ll.Lng) }
-
-// Distance returns the angle between two LatLngs.
-func (ll LatLng) Distance(ll2 LatLng) s1.Angle {
- // Haversine formula, as used in C++ S2LatLng::GetDistance.
- lat1, lat2 := ll.Lat.Radians(), ll2.Lat.Radians()
- lng1, lng2 := ll.Lng.Radians(), ll2.Lng.Radians()
- dlat := math.Sin(0.5 * (lat2 - lat1))
- dlng := math.Sin(0.5 * (lng2 - lng1))
- x := dlat*dlat + dlng*dlng*math.Cos(lat1)*math.Cos(lat2)
- return s1.Angle(2*math.Atan2(math.Sqrt(x), math.Sqrt(math.Max(0, 1-x)))) * s1.Radian
-}
-
-// NOTE(mikeperrow): The C++ implementation publicly exposes latitude/longitude
-// functions. Let's see if that's really necessary before exposing the same functionality.
-
-func latitude(p Point) s1.Angle {
- return s1.Angle(math.Atan2(p.Z, math.Sqrt(p.X*p.X+p.Y*p.Y))) * s1.Radian
-}
-
-func longitude(p Point) s1.Angle {
- return s1.Angle(math.Atan2(p.Y, p.X)) * s1.Radian
-}
-
-// PointFromLatLng returns an Point for the given LatLng.
-// The maximum error in the result is 1.5 * dblEpsilon. (This does not
-// include the error of converting degrees, E5, E6, or E7 into radians.)
-func PointFromLatLng(ll LatLng) Point {
- phi := ll.Lat.Radians()
- theta := ll.Lng.Radians()
- cosphi := math.Cos(phi)
- return Point{r3.Vector{math.Cos(theta) * cosphi, math.Sin(theta) * cosphi, math.Sin(phi)}}
-}
-
-// LatLngFromPoint returns an LatLng for a given Point.
-func LatLngFromPoint(p Point) LatLng {
- return LatLng{latitude(p), longitude(p)}
-}
-
-// ApproxEqual reports whether the latitude and longitude of the two LatLngs
-// are the same up to a small tolerance.
-func (ll LatLng) ApproxEqual(other LatLng) bool {
- return ll.Lat.ApproxEqual(other.Lat) && ll.Lng.ApproxEqual(other.Lng)
-}
diff --git a/vendor/github.com/golang/geo/s2/lexicon.go b/vendor/github.com/golang/geo/s2/lexicon.go
deleted file mode 100644
index 41cbffdc2..000000000
--- a/vendor/github.com/golang/geo/s2/lexicon.go
+++ /dev/null
@@ -1,175 +0,0 @@
-// Copyright 2020 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "encoding/binary"
- "hash/adler32"
- "math"
- "sort"
-)
-
-// TODO(roberts): If any of these are worth making public, change the
-// method signatures and type names.
-
-// emptySetID represents the last ID that will ever be generated.
-// (Non-negative IDs are reserved for singleton sets.)
-var emptySetID = int32(math.MinInt32)
-
-// idSetLexicon compactly represents a set of non-negative
-// integers such as array indices ("ID sets"). It is especially suitable when
-// either (1) there are many duplicate sets, or (2) there are many singleton
-// or empty sets. See also sequenceLexicon.
-//
-// Each distinct ID set is mapped to a 32-bit integer. Empty and singleton
-// sets take up no additional space; the set itself is represented
-// by the unique ID assigned to the set. Duplicate sets are automatically
-// eliminated. Note also that ID sets are referred to using 32-bit integers
-// rather than pointers.
-type idSetLexicon struct {
- idSets *sequenceLexicon
-}
-
-func newIDSetLexicon() *idSetLexicon {
- return &idSetLexicon{
- idSets: newSequenceLexicon(),
- }
-}
-
-// add adds the given set of integers to the lexicon if it is not already
-// present, and return the unique ID for this set. The values are automatically
-// sorted and duplicates are removed.
-//
-// The primary difference between this and sequenceLexicon are:
-// 1. Empty and singleton sets are represented implicitly; they use no space.
-// 2. Sets are represented rather than sequences; the ordering of values is
-// not important and duplicates are removed.
-// 3. The values must be 32-bit non-negative integers only.
-func (l *idSetLexicon) add(ids ...int32) int32 {
- // Empty sets have a special ID chosen not to conflict with other IDs.
- if len(ids) == 0 {
- return emptySetID
- }
-
- // Singleton sets are represented by their element.
- if len(ids) == 1 {
- return ids[0]
- }
-
- // Canonicalize the set by sorting and removing duplicates.
- //
- // Creates a new slice in order to not alter the supplied values.
- set := uniqueInt32s(ids)
-
- // Non-singleton sets are represented by the bitwise complement of the ID
- // returned by the sequenceLexicon
- return ^l.idSets.add(set)
-}
-
-// idSet returns the set of integers corresponding to an ID returned by add.
-func (l *idSetLexicon) idSet(setID int32) []int32 {
- if setID >= 0 {
- return []int32{setID}
- }
- if setID == emptySetID {
- return []int32{}
- }
-
- return l.idSets.sequence(^setID)
-}
-
-func (l *idSetLexicon) clear() {
- l.idSets.clear()
-}
-
-// sequenceLexicon compactly represents a sequence of values (e.g., tuples).
-// It automatically eliminates duplicates slices, and maps the remaining
-// sequences to sequentially increasing integer IDs. See also idSetLexicon.
-//
-// Each distinct sequence is mapped to a 32-bit integer.
-type sequenceLexicon struct {
- values []int32
- begins []uint32
-
- // idSet is a mapping of a sequence hash to sequence index in the lexicon.
- idSet map[uint32]int32
-}
-
-func newSequenceLexicon() *sequenceLexicon {
- return &sequenceLexicon{
- begins: []uint32{0},
- idSet: make(map[uint32]int32),
- }
-}
-
-// clears all data from the lexicon.
-func (l *sequenceLexicon) clear() {
- l.values = nil
- l.begins = []uint32{0}
- l.idSet = make(map[uint32]int32)
-}
-
-// add adds the given value to the lexicon if it is not already present, and
-// returns its ID. IDs are assigned sequentially starting from zero.
-func (l *sequenceLexicon) add(ids []int32) int32 {
- if id, ok := l.idSet[hashSet(ids)]; ok {
- return id
- }
- for _, v := range ids {
- l.values = append(l.values, v)
- }
- l.begins = append(l.begins, uint32(len(l.values)))
-
- id := int32(len(l.begins)) - 2
- l.idSet[hashSet(ids)] = id
-
- return id
-}
-
-// sequence returns the original sequence of values for the given ID.
-func (l *sequenceLexicon) sequence(id int32) []int32 {
- return l.values[l.begins[id]:l.begins[id+1]]
-}
-
-// size reports the number of value sequences in the lexicon.
-func (l *sequenceLexicon) size() int {
- // Subtract one because the list of begins starts out with the first element set to 0.
- return len(l.begins) - 1
-}
-
-// hash returns a hash of this sequence of int32s.
-func hashSet(s []int32) uint32 {
- // TODO(roberts): We just need a way to nicely hash all the values down to
- // a 32-bit value. To ensure no unnecessary dependencies we use the core
- // library types available to do this. Is there a better option?
- a := adler32.New()
- binary.Write(a, binary.LittleEndian, s)
- return a.Sum32()
-}
-
-// uniqueInt32s returns the sorted and uniqued set of int32s from the input.
-func uniqueInt32s(in []int32) []int32 {
- var vals []int32
- m := make(map[int32]bool)
- for _, i := range in {
- if m[i] {
- continue
- }
- m[i] = true
- vals = append(vals, i)
- }
- sort.Slice(vals, func(i, j int) bool { return vals[i] < vals[j] })
- return vals
-}
diff --git a/vendor/github.com/golang/geo/s2/loop.go b/vendor/github.com/golang/geo/s2/loop.go
deleted file mode 100644
index 882d8583c..000000000
--- a/vendor/github.com/golang/geo/s2/loop.go
+++ /dev/null
@@ -1,1816 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// Loop represents a simple spherical polygon. It consists of a sequence
-// of vertices where the first vertex is implicitly connected to the
-// last. All loops are defined to have a CCW orientation, i.e. the interior of
-// the loop is on the left side of the edges. This implies that a clockwise
-// loop enclosing a small area is interpreted to be a CCW loop enclosing a
-// very large area.
-//
-// Loops are not allowed to have any duplicate vertices (whether adjacent or
-// not). Non-adjacent edges are not allowed to intersect, and furthermore edges
-// of length 180 degrees are not allowed (i.e., adjacent vertices cannot be
-// antipodal). Loops must have at least 3 vertices (except for the "empty" and
-// "full" loops discussed below).
-//
-// There are two special loops: the "empty" loop contains no points and the
-// "full" loop contains all points. These loops do not have any edges, but to
-// preserve the invariant that every loop can be represented as a vertex
-// chain, they are defined as having exactly one vertex each (see EmptyLoop
-// and FullLoop).
-type Loop struct {
- vertices []Point
-
- // originInside keeps a precomputed value whether this loop contains the origin
- // versus computing from the set of vertices every time.
- originInside bool
-
- // depth is the nesting depth of this Loop if it is contained by a Polygon
- // or other shape and is used to determine if this loop represents a hole
- // or a filled in portion.
- depth int
-
- // bound is a conservative bound on all points contained by this loop.
- // If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
- bound Rect
-
- // Since bound is not exact, it is possible that a loop A contains
- // another loop B whose bounds are slightly larger. subregionBound
- // has been expanded sufficiently to account for this error, i.e.
- // if A.Contains(B), then A.subregionBound.Contains(B.bound).
- subregionBound Rect
-
- // index is the spatial index for this Loop.
- index *ShapeIndex
-}
-
-// LoopFromPoints constructs a loop from the given points.
-func LoopFromPoints(pts []Point) *Loop {
- l := &Loop{
- vertices: pts,
- }
-
- l.initOriginAndBound()
- return l
-}
-
-// LoopFromCell constructs a loop corresponding to the given cell.
-//
-// Note that the loop and cell *do not* contain exactly the same set of
-// points, because Loop and Cell have slightly different definitions of
-// point containment. For example, a Cell vertex is contained by all
-// four neighboring Cells, but it is contained by exactly one of four
-// Loops constructed from those cells. As another example, the cell
-// coverings of cell and LoopFromCell(cell) will be different, because the
-// loop contains points on its boundary that actually belong to other cells
-// (i.e., the covering will include a layer of neighboring cells).
-func LoopFromCell(c Cell) *Loop {
- l := &Loop{
- vertices: []Point{
- c.Vertex(0),
- c.Vertex(1),
- c.Vertex(2),
- c.Vertex(3),
- },
- }
-
- l.initOriginAndBound()
- return l
-}
-
-// These two points are used for the special Empty and Full loops.
-var (
- emptyLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: 1}}
- fullLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: -1}}
-)
-
-// EmptyLoop returns a special "empty" loop.
-func EmptyLoop() *Loop {
- return LoopFromPoints([]Point{emptyLoopPoint})
-}
-
-// FullLoop returns a special "full" loop.
-func FullLoop() *Loop {
- return LoopFromPoints([]Point{fullLoopPoint})
-}
-
-// initOriginAndBound sets the origin containment for the given point and then calls
-// the initialization for the bounds objects and the internal index.
-func (l *Loop) initOriginAndBound() {
- if len(l.vertices) < 3 {
- // Check for the special "empty" and "full" loops (which have one vertex).
- if !l.isEmptyOrFull() {
- l.originInside = false
- return
- }
-
- // This is the special empty or full loop, so the origin depends on if
- // the vertex is in the southern hemisphere or not.
- l.originInside = l.vertices[0].Z < 0
- } else {
- // Point containment testing is done by counting edge crossings starting
- // at a fixed point on the sphere (OriginPoint). We need to know whether
- // the reference point (OriginPoint) is inside or outside the loop before
- // we can construct the ShapeIndex. We do this by first guessing that
- // it is outside, and then seeing whether we get the correct containment
- // result for vertex 1. If the result is incorrect, the origin must be
- // inside the loop.
- //
- // A loop with consecutive vertices A,B,C contains vertex B if and only if
- // the fixed vector R = B.Ortho is contained by the wedge ABC. The
- // wedge is closed at A and open at C, i.e. the point B is inside the loop
- // if A = R but not if C = R. This convention is required for compatibility
- // with VertexCrossing. (Note that we can't use OriginPoint
- // as the fixed vector because of the possibility that B == OriginPoint.)
- l.originInside = false
- v1Inside := OrderedCCW(Point{l.vertices[1].Ortho()}, l.vertices[0], l.vertices[2], l.vertices[1])
- if v1Inside != l.ContainsPoint(l.vertices[1]) {
- l.originInside = true
- }
- }
-
- // We *must* call initBound before initializing the index, because
- // initBound calls ContainsPoint which does a bounds check before using
- // the index.
- l.initBound()
-
- // Create a new index and add us to it.
- l.index = NewShapeIndex()
- l.index.Add(l)
-}
-
-// initBound sets up the approximate bounding Rects for this loop.
-func (l *Loop) initBound() {
- // Check for the special "empty" and "full" loops.
- if l.isEmptyOrFull() {
- if l.IsEmpty() {
- l.bound = EmptyRect()
- } else {
- l.bound = FullRect()
- }
- l.subregionBound = l.bound
- return
- }
-
- // The bounding rectangle of a loop is not necessarily the same as the
- // bounding rectangle of its vertices. First, the maximal latitude may be
- // attained along the interior of an edge. Second, the loop may wrap
- // entirely around the sphere (e.g. a loop that defines two revolutions of a
- // candy-cane stripe). Third, the loop may include one or both poles.
- // Note that a small clockwise loop near the equator contains both poles.
- bounder := NewRectBounder()
- for i := 0; i <= len(l.vertices); i++ { // add vertex 0 twice
- bounder.AddPoint(l.Vertex(i))
- }
- b := bounder.RectBound()
-
- if l.ContainsPoint(Point{r3.Vector{0, 0, 1}}) {
- b = Rect{r1.Interval{b.Lat.Lo, math.Pi / 2}, s1.FullInterval()}
- }
- // If a loop contains the south pole, then either it wraps entirely
- // around the sphere (full longitude range), or it also contains the
- // north pole in which case b.Lng.IsFull() due to the test above.
- // Either way, we only need to do the south pole containment test if
- // b.Lng.IsFull().
- if b.Lng.IsFull() && l.ContainsPoint(Point{r3.Vector{0, 0, -1}}) {
- b.Lat.Lo = -math.Pi / 2
- }
- l.bound = b
- l.subregionBound = ExpandForSubregions(l.bound)
-}
-
-// Validate checks whether this is a valid loop.
-func (l *Loop) Validate() error {
- if err := l.findValidationErrorNoIndex(); err != nil {
- return err
- }
-
- // Check for intersections between non-adjacent edges (including at vertices)
- // TODO(roberts): Once shapeutil gets findAnyCrossing uncomment this.
- // return findAnyCrossing(l.index)
-
- return nil
-}
-
-// findValidationErrorNoIndex reports whether this is not a valid loop, but
-// skips checks that would require a ShapeIndex to be built for the loop. This
-// is primarily used by Polygon to do validation so it doesn't trigger the
-// creation of unneeded ShapeIndices.
-func (l *Loop) findValidationErrorNoIndex() error {
- // All vertices must be unit length.
- for i, v := range l.vertices {
- if !v.IsUnit() {
- return fmt.Errorf("vertex %d is not unit length", i)
- }
- }
-
- // Loops must have at least 3 vertices (except for empty and full).
- if len(l.vertices) < 3 {
- if l.isEmptyOrFull() {
- return nil // Skip remaining tests.
- }
- return fmt.Errorf("non-empty, non-full loops must have at least 3 vertices")
- }
-
- // Loops are not allowed to have any duplicate vertices or edge crossings.
- // We split this check into two parts. First we check that no edge is
- // degenerate (identical endpoints). Then we check that there are no
- // intersections between non-adjacent edges (including at vertices). The
- // second check needs the ShapeIndex, so it does not fall within the scope
- // of this method.
- for i, v := range l.vertices {
- if v == l.Vertex(i+1) {
- return fmt.Errorf("edge %d is degenerate (duplicate vertex)", i)
- }
-
- // Antipodal vertices are not allowed.
- if other := (Point{l.Vertex(i + 1).Mul(-1)}); v == other {
- return fmt.Errorf("vertices %d and %d are antipodal", i,
- (i+1)%len(l.vertices))
- }
- }
-
- return nil
-}
-
-// Contains reports whether the region contained by this loop is a superset of the
-// region contained by the given other loop.
-func (l *Loop) Contains(o *Loop) bool {
- // For a loop A to contain the loop B, all of the following must
- // be true:
- //
- // (1) There are no edge crossings between A and B except at vertices.
- //
- // (2) At every vertex that is shared between A and B, the local edge
- // ordering implies that A contains B.
- //
- // (3) If there are no shared vertices, then A must contain a vertex of B
- // and B must not contain a vertex of A. (An arbitrary vertex may be
- // chosen in each case.)
- //
- // The second part of (3) is necessary to detect the case of two loops whose
- // union is the entire sphere, i.e. two loops that contains each other's
- // boundaries but not each other's interiors.
- if !l.subregionBound.Contains(o.bound) {
- return false
- }
-
- // Special cases to handle either loop being empty or full.
- if l.isEmptyOrFull() || o.isEmptyOrFull() {
- return l.IsFull() || o.IsEmpty()
- }
-
- // Check whether there are any edge crossings, and also check the loop
- // relationship at any shared vertices.
- relation := &containsRelation{}
- if hasCrossingRelation(l, o, relation) {
- return false
- }
-
- // There are no crossings, and if there are any shared vertices then A
- // contains B locally at each shared vertex.
- if relation.foundSharedVertex {
- return true
- }
-
- // Since there are no edge intersections or shared vertices, we just need to
- // test condition (3) above. We can skip this test if we discovered that A
- // contains at least one point of B while checking for edge crossings.
- if !l.ContainsPoint(o.Vertex(0)) {
- return false
- }
-
- // We still need to check whether (A union B) is the entire sphere.
- // Normally this check is very cheap due to the bounding box precondition.
- if (o.subregionBound.Contains(l.bound) || o.bound.Union(l.bound).IsFull()) &&
- o.ContainsPoint(l.Vertex(0)) {
- return false
- }
- return true
-}
-
-// Intersects reports whether the region contained by this loop intersects the region
-// contained by the other loop.
-func (l *Loop) Intersects(o *Loop) bool {
- // Given two loops, A and B, A.Intersects(B) if and only if !A.Complement().Contains(B).
- //
- // This code is similar to Contains, but is optimized for the case
- // where both loops enclose less than half of the sphere.
- if !l.bound.Intersects(o.bound) {
- return false
- }
-
- // Check whether there are any edge crossings, and also check the loop
- // relationship at any shared vertices.
- relation := &intersectsRelation{}
- if hasCrossingRelation(l, o, relation) {
- return true
- }
- if relation.foundSharedVertex {
- return false
- }
-
- // Since there are no edge intersections or shared vertices, the loops
- // intersect only if A contains B, B contains A, or the two loops contain
- // each other's boundaries. These checks are usually cheap because of the
- // bounding box preconditions. Note that neither loop is empty (because of
- // the bounding box check above), so it is safe to access vertex(0).
-
- // Check whether A contains B, or A and B contain each other's boundaries.
- // (Note that A contains all the vertices of B in either case.)
- if l.subregionBound.Contains(o.bound) || l.bound.Union(o.bound).IsFull() {
- if l.ContainsPoint(o.Vertex(0)) {
- return true
- }
- }
- // Check whether B contains A.
- if o.subregionBound.Contains(l.bound) {
- if o.ContainsPoint(l.Vertex(0)) {
- return true
- }
- }
- return false
-}
-
-// Equal reports whether two loops have the same vertices in the same linear order
-// (i.e., cyclic rotations are not allowed).
-func (l *Loop) Equal(other *Loop) bool {
- if len(l.vertices) != len(other.vertices) {
- return false
- }
-
- for i, v := range l.vertices {
- if v != other.Vertex(i) {
- return false
- }
- }
- return true
-}
-
-// BoundaryEqual reports whether the two loops have the same boundary. This is
-// true if and only if the loops have the same vertices in the same cyclic order
-// (i.e., the vertices may be cyclically rotated). The empty and full loops are
-// considered to have different boundaries.
-func (l *Loop) BoundaryEqual(o *Loop) bool {
- if len(l.vertices) != len(o.vertices) {
- return false
- }
-
- // Special case to handle empty or full loops. Since they have the same
- // number of vertices, if one loop is empty/full then so is the other.
- if l.isEmptyOrFull() {
- return l.IsEmpty() == o.IsEmpty()
- }
-
- // Loop through the vertices to find the first of ours that matches the
- // starting vertex of the other loop. Use that offset to then 'align' the
- // vertices for comparison.
- for offset, vertex := range l.vertices {
- if vertex == o.Vertex(0) {
- // There is at most one starting offset since loop vertices are unique.
- for i := 0; i < len(l.vertices); i++ {
- if l.Vertex(i+offset) != o.Vertex(i) {
- return false
- }
- }
- return true
- }
- }
- return false
-}
-
-// compareBoundary returns +1 if this loop contains the boundary of the other loop,
-// -1 if it excludes the boundary of the other, and 0 if the boundaries of the two
-// loops cross. Shared edges are handled as follows:
-//
-// If XY is a shared edge, define Reversed(XY) to be true if XY
-// appears in opposite directions in both loops.
-// Then this loop contains XY if and only if Reversed(XY) == the other loop is a hole.
-// (Intuitively, this checks whether this loop contains a vanishingly small region
-// extending from the boundary of the other toward the interior of the polygon to
-// which the other belongs.)
-//
-// This function is used for testing containment and intersection of
-// multi-loop polygons. Note that this method is not symmetric, since the
-// result depends on the direction of this loop but not on the direction of
-// the other loop (in the absence of shared edges).
-//
-// This requires that neither loop is empty, and if other loop IsFull, then it must not
-// be a hole.
-func (l *Loop) compareBoundary(o *Loop) int {
- // The bounds must intersect for containment or crossing.
- if !l.bound.Intersects(o.bound) {
- return -1
- }
-
- // Full loops are handled as though the loop surrounded the entire sphere.
- if l.IsFull() {
- return 1
- }
- if o.IsFull() {
- return -1
- }
-
- // Check whether there are any edge crossings, and also check the loop
- // relationship at any shared vertices.
- relation := newCompareBoundaryRelation(o.IsHole())
- if hasCrossingRelation(l, o, relation) {
- return 0
- }
- if relation.foundSharedVertex {
- if relation.containsEdge {
- return 1
- }
- return -1
- }
-
- // There are no edge intersections or shared vertices, so we can check
- // whether A contains an arbitrary vertex of B.
- if l.ContainsPoint(o.Vertex(0)) {
- return 1
- }
- return -1
-}
-
-// ContainsOrigin reports true if this loop contains s2.OriginPoint().
-func (l *Loop) ContainsOrigin() bool {
- return l.originInside
-}
-
-// ReferencePoint returns the reference point for this loop.
-func (l *Loop) ReferencePoint() ReferencePoint {
- return OriginReferencePoint(l.originInside)
-}
-
-// NumEdges returns the number of edges in this shape.
-func (l *Loop) NumEdges() int {
- if l.isEmptyOrFull() {
- return 0
- }
- return len(l.vertices)
-}
-
-// Edge returns the endpoints for the given edge index.
-func (l *Loop) Edge(i int) Edge {
- return Edge{l.Vertex(i), l.Vertex(i + 1)}
-}
-
-// NumChains reports the number of contiguous edge chains in the Loop.
-func (l *Loop) NumChains() int {
- if l.IsEmpty() {
- return 0
- }
- return 1
-}
-
-// Chain returns the i-th edge chain in the Shape.
-func (l *Loop) Chain(chainID int) Chain {
- return Chain{0, l.NumEdges()}
-}
-
-// ChainEdge returns the j-th edge of the i-th edge chain.
-func (l *Loop) ChainEdge(chainID, offset int) Edge {
- return Edge{l.Vertex(offset), l.Vertex(offset + 1)}
-}
-
-// ChainPosition returns a ChainPosition pair (i, j) such that edgeID is the
-// j-th edge of the Loop.
-func (l *Loop) ChainPosition(edgeID int) ChainPosition {
- return ChainPosition{0, edgeID}
-}
-
-// Dimension returns the dimension of the geometry represented by this Loop.
-func (l *Loop) Dimension() int { return 2 }
-
-func (l *Loop) typeTag() typeTag { return typeTagNone }
-
-func (l *Loop) privateInterface() {}
-
-// IsEmpty reports true if this is the special empty loop that contains no points.
-func (l *Loop) IsEmpty() bool {
- return l.isEmptyOrFull() && !l.ContainsOrigin()
-}
-
-// IsFull reports true if this is the special full loop that contains all points.
-func (l *Loop) IsFull() bool {
- return l.isEmptyOrFull() && l.ContainsOrigin()
-}
-
-// isEmptyOrFull reports true if this loop is either the "empty" or "full" special loops.
-func (l *Loop) isEmptyOrFull() bool {
- return len(l.vertices) == 1
-}
-
-// Vertices returns the vertices in the loop.
-func (l *Loop) Vertices() []Point {
- return l.vertices
-}
-
-// RectBound returns a tight bounding rectangle. If the loop contains the point,
-// the bound also contains it.
-func (l *Loop) RectBound() Rect {
- return l.bound
-}
-
-// CapBound returns a bounding cap that may have more padding than the corresponding
-// RectBound. The bound is conservative such that if the loop contains a point P,
-// the bound also contains it.
-func (l *Loop) CapBound() Cap {
- return l.bound.CapBound()
-}
-
-// Vertex returns the vertex for the given index. For convenience, the vertex indices
-// wrap automatically for methods that do index math such as Edge.
-// i.e., Vertex(NumEdges() + n) is the same as Vertex(n).
-func (l *Loop) Vertex(i int) Point {
- return l.vertices[i%len(l.vertices)]
-}
-
-// OrientedVertex returns the vertex in reverse order if the loop represents a polygon
-// hole. For example, arguments 0, 1, 2 are mapped to vertices n-1, n-2, n-3, where
-// n == len(vertices). This ensures that the interior of the polygon is always to
-// the left of the vertex chain.
-//
-// This requires: 0 <= i < 2 * len(vertices)
-func (l *Loop) OrientedVertex(i int) Point {
- j := i - len(l.vertices)
- if j < 0 {
- j = i
- }
- if l.IsHole() {
- j = len(l.vertices) - 1 - j
- }
- return l.Vertex(j)
-}
-
-// NumVertices returns the number of vertices in this loop.
-func (l *Loop) NumVertices() int {
- return len(l.vertices)
-}
-
-// bruteForceContainsPoint reports if the given point is contained by this loop.
-// This method does not use the ShapeIndex, so it is only preferable below a certain
-// size of loop.
-func (l *Loop) bruteForceContainsPoint(p Point) bool {
- origin := OriginPoint()
- inside := l.originInside
- crosser := NewChainEdgeCrosser(origin, p, l.Vertex(0))
- for i := 1; i <= len(l.vertices); i++ { // add vertex 0 twice
- inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(i))
- }
- return inside
-}
-
-// ContainsPoint returns true if the loop contains the point.
-func (l *Loop) ContainsPoint(p Point) bool {
- // Empty and full loops don't need a special case, but invalid loops with
- // zero vertices do, so we might as well handle them all at once.
- if len(l.vertices) < 3 {
- return l.originInside
- }
-
- // For small loops, and during initial construction, it is faster to just
- // check all the crossing.
- const maxBruteForceVertices = 32
- if len(l.vertices) < maxBruteForceVertices || l.index == nil {
- return l.bruteForceContainsPoint(p)
- }
-
- // Otherwise, look up the point in the index.
- it := l.index.Iterator()
- if !it.LocatePoint(p) {
- return false
- }
- return l.iteratorContainsPoint(it, p)
-}
-
-// ContainsCell reports whether the given Cell is contained by this Loop.
-func (l *Loop) ContainsCell(target Cell) bool {
- it := l.index.Iterator()
- relation := it.LocateCellID(target.ID())
-
- // If "target" is disjoint from all index cells, it is not contained.
- // Similarly, if "target" is subdivided into one or more index cells then it
- // is not contained, since index cells are subdivided only if they (nearly)
- // intersect a sufficient number of edges. (But note that if "target" itself
- // is an index cell then it may be contained, since it could be a cell with
- // no edges in the loop interior.)
- if relation != Indexed {
- return false
- }
-
- // Otherwise check if any edges intersect "target".
- if l.boundaryApproxIntersects(it, target) {
- return false
- }
-
- // Otherwise check if the loop contains the center of "target".
- return l.iteratorContainsPoint(it, target.Center())
-}
-
-// IntersectsCell reports whether this Loop intersects the given cell.
-func (l *Loop) IntersectsCell(target Cell) bool {
- it := l.index.Iterator()
- relation := it.LocateCellID(target.ID())
-
- // If target does not overlap any index cell, there is no intersection.
- if relation == Disjoint {
- return false
- }
- // If target is subdivided into one or more index cells, there is an
- // intersection to within the ShapeIndex error bound (see Contains).
- if relation == Subdivided {
- return true
- }
- // If target is an index cell, there is an intersection because index cells
- // are created only if they have at least one edge or they are entirely
- // contained by the loop.
- if it.CellID() == target.id {
- return true
- }
- // Otherwise check if any edges intersect target.
- if l.boundaryApproxIntersects(it, target) {
- return true
- }
- // Otherwise check if the loop contains the center of target.
- return l.iteratorContainsPoint(it, target.Center())
-}
-
-// CellUnionBound computes a covering of the Loop.
-func (l *Loop) CellUnionBound() []CellID {
- return l.CapBound().CellUnionBound()
-}
-
-// boundaryApproxIntersects reports if the loop's boundary intersects target.
-// It may also return true when the loop boundary does not intersect target but
-// some edge comes within the worst-case error tolerance.
-//
-// This requires that it.Locate(target) returned Indexed.
-func (l *Loop) boundaryApproxIntersects(it *ShapeIndexIterator, target Cell) bool {
- aClipped := it.IndexCell().findByShapeID(0)
-
- // If there are no edges, there is no intersection.
- if len(aClipped.edges) == 0 {
- return false
- }
-
- // We can save some work if target is the index cell itself.
- if it.CellID() == target.ID() {
- return true
- }
-
- // Otherwise check whether any of the edges intersect target.
- maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist)
- bound := target.BoundUV().ExpandedByMargin(maxError)
- for _, ai := range aClipped.edges {
- v0, v1, ok := ClipToPaddedFace(l.Vertex(ai), l.Vertex(ai+1), target.Face(), maxError)
- if ok && edgeIntersectsRect(v0, v1, bound) {
- return true
- }
- }
- return false
-}
-
-// iteratorContainsPoint reports if the iterator that is positioned at the ShapeIndexCell
-// that may contain p, contains the point p.
-func (l *Loop) iteratorContainsPoint(it *ShapeIndexIterator, p Point) bool {
- // Test containment by drawing a line segment from the cell center to the
- // given point and counting edge crossings.
- aClipped := it.IndexCell().findByShapeID(0)
- inside := aClipped.containsCenter
- if len(aClipped.edges) > 0 {
- center := it.Center()
- crosser := NewEdgeCrosser(center, p)
- aiPrev := -2
- for _, ai := range aClipped.edges {
- if ai != aiPrev+1 {
- crosser.RestartAt(l.Vertex(ai))
- }
- aiPrev = ai
- inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(ai+1))
- }
- }
- return inside
-}
-
-// RegularLoop creates a loop with the given number of vertices, all
-// located on a circle of the specified radius around the given center.
-func RegularLoop(center Point, radius s1.Angle, numVertices int) *Loop {
- return RegularLoopForFrame(getFrame(center), radius, numVertices)
-}
-
-// RegularLoopForFrame creates a loop centered around the z-axis of the given
-// coordinate frame, with the first vertex in the direction of the positive x-axis.
-func RegularLoopForFrame(frame matrix3x3, radius s1.Angle, numVertices int) *Loop {
- return LoopFromPoints(regularPointsForFrame(frame, radius, numVertices))
-}
-
-// CanonicalFirstVertex returns a first index and a direction (either +1 or -1)
-// such that the vertex sequence (first, first+dir, ..., first+(n-1)*dir) does
-// not change when the loop vertex order is rotated or inverted. This allows the
-// loop vertices to be traversed in a canonical order. The return values are
-// chosen such that (first, ..., first+n*dir) are in the range [0, 2*n-1] as
-// expected by the Vertex method.
-func (l *Loop) CanonicalFirstVertex() (firstIdx, direction int) {
- firstIdx = 0
- n := len(l.vertices)
- for i := 1; i < n; i++ {
- if l.Vertex(i).Cmp(l.Vertex(firstIdx).Vector) == -1 {
- firstIdx = i
- }
- }
-
- // 0 <= firstIdx <= n-1, so (firstIdx+n*dir) <= 2*n-1.
- if l.Vertex(firstIdx+1).Cmp(l.Vertex(firstIdx+n-1).Vector) == -1 {
- return firstIdx, 1
- }
-
- // n <= firstIdx <= 2*n-1, so (firstIdx+n*dir) >= 0.
- firstIdx += n
- return firstIdx, -1
-}
-
-// TurningAngle returns the sum of the turning angles at each vertex. The return
-// value is positive if the loop is counter-clockwise, negative if the loop is
-// clockwise, and zero if the loop is a great circle. Degenerate and
-// nearly-degenerate loops are handled consistently with Sign. So for example,
-// if a loop has zero area (i.e., it is a very small CCW loop) then the turning
-// angle will always be negative.
-//
-// This quantity is also called the "geodesic curvature" of the loop.
-func (l *Loop) TurningAngle() float64 {
- // For empty and full loops, we return the limit value as the loop area
- // approaches 0 or 4*Pi respectively.
- if l.isEmptyOrFull() {
- if l.ContainsOrigin() {
- return -2 * math.Pi
- }
- return 2 * math.Pi
- }
-
- // Don't crash even if the loop is not well-defined.
- if len(l.vertices) < 3 {
- return 0
- }
-
- // To ensure that we get the same result when the vertex order is rotated,
- // and that the result is negated when the vertex order is reversed, we need
- // to add up the individual turn angles in a consistent order. (In general,
- // adding up a set of numbers in a different order can change the sum due to
- // rounding errors.)
- //
- // Furthermore, if we just accumulate an ordinary sum then the worst-case
- // error is quadratic in the number of vertices. (This can happen with
- // spiral shapes, where the partial sum of the turning angles can be linear
- // in the number of vertices.) To avoid this we use the Kahan summation
- // algorithm (http://en.wikipedia.org/wiki/Kahan_summation_algorithm).
- n := len(l.vertices)
- i, dir := l.CanonicalFirstVertex()
- sum := TurnAngle(l.Vertex((i+n-dir)%n), l.Vertex(i), l.Vertex((i+dir)%n))
-
- compensation := s1.Angle(0)
- for n-1 > 0 {
- i += dir
- angle := TurnAngle(l.Vertex(i-dir), l.Vertex(i), l.Vertex(i+dir))
- oldSum := sum
- angle += compensation
- sum += angle
- compensation = (oldSum - sum) + angle
- n--
- }
- return float64(dir) * float64(sum+compensation)
-}
-
-// turningAngleMaxError return the maximum error in TurningAngle. The value is not
-// constant; it depends on the loop.
-func (l *Loop) turningAngleMaxError() float64 {
- // The maximum error can be bounded as follows:
- // 2.24 * dblEpsilon for RobustCrossProd(b, a)
- // 2.24 * dblEpsilon for RobustCrossProd(c, b)
- // 3.25 * dblEpsilon for Angle()
- // 2.00 * dblEpsilon for each addition in the Kahan summation
- // ------------------
- // 9.73 * dblEpsilon
- maxErrorPerVertex := 9.73 * dblEpsilon
- return maxErrorPerVertex * float64(len(l.vertices))
-}
-
-// IsHole reports whether this loop represents a hole in its containing polygon.
-func (l *Loop) IsHole() bool { return l.depth&1 != 0 }
-
-// Sign returns -1 if this Loop represents a hole in its containing polygon, and +1 otherwise.
-func (l *Loop) Sign() int {
- if l.IsHole() {
- return -1
- }
- return 1
-}
-
-// IsNormalized reports whether the loop area is at most 2*pi. Degenerate loops are
-// handled consistently with Sign, i.e., if a loop can be
-// expressed as the union of degenerate or nearly-degenerate CCW triangles,
-// then it will always be considered normalized.
-func (l *Loop) IsNormalized() bool {
- // Optimization: if the longitude span is less than 180 degrees, then the
- // loop covers less than half the sphere and is therefore normalized.
- if l.bound.Lng.Length() < math.Pi {
- return true
- }
-
- // We allow some error so that hemispheres are always considered normalized.
- // TODO(roberts): This is no longer required by the Polygon implementation,
- // so alternatively we could create the invariant that a loop is normalized
- // if and only if its complement is not normalized.
- return l.TurningAngle() >= -l.turningAngleMaxError()
-}
-
-// Normalize inverts the loop if necessary so that the area enclosed by the loop
-// is at most 2*pi.
-func (l *Loop) Normalize() {
- if !l.IsNormalized() {
- l.Invert()
- }
-}
-
-// Invert reverses the order of the loop vertices, effectively complementing the
-// region represented by the loop. For example, the loop ABCD (with edges
-// AB, BC, CD, DA) becomes the loop DCBA (with edges DC, CB, BA, AD).
-// Notice that the last edge is the same in both cases except that its
-// direction has been reversed.
-func (l *Loop) Invert() {
- l.index.Reset()
- if l.isEmptyOrFull() {
- if l.IsFull() {
- l.vertices[0] = emptyLoopPoint
- } else {
- l.vertices[0] = fullLoopPoint
- }
- } else {
- // For non-special loops, reverse the slice of vertices.
- for i := len(l.vertices)/2 - 1; i >= 0; i-- {
- opp := len(l.vertices) - 1 - i
- l.vertices[i], l.vertices[opp] = l.vertices[opp], l.vertices[i]
- }
- }
-
- // originInside must be set correctly before building the ShapeIndex.
- l.originInside = !l.originInside
- if l.bound.Lat.Lo > -math.Pi/2 && l.bound.Lat.Hi < math.Pi/2 {
- // The complement of this loop contains both poles.
- l.bound = FullRect()
- l.subregionBound = l.bound
- } else {
- l.initBound()
- }
- l.index.Add(l)
-}
-
-// findVertex returns the index of the vertex at the given Point in the range
-// 1..numVertices, and a boolean indicating if a vertex was found.
-func (l *Loop) findVertex(p Point) (index int, ok bool) {
- const notFound = 0
- if len(l.vertices) < 10 {
- // Exhaustive search for loops below a small threshold.
- for i := 1; i <= len(l.vertices); i++ {
- if l.Vertex(i) == p {
- return i, true
- }
- }
- return notFound, false
- }
-
- it := l.index.Iterator()
- if !it.LocatePoint(p) {
- return notFound, false
- }
-
- aClipped := it.IndexCell().findByShapeID(0)
- for i := aClipped.numEdges() - 1; i >= 0; i-- {
- ai := aClipped.edges[i]
- if l.Vertex(ai) == p {
- if ai == 0 {
- return len(l.vertices), true
- }
- return ai, true
- }
-
- if l.Vertex(ai+1) == p {
- return ai + 1, true
- }
- }
- return notFound, false
-}
-
-// ContainsNested reports whether the given loops is contained within this loop.
-// This function does not test for edge intersections. The two loops must meet
-// all of the Polygon requirements; for example this implies that their
-// boundaries may not cross or have any shared edges (although they may have
-// shared vertices).
-func (l *Loop) ContainsNested(other *Loop) bool {
- if !l.subregionBound.Contains(other.bound) {
- return false
- }
-
- // Special cases to handle either loop being empty or full. Also bail out
- // when B has no vertices to avoid heap overflow on the vertex(1) call
- // below. (This method is called during polygon initialization before the
- // client has an opportunity to call IsValid().)
- if l.isEmptyOrFull() || other.NumVertices() < 2 {
- return l.IsFull() || other.IsEmpty()
- }
-
- // We are given that A and B do not share any edges, and that either one
- // loop contains the other or they do not intersect.
- m, ok := l.findVertex(other.Vertex(1))
- if !ok {
- // Since other.vertex(1) is not shared, we can check whether A contains it.
- return l.ContainsPoint(other.Vertex(1))
- }
-
- // Check whether the edge order around other.Vertex(1) is compatible with
- // A containing B.
- return WedgeContains(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), other.Vertex(0), other.Vertex(2))
-}
-
-// surfaceIntegralFloat64 computes the oriented surface integral of some quantity f(x)
-// over the loop interior, given a function f(A,B,C) that returns the
-// corresponding integral over the spherical triangle ABC. Here "oriented
-// surface integral" means:
-//
-// (1) f(A,B,C) must be the integral of f if ABC is counterclockwise,
-// and the integral of -f if ABC is clockwise.
-//
-// (2) The result of this function is *either* the integral of f over the
-// loop interior, or the integral of (-f) over the loop exterior.
-//
-// Note that there are at least two common situations where it easy to work
-// around property (2) above:
-//
-// - If the integral of f over the entire sphere is zero, then it doesn't
-// matter which case is returned because they are always equal.
-//
-// - If f is non-negative, then it is easy to detect when the integral over
-// the loop exterior has been returned, and the integral over the loop
-// interior can be obtained by adding the integral of f over the entire
-// unit sphere (a constant) to the result.
-//
-// Any changes to this method may need corresponding changes to surfaceIntegralPoint as well.
-func (l *Loop) surfaceIntegralFloat64(f func(a, b, c Point) float64) float64 {
- // We sum f over a collection T of oriented triangles, possibly
- // overlapping. Let the sign of a triangle be +1 if it is CCW and -1
- // otherwise, and let the sign of a point x be the sum of the signs of the
- // triangles containing x. Then the collection of triangles T is chosen
- // such that either:
- //
- // (1) Each point in the loop interior has sign +1, and sign 0 otherwise; or
- // (2) Each point in the loop exterior has sign -1, and sign 0 otherwise.
- //
- // The triangles basically consist of a fan from vertex 0 to every loop
- // edge that does not include vertex 0. These triangles will always satisfy
- // either (1) or (2). However, what makes this a bit tricky is that
- // spherical edges become numerically unstable as their length approaches
- // 180 degrees. Of course there is not much we can do if the loop itself
- // contains such edges, but we would like to make sure that all the triangle
- // edges under our control (i.e., the non-loop edges) are stable. For
- // example, consider a loop around the equator consisting of four equally
- // spaced points. This is a well-defined loop, but we cannot just split it
- // into two triangles by connecting vertex 0 to vertex 2.
- //
- // We handle this type of situation by moving the origin of the triangle fan
- // whenever we are about to create an unstable edge. We choose a new
- // location for the origin such that all relevant edges are stable. We also
- // create extra triangles with the appropriate orientation so that the sum
- // of the triangle signs is still correct at every point.
-
- // The maximum length of an edge for it to be considered numerically stable.
- // The exact value is fairly arbitrary since it depends on the stability of
- // the function f. The value below is quite conservative but could be
- // reduced further if desired.
- const maxLength = math.Pi - 1e-5
-
- var sum float64
- origin := l.Vertex(0)
- for i := 1; i+1 < len(l.vertices); i++ {
- // Let V_i be vertex(i), let O be the current origin, and let length(A,B)
- // be the length of edge (A,B). At the start of each loop iteration, the
- // "leading edge" of the triangle fan is (O,V_i), and we want to extend
- // the triangle fan so that the leading edge is (O,V_i+1).
- //
- // Invariants:
- // 1. length(O,V_i) < maxLength for all (i > 1).
- // 2. Either O == V_0, or O is approximately perpendicular to V_0.
- // 3. "sum" is the oriented integral of f over the area defined by
- // (O, V_0, V_1, ..., V_i).
- if l.Vertex(i+1).Angle(origin.Vector) > maxLength {
- // We are about to create an unstable edge, so choose a new origin O'
- // for the triangle fan.
- oldOrigin := origin
- if origin == l.Vertex(0) {
- // The following point is well-separated from V_i and V_0 (and
- // therefore V_i+1 as well).
- origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()}
- } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength {
- // All edges of the triangle (O, V_0, V_i) are stable, so we can
- // revert to using V_0 as the origin.
- origin = l.Vertex(0)
- } else {
- // (O, V_i+1) and (V_0, V_i) are antipodal pairs, and O and V_0 are
- // perpendicular. Therefore V_0.CrossProd(O) is approximately
- // perpendicular to all of {O, V_0, V_i, V_i+1}, and we can choose
- // this point O' as the new origin.
- origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)}
-
- // Advance the edge (V_0,O) to (V_0,O').
- sum += f(l.Vertex(0), oldOrigin, origin)
- }
- // Advance the edge (O,V_i) to (O',V_i).
- sum += f(oldOrigin, l.Vertex(i), origin)
- }
- // Advance the edge (O,V_i) to (O,V_i+1).
- sum += f(origin, l.Vertex(i), l.Vertex(i+1))
- }
- // If the origin is not V_0, we need to sum one more triangle.
- if origin != l.Vertex(0) {
- // Advance the edge (O,V_n-1) to (O,V_0).
- sum += f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0))
- }
- return sum
-}
-
-// surfaceIntegralPoint mirrors the surfaceIntegralFloat64 method but over Points;
-// see that method for commentary. The C++ version uses a templated method.
-// Any changes to this method may need corresponding changes to surfaceIntegralFloat64 as well.
-func (l *Loop) surfaceIntegralPoint(f func(a, b, c Point) Point) Point {
- const maxLength = math.Pi - 1e-5
- var sum r3.Vector
-
- origin := l.Vertex(0)
- for i := 1; i+1 < len(l.vertices); i++ {
- if l.Vertex(i+1).Angle(origin.Vector) > maxLength {
- oldOrigin := origin
- if origin == l.Vertex(0) {
- origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()}
- } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength {
- origin = l.Vertex(0)
- } else {
- origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)}
- sum = sum.Add(f(l.Vertex(0), oldOrigin, origin).Vector)
- }
- sum = sum.Add(f(oldOrigin, l.Vertex(i), origin).Vector)
- }
- sum = sum.Add(f(origin, l.Vertex(i), l.Vertex(i+1)).Vector)
- }
- if origin != l.Vertex(0) {
- sum = sum.Add(f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)).Vector)
- }
- return Point{sum}
-}
-
-// Area returns the area of the loop interior, i.e. the region on the left side of
-// the loop. The return value is between 0 and 4*pi. (Note that the return
-// value is not affected by whether this loop is a "hole" or a "shell".)
-func (l *Loop) Area() float64 {
- // It is surprisingly difficult to compute the area of a loop robustly. The
- // main issues are (1) whether degenerate loops are considered to be CCW or
- // not (i.e., whether their area is close to 0 or 4*pi), and (2) computing
- // the areas of small loops with good relative accuracy.
- //
- // With respect to degeneracies, we would like Area to be consistent
- // with ContainsPoint in that loops that contain many points
- // should have large areas, and loops that contain few points should have
- // small areas. For example, if a degenerate triangle is considered CCW
- // according to s2predicates Sign, then it will contain very few points and
- // its area should be approximately zero. On the other hand if it is
- // considered clockwise, then it will contain virtually all points and so
- // its area should be approximately 4*pi.
- //
- // More precisely, let U be the set of Points for which IsUnitLength
- // is true, let P(U) be the projection of those points onto the mathematical
- // unit sphere, and let V(P(U)) be the Voronoi diagram of the projected
- // points. Then for every loop x, we would like Area to approximately
- // equal the sum of the areas of the Voronoi regions of the points p for
- // which x.ContainsPoint(p) is true.
- //
- // The second issue is that we want to compute the area of small loops
- // accurately. This requires having good relative precision rather than
- // good absolute precision. For example, if the area of a loop is 1e-12 and
- // the error is 1e-15, then the area only has 3 digits of accuracy. (For
- // reference, 1e-12 is about 40 square meters on the surface of the earth.)
- // We would like to have good relative accuracy even for small loops.
- //
- // To achieve these goals, we combine two different methods of computing the
- // area. This first method is based on the Gauss-Bonnet theorem, which says
- // that the area enclosed by the loop equals 2*pi minus the total geodesic
- // curvature of the loop (i.e., the sum of the "turning angles" at all the
- // loop vertices). The big advantage of this method is that as long as we
- // use Sign to compute the turning angle at each vertex, then
- // degeneracies are always handled correctly. In other words, if a
- // degenerate loop is CCW according to the symbolic perturbations used by
- // Sign, then its turning angle will be approximately 2*pi.
- //
- // The disadvantage of the Gauss-Bonnet method is that its absolute error is
- // about 2e-15 times the number of vertices (see turningAngleMaxError).
- // So, it cannot compute the area of small loops accurately.
- //
- // The second method is based on splitting the loop into triangles and
- // summing the area of each triangle. To avoid the difficulty and expense
- // of decomposing the loop into a union of non-overlapping triangles,
- // instead we compute a signed sum over triangles that may overlap (see the
- // comments for surfaceIntegral). The advantage of this method
- // is that the area of each triangle can be computed with much better
- // relative accuracy (using l'Huilier's theorem). The disadvantage is that
- // the result is a signed area: CCW loops may yield a small positive value,
- // while CW loops may yield a small negative value (which is converted to a
- // positive area by adding 4*pi). This means that small errors in computing
- // the signed area may translate into a very large error in the result (if
- // the sign of the sum is incorrect).
- //
- // So, our strategy is to combine these two methods as follows. First we
- // compute the area using the "signed sum over triangles" approach (since it
- // is generally more accurate). We also estimate the maximum error in this
- // result. If the signed area is too close to zero (i.e., zero is within
- // the error bounds), then we double-check the sign of the result using the
- // Gauss-Bonnet method. (In fact we just call IsNormalized, which is
- // based on this method.) If the two methods disagree, we return either 0
- // or 4*pi based on the result of IsNormalized. Otherwise we return the
- // area that we computed originally.
- if l.isEmptyOrFull() {
- if l.ContainsOrigin() {
- return 4 * math.Pi
- }
- return 0
- }
- area := l.surfaceIntegralFloat64(SignedArea)
-
- // TODO(roberts): This error estimate is very approximate. There are two
- // issues: (1) SignedArea needs some improvements to ensure that its error
- // is actually never higher than GirardArea, and (2) although the number of
- // triangles in the sum is typically N-2, in theory it could be as high as
- // 2*N for pathological inputs. But in other respects this error bound is
- // very conservative since it assumes that the maximum error is achieved on
- // every triangle.
- maxError := l.turningAngleMaxError()
-
- // The signed area should be between approximately -4*pi and 4*pi.
- if area < 0 {
- // We have computed the negative of the area of the loop exterior.
- area += 4 * math.Pi
- }
-
- if area > 4*math.Pi {
- area = 4 * math.Pi
- }
- if area < 0 {
- area = 0
- }
-
- // If the area is close enough to zero or 4*pi so that the loop orientation
- // is ambiguous, then we compute the loop orientation explicitly.
- if area < maxError && !l.IsNormalized() {
- return 4 * math.Pi
- } else if area > (4*math.Pi-maxError) && l.IsNormalized() {
- return 0
- }
-
- return area
-}
-
-// Centroid returns the true centroid of the loop multiplied by the area of the
-// loop. The result is not unit length, so you may want to normalize it. Also
-// note that in general, the centroid may not be contained by the loop.
-//
-// We prescale by the loop area for two reasons: (1) it is cheaper to
-// compute this way, and (2) it makes it easier to compute the centroid of
-// more complicated shapes (by splitting them into disjoint regions and
-// adding their centroids).
-//
-// Note that the return value is not affected by whether this loop is a
-// "hole" or a "shell".
-func (l *Loop) Centroid() Point {
- // surfaceIntegralPoint() returns either the integral of position over loop
- // interior, or the negative of the integral of position over the loop
- // exterior. But these two values are the same (!), because the integral of
- // position over the entire sphere is (0, 0, 0).
- return l.surfaceIntegralPoint(TrueCentroid)
-}
-
-// Encode encodes the Loop.
-func (l Loop) Encode(w io.Writer) error {
- e := &encoder{w: w}
- l.encode(e)
- return e.err
-}
-
-func (l Loop) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeUint32(uint32(len(l.vertices)))
- for _, v := range l.vertices {
- e.writeFloat64(v.X)
- e.writeFloat64(v.Y)
- e.writeFloat64(v.Z)
- }
-
- e.writeBool(l.originInside)
- e.writeInt32(int32(l.depth))
-
- // Encode the bound.
- l.bound.encode(e)
-}
-
-// Decode decodes a loop.
-func (l *Loop) Decode(r io.Reader) error {
- *l = Loop{}
- d := &decoder{r: asByteReader(r)}
- l.decode(d)
- return d.err
-}
-
-func (l *Loop) decode(d *decoder) {
- version := int8(d.readUint8())
- if d.err != nil {
- return
- }
- if version != encodingVersion {
- d.err = fmt.Errorf("cannot decode version %d", version)
- return
- }
-
- // Empty loops are explicitly allowed here: a newly created loop has zero vertices
- // and such loops encode and decode properly.
- nvertices := d.readUint32()
- if nvertices > maxEncodedVertices {
- if d.err == nil {
- d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices)
-
- }
- return
- }
- l.vertices = make([]Point, nvertices)
- for i := range l.vertices {
- l.vertices[i].X = d.readFloat64()
- l.vertices[i].Y = d.readFloat64()
- l.vertices[i].Z = d.readFloat64()
- }
- l.originInside = d.readBool()
- l.depth = int(d.readUint32())
- l.bound.decode(d)
- l.subregionBound = ExpandForSubregions(l.bound)
-
- l.index = NewShapeIndex()
- l.index.Add(l)
-}
-
-// Bitmasks to read from properties.
-const (
- originInside = 1 << iota
- boundEncoded
-)
-
-func (l *Loop) xyzFaceSiTiVertices() []xyzFaceSiTi {
- ret := make([]xyzFaceSiTi, len(l.vertices))
- for i, v := range l.vertices {
- ret[i].xyz = v
- ret[i].face, ret[i].si, ret[i].ti, ret[i].level = xyzToFaceSiTi(v)
- }
- return ret
-}
-
-func (l *Loop) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) {
- if len(l.vertices) != len(vertices) {
- panic("encodeCompressed: vertices must be the same length as l.vertices")
- }
- if len(vertices) > maxEncodedVertices {
- if e.err == nil {
- e.err = fmt.Errorf("too many vertices (%d; max is %d)", len(vertices), maxEncodedVertices)
- }
- return
- }
- e.writeUvarint(uint64(len(vertices)))
- encodePointsCompressed(e, vertices, snapLevel)
-
- props := l.compressedEncodingProperties()
- e.writeUvarint(props)
- e.writeUvarint(uint64(l.depth))
- if props&boundEncoded != 0 {
- l.bound.encode(e)
- }
-}
-
-func (l *Loop) compressedEncodingProperties() uint64 {
- var properties uint64
- if l.originInside {
- properties |= originInside
- }
-
- // Write whether there is a bound so we can change the threshold later.
- // Recomputing the bound multiplies the decode time taken per vertex
- // by a factor of about 3.5. Without recomputing the bound, decode
- // takes approximately 125 ns / vertex. A loop with 63 vertices
- // encoded without the bound will take ~30us to decode, which is
- // acceptable. At ~3.5 bytes / vertex without the bound, adding
- // the bound will increase the size by <15%, which is also acceptable.
- const minVerticesForBound = 64
- if len(l.vertices) >= minVerticesForBound {
- properties |= boundEncoded
- }
-
- return properties
-}
-
-func (l *Loop) decodeCompressed(d *decoder, snapLevel int) {
- nvertices := d.readUvarint()
- if d.err != nil {
- return
- }
- if nvertices > maxEncodedVertices {
- d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices)
- return
- }
- l.vertices = make([]Point, nvertices)
- decodePointsCompressed(d, snapLevel, l.vertices)
- properties := d.readUvarint()
-
- // Make sure values are valid before using.
- if d.err != nil {
- return
- }
-
- l.originInside = (properties & originInside) != 0
-
- l.depth = int(d.readUvarint())
-
- if (properties & boundEncoded) != 0 {
- l.bound.decode(d)
- if d.err != nil {
- return
- }
- l.subregionBound = ExpandForSubregions(l.bound)
- } else {
- l.initBound()
- }
-
- l.index = NewShapeIndex()
- l.index.Add(l)
-}
-
-// crossingTarget is an enum representing the possible crossing target cases for relations.
-type crossingTarget int
-
-const (
- crossingTargetDontCare crossingTarget = iota
- crossingTargetDontCross
- crossingTargetCross
-)
-
-// loopRelation defines the interface for checking a type of relationship between two loops.
-// Some examples of relations are Contains, Intersects, or CompareBoundary.
-type loopRelation interface {
- // Optionally, aCrossingTarget and bCrossingTarget can specify an early-exit
- // condition for the loop relation. If any point P is found such that
- //
- // A.ContainsPoint(P) == aCrossingTarget() &&
- // B.ContainsPoint(P) == bCrossingTarget()
- //
- // then the loop relation is assumed to be the same as if a pair of crossing
- // edges were found. For example, the ContainsPoint relation has
- //
- // aCrossingTarget() == crossingTargetDontCross
- // bCrossingTarget() == crossingTargetCross
- //
- // because if A.ContainsPoint(P) == false and B.ContainsPoint(P) == true
- // for any point P, then it is equivalent to finding an edge crossing (i.e.,
- // since Contains returns false in both cases).
- //
- // Loop relations that do not have an early-exit condition of this form
- // should return crossingTargetDontCare for both crossing targets.
-
- // aCrossingTarget reports whether loop A crosses the target point with
- // the given relation type.
- aCrossingTarget() crossingTarget
- // bCrossingTarget reports whether loop B crosses the target point with
- // the given relation type.
- bCrossingTarget() crossingTarget
-
- // wedgesCross reports if a shared vertex ab1 and the two associated wedges
- // (a0, ab1, b2) and (b0, ab1, b2) are equivalent to an edge crossing.
- // The loop relation is also allowed to maintain its own internal state, and
- // can return true if it observes any sequence of wedges that are equivalent
- // to an edge crossing.
- wedgesCross(a0, ab1, a2, b0, b2 Point) bool
-}
-
-// loopCrosser is a helper type for determining whether two loops cross.
-// It is instantiated twice for each pair of loops to be tested, once for the
-// pair (A,B) and once for the pair (B,A), in order to be able to process
-// edges in either loop nesting order.
-type loopCrosser struct {
- a, b *Loop
- relation loopRelation
- swapped bool
- aCrossingTarget crossingTarget
- bCrossingTarget crossingTarget
-
- // state maintained by startEdge and edgeCrossesCell.
- crosser *EdgeCrosser
- aj, bjPrev int
-
- // temporary data declared here to avoid repeated memory allocations.
- bQuery *CrossingEdgeQuery
- bCells []*ShapeIndexCell
-}
-
-// newLoopCrosser creates a loopCrosser from the given values. If swapped is true,
-// the loops A and B have been swapped. This affects how arguments are passed to
-// the given loop relation, since for example A.Contains(B) is not the same as
-// B.Contains(A).
-func newLoopCrosser(a, b *Loop, relation loopRelation, swapped bool) *loopCrosser {
- l := &loopCrosser{
- a: a,
- b: b,
- relation: relation,
- swapped: swapped,
- aCrossingTarget: relation.aCrossingTarget(),
- bCrossingTarget: relation.bCrossingTarget(),
- bQuery: NewCrossingEdgeQuery(b.index),
- }
- if swapped {
- l.aCrossingTarget, l.bCrossingTarget = l.bCrossingTarget, l.aCrossingTarget
- }
-
- return l
-}
-
-// startEdge sets the crossers state for checking the given edge of loop A.
-func (l *loopCrosser) startEdge(aj int) {
- l.crosser = NewEdgeCrosser(l.a.Vertex(aj), l.a.Vertex(aj+1))
- l.aj = aj
- l.bjPrev = -2
-}
-
-// edgeCrossesCell reports whether the current edge of loop A has any crossings with
-// edges of the index cell of loop B.
-func (l *loopCrosser) edgeCrossesCell(bClipped *clippedShape) bool {
- // Test the current edge of A against all edges of bClipped
- bNumEdges := bClipped.numEdges()
- for j := 0; j < bNumEdges; j++ {
- bj := bClipped.edges[j]
- if bj != l.bjPrev+1 {
- l.crosser.RestartAt(l.b.Vertex(bj))
- }
- l.bjPrev = bj
- if crossing := l.crosser.ChainCrossingSign(l.b.Vertex(bj + 1)); crossing == DoNotCross {
- continue
- } else if crossing == Cross {
- return true
- }
-
- // We only need to check each shared vertex once, so we only
- // consider the case where l.aVertex(l.aj+1) == l.b.Vertex(bj+1).
- if l.a.Vertex(l.aj+1) == l.b.Vertex(bj+1) {
- if l.swapped {
- if l.relation.wedgesCross(l.b.Vertex(bj), l.b.Vertex(bj+1), l.b.Vertex(bj+2), l.a.Vertex(l.aj), l.a.Vertex(l.aj+2)) {
- return true
- }
- } else {
- if l.relation.wedgesCross(l.a.Vertex(l.aj), l.a.Vertex(l.aj+1), l.a.Vertex(l.aj+2), l.b.Vertex(bj), l.b.Vertex(bj+2)) {
- return true
- }
- }
- }
- }
-
- return false
-}
-
-// cellCrossesCell reports whether there are any edge crossings or wedge crossings
-// within the two given cells.
-func (l *loopCrosser) cellCrossesCell(aClipped, bClipped *clippedShape) bool {
- // Test all edges of aClipped against all edges of bClipped.
- for _, edge := range aClipped.edges {
- l.startEdge(edge)
- if l.edgeCrossesCell(bClipped) {
- return true
- }
- }
-
- return false
-}
-
-// cellCrossesAnySubcell reports whether given an index cell of A, if there are any
-// edge or wedge crossings with any index cell of B contained within bID.
-func (l *loopCrosser) cellCrossesAnySubcell(aClipped *clippedShape, bID CellID) bool {
- // Test all edges of aClipped against all edges of B. The relevant B
- // edges are guaranteed to be children of bID, which lets us find the
- // correct index cells more efficiently.
- bRoot := PaddedCellFromCellID(bID, 0)
- for _, aj := range aClipped.edges {
- // Use an CrossingEdgeQuery starting at bRoot to find the index cells
- // of B that might contain crossing edges.
- l.bCells = l.bQuery.getCells(l.a.Vertex(aj), l.a.Vertex(aj+1), bRoot)
- if len(l.bCells) == 0 {
- continue
- }
- l.startEdge(aj)
- for c := 0; c < len(l.bCells); c++ {
- if l.edgeCrossesCell(l.bCells[c].shapes[0]) {
- return true
- }
- }
- }
-
- return false
-}
-
-// hasCrossing reports whether given two iterators positioned such that
-// ai.cellID().ContainsCellID(bi.cellID()), there is an edge or wedge crossing
-// anywhere within ai.cellID(). This function advances bi only past ai.cellID().
-func (l *loopCrosser) hasCrossing(ai, bi *rangeIterator) bool {
- // If ai.CellID() intersects many edges of B, then it is faster to use
- // CrossingEdgeQuery to narrow down the candidates. But if it intersects
- // only a few edges, it is faster to check all the crossings directly.
- // We handle this by advancing bi and keeping track of how many edges we
- // would need to test.
- const edgeQueryMinEdges = 20 // Tuned from benchmarks.
- var totalEdges int
- l.bCells = nil
-
- for {
- if n := bi.it.IndexCell().shapes[0].numEdges(); n > 0 {
- totalEdges += n
- if totalEdges >= edgeQueryMinEdges {
- // There are too many edges to test them directly, so use CrossingEdgeQuery.
- if l.cellCrossesAnySubcell(ai.it.IndexCell().shapes[0], ai.cellID()) {
- return true
- }
- bi.seekBeyond(ai)
- return false
- }
- l.bCells = append(l.bCells, bi.indexCell())
- }
- bi.next()
- if bi.cellID() > ai.rangeMax {
- break
- }
- }
-
- // Test all the edge crossings directly.
- for _, c := range l.bCells {
- if l.cellCrossesCell(ai.it.IndexCell().shapes[0], c.shapes[0]) {
- return true
- }
- }
-
- return false
-}
-
-// containsCenterMatches reports if the clippedShapes containsCenter boolean corresponds
-// to the crossing target type given. (This is to work around C++ allowing false == 0,
-// true == 1 type implicit conversions and comparisons)
-func containsCenterMatches(a *clippedShape, target crossingTarget) bool {
- return (!a.containsCenter && target == crossingTargetDontCross) ||
- (a.containsCenter && target == crossingTargetCross)
-}
-
-// hasCrossingRelation reports whether given two iterators positioned such that
-// ai.cellID().ContainsCellID(bi.cellID()), there is a crossing relationship
-// anywhere within ai.cellID(). Specifically, this method returns true if there
-// is an edge crossing, a wedge crossing, or a point P that matches both relations
-// crossing targets. This function advances both iterators past ai.cellID.
-func (l *loopCrosser) hasCrossingRelation(ai, bi *rangeIterator) bool {
- aClipped := ai.it.IndexCell().shapes[0]
- if aClipped.numEdges() != 0 {
- // The current cell of A has at least one edge, so check for crossings.
- if l.hasCrossing(ai, bi) {
- return true
- }
- ai.next()
- return false
- }
-
- if containsCenterMatches(aClipped, l.aCrossingTarget) {
- // The crossing target for A is not satisfied, so we skip over these cells of B.
- bi.seekBeyond(ai)
- ai.next()
- return false
- }
-
- // All points within ai.cellID() satisfy the crossing target for A, so it's
- // worth iterating through the cells of B to see whether any cell
- // centers also satisfy the crossing target for B.
- for bi.cellID() <= ai.rangeMax {
- bClipped := bi.it.IndexCell().shapes[0]
- if containsCenterMatches(bClipped, l.bCrossingTarget) {
- return true
- }
- bi.next()
- }
- ai.next()
- return false
-}
-
-// hasCrossingRelation checks all edges of loop A for intersection against all edges
-// of loop B and reports if there are any that satisfy the given relation. If there
-// is any shared vertex, the wedges centered at this vertex are sent to the given
-// relation to be tested.
-//
-// If the two loop boundaries cross, this method is guaranteed to return
-// true. It also returns true in certain cases if the loop relationship is
-// equivalent to crossing. For example, if the relation is Contains and a
-// point P is found such that B contains P but A does not contain P, this
-// method will return true to indicate that the result is the same as though
-// a pair of crossing edges were found (since Contains returns false in
-// both cases).
-//
-// See Contains, Intersects and CompareBoundary for the three uses of this function.
-func hasCrossingRelation(a, b *Loop, relation loopRelation) bool {
- // We look for CellID ranges where the indexes of A and B overlap, and
- // then test those edges for crossings.
- ai := newRangeIterator(a.index)
- bi := newRangeIterator(b.index)
-
- ab := newLoopCrosser(a, b, relation, false) // Tests edges of A against B
- ba := newLoopCrosser(b, a, relation, true) // Tests edges of B against A
-
- for !ai.done() || !bi.done() {
- if ai.rangeMax < bi.rangeMin {
- // The A and B cells don't overlap, and A precedes B.
- ai.seekTo(bi)
- } else if bi.rangeMax < ai.rangeMin {
- // The A and B cells don't overlap, and B precedes A.
- bi.seekTo(ai)
- } else {
- // One cell contains the other. Determine which cell is larger.
- abRelation := int64(ai.it.CellID().lsb() - bi.it.CellID().lsb())
- if abRelation > 0 {
- // A's index cell is larger.
- if ab.hasCrossingRelation(ai, bi) {
- return true
- }
- } else if abRelation < 0 {
- // B's index cell is larger.
- if ba.hasCrossingRelation(bi, ai) {
- return true
- }
- } else {
- // The A and B cells are the same. Since the two cells
- // have the same center point P, check whether P satisfies
- // the crossing targets.
- aClipped := ai.it.IndexCell().shapes[0]
- bClipped := bi.it.IndexCell().shapes[0]
- if containsCenterMatches(aClipped, ab.aCrossingTarget) &&
- containsCenterMatches(bClipped, ab.bCrossingTarget) {
- return true
- }
- // Otherwise test all the edge crossings directly.
- if aClipped.numEdges() > 0 && bClipped.numEdges() > 0 && ab.cellCrossesCell(aClipped, bClipped) {
- return true
- }
- ai.next()
- bi.next()
- }
- }
- }
- return false
-}
-
-// containsRelation implements loopRelation for a contains operation. If
-// A.ContainsPoint(P) == false && B.ContainsPoint(P) == true, it is equivalent
-// to having an edge crossing (i.e., Contains returns false).
-type containsRelation struct {
- foundSharedVertex bool
-}
-
-func (c *containsRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCross }
-func (c *containsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross }
-func (c *containsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool {
- c.foundSharedVertex = true
- return !WedgeContains(a0, ab1, a2, b0, b2)
-}
-
-// intersectsRelation implements loopRelation for an intersects operation. Given
-// two loops, A and B, if A.ContainsPoint(P) == true && B.ContainsPoint(P) == true,
-// it is equivalent to having an edge crossing (i.e., Intersects returns true).
-type intersectsRelation struct {
- foundSharedVertex bool
-}
-
-func (i *intersectsRelation) aCrossingTarget() crossingTarget { return crossingTargetCross }
-func (i *intersectsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross }
-func (i *intersectsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool {
- i.foundSharedVertex = true
- return WedgeIntersects(a0, ab1, a2, b0, b2)
-}
-
-// compareBoundaryRelation implements loopRelation for comparing boundaries.
-//
-// The compare boundary relation does not have a useful early-exit condition,
-// so we return crossingTargetDontCare for both crossing targets.
-//
-// Aside: A possible early exit condition could be based on the following.
-// If A contains a point of both B and ~B, then A intersects Boundary(B).
-// If ~A contains a point of both B and ~B, then ~A intersects Boundary(B).
-// So if the intersections of {A, ~A} with {B, ~B} are all non-empty,
-// the return value is 0, i.e., Boundary(A) intersects Boundary(B).
-// Unfortunately it isn't worth detecting this situation because by the
-// time we have seen a point in all four intersection regions, we are also
-// guaranteed to have seen at least one pair of crossing edges.
-type compareBoundaryRelation struct {
- reverse bool // True if the other loop should be reversed.
- foundSharedVertex bool // True if any wedge was processed.
- containsEdge bool // True if any edge of the other loop is contained by this loop.
- excludesEdge bool // True if any edge of the other loop is excluded by this loop.
-}
-
-func newCompareBoundaryRelation(reverse bool) *compareBoundaryRelation {
- return &compareBoundaryRelation{reverse: reverse}
-}
-
-func (c *compareBoundaryRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCare }
-func (c *compareBoundaryRelation) bCrossingTarget() crossingTarget { return crossingTargetDontCare }
-func (c *compareBoundaryRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool {
- // Because we don't care about the interior of the other, only its boundary,
- // it is sufficient to check whether this one contains the semiwedge (ab1, b2).
- c.foundSharedVertex = true
- if wedgeContainsSemiwedge(a0, ab1, a2, b2, c.reverse) {
- c.containsEdge = true
- } else {
- c.excludesEdge = true
- }
- return c.containsEdge && c.excludesEdge
-}
-
-// wedgeContainsSemiwedge reports whether the wedge (a0, ab1, a2) contains the
-// "semiwedge" defined as any non-empty open set of rays immediately CCW from
-// the edge (ab1, b2). If reverse is true, then substitute clockwise for CCW;
-// this simulates what would happen if the direction of the other loop was reversed.
-func wedgeContainsSemiwedge(a0, ab1, a2, b2 Point, reverse bool) bool {
- if b2 == a0 || b2 == a2 {
- // We have a shared or reversed edge.
- return (b2 == a0) == reverse
- }
- return OrderedCCW(a0, a2, b2, ab1)
-}
-
-// containsNonCrossingBoundary reports whether given two loops whose boundaries
-// do not cross (see compareBoundary), if this loop contains the boundary of the
-// other loop. If reverse is true, the boundary of the other loop is reversed
-// first (which only affects the result when there are shared edges). This method
-// is cheaper than compareBoundary because it does not test for edge intersections.
-//
-// This function requires that neither loop is empty, and that if the other is full,
-// then reverse == false.
-func (l *Loop) containsNonCrossingBoundary(other *Loop, reverseOther bool) bool {
- // The bounds must intersect for containment.
- if !l.bound.Intersects(other.bound) {
- return false
- }
-
- // Full loops are handled as though the loop surrounded the entire sphere.
- if l.IsFull() {
- return true
- }
- if other.IsFull() {
- return false
- }
-
- m, ok := l.findVertex(other.Vertex(0))
- if !ok {
- // Since the other loops vertex 0 is not shared, we can check if this contains it.
- return l.ContainsPoint(other.Vertex(0))
- }
- // Otherwise check whether the edge (b0, b1) is contained by this loop.
- return wedgeContainsSemiwedge(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1),
- other.Vertex(1), reverseOther)
-}
-
-// TODO(roberts): Differences from the C++ version:
-// DistanceToPoint
-// DistanceToBoundary
-// Project
-// ProjectToBoundary
-// BoundaryApproxEqual
-// BoundaryNear
diff --git a/vendor/github.com/golang/geo/s2/matrix3x3.go b/vendor/github.com/golang/geo/s2/matrix3x3.go
deleted file mode 100644
index 01696fe83..000000000
--- a/vendor/github.com/golang/geo/s2/matrix3x3.go
+++ /dev/null
@@ -1,127 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
-
- "github.com/golang/geo/r3"
-)
-
-// matrix3x3 represents a traditional 3x3 matrix of floating point values.
-// This is not a full fledged matrix. It only contains the pieces needed
-// to satisfy the computations done within the s2 package.
-type matrix3x3 [3][3]float64
-
-// col returns the given column as a Point.
-func (m *matrix3x3) col(col int) Point {
- return Point{r3.Vector{m[0][col], m[1][col], m[2][col]}}
-}
-
-// row returns the given row as a Point.
-func (m *matrix3x3) row(row int) Point {
- return Point{r3.Vector{m[row][0], m[row][1], m[row][2]}}
-}
-
-// setCol sets the specified column to the value in the given Point.
-func (m *matrix3x3) setCol(col int, p Point) *matrix3x3 {
- m[0][col] = p.X
- m[1][col] = p.Y
- m[2][col] = p.Z
-
- return m
-}
-
-// setRow sets the specified row to the value in the given Point.
-func (m *matrix3x3) setRow(row int, p Point) *matrix3x3 {
- m[row][0] = p.X
- m[row][1] = p.Y
- m[row][2] = p.Z
-
- return m
-}
-
-// scale multiplies the matrix by the given value.
-func (m *matrix3x3) scale(f float64) *matrix3x3 {
- return &matrix3x3{
- [3]float64{f * m[0][0], f * m[0][1], f * m[0][2]},
- [3]float64{f * m[1][0], f * m[1][1], f * m[1][2]},
- [3]float64{f * m[2][0], f * m[2][1], f * m[2][2]},
- }
-}
-
-// mul returns the multiplication of m by the Point p and converts the
-// resulting 1x3 matrix into a Point.
-func (m *matrix3x3) mul(p Point) Point {
- return Point{r3.Vector{
- m[0][0]*p.X + m[0][1]*p.Y + m[0][2]*p.Z,
- m[1][0]*p.X + m[1][1]*p.Y + m[1][2]*p.Z,
- m[2][0]*p.X + m[2][1]*p.Y + m[2][2]*p.Z,
- }}
-}
-
-// det returns the determinant of this matrix.
-func (m *matrix3x3) det() float64 {
- // | a b c |
- // det | d e f | = aei + bfg + cdh - ceg - bdi - afh
- // | g h i |
- return m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1] -
- m[0][2]*m[1][1]*m[2][0] - m[0][1]*m[1][0]*m[2][2] - m[0][0]*m[1][2]*m[2][1]
-}
-
-// transpose reflects the matrix along its diagonal and returns the result.
-func (m *matrix3x3) transpose() *matrix3x3 {
- m[0][1], m[1][0] = m[1][0], m[0][1]
- m[0][2], m[2][0] = m[2][0], m[0][2]
- m[1][2], m[2][1] = m[2][1], m[1][2]
-
- return m
-}
-
-// String formats the matrix into an easier to read layout.
-func (m *matrix3x3) String() string {
- return fmt.Sprintf("[ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ]",
- m[0][0], m[0][1], m[0][2],
- m[1][0], m[1][1], m[1][2],
- m[2][0], m[2][1], m[2][2],
- )
-}
-
-// getFrame returns the orthonormal frame for the given point on the unit sphere.
-func getFrame(p Point) matrix3x3 {
- // Given the point p on the unit sphere, extend this into a right-handed
- // coordinate frame of unit-length column vectors m = (x,y,z). Note that
- // the vectors (x,y) are an orthonormal frame for the tangent space at point p,
- // while p itself is an orthonormal frame for the normal space at p.
- m := matrix3x3{}
- m.setCol(2, p)
- m.setCol(1, Point{p.Ortho()})
- m.setCol(0, Point{m.col(1).Cross(p.Vector)})
- return m
-}
-
-// toFrame returns the coordinates of the given point with respect to its orthonormal basis m.
-// The resulting point q satisfies the identity (m * q == p).
-func toFrame(m matrix3x3, p Point) Point {
- // The inverse of an orthonormal matrix is its transpose.
- return m.transpose().mul(p)
-}
-
-// fromFrame returns the coordinates of the given point in standard axis-aligned basis
-// from its orthonormal basis m.
-// The resulting point p satisfies the identity (p == m * q).
-func fromFrame(m matrix3x3, q Point) Point {
- return m.mul(q)
-}
diff --git a/vendor/github.com/golang/geo/s2/max_distance_targets.go b/vendor/github.com/golang/geo/s2/max_distance_targets.go
deleted file mode 100644
index 589231890..000000000
--- a/vendor/github.com/golang/geo/s2/max_distance_targets.go
+++ /dev/null
@@ -1,306 +0,0 @@
-// Copyright 2019 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// maxDistance implements distance as the supplementary distance (Pi - x) to find
-// results that are the furthest using the distance related algorithms.
-type maxDistance s1.ChordAngle
-
-func (m maxDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) }
-func (m maxDistance) zero() distance { return maxDistance(s1.StraightChordAngle) }
-func (m maxDistance) negative() distance { return maxDistance(s1.InfChordAngle()) }
-func (m maxDistance) infinity() distance { return maxDistance(s1.NegativeChordAngle) }
-func (m maxDistance) less(other distance) bool { return m.chordAngle() > other.chordAngle() }
-func (m maxDistance) sub(other distance) distance {
- return maxDistance(m.chordAngle() + other.chordAngle())
-}
-func (m maxDistance) chordAngleBound() s1.ChordAngle {
- return s1.StraightChordAngle - m.chordAngle()
-}
-func (m maxDistance) updateDistance(dist distance) (distance, bool) {
- if dist.less(m) {
- m = maxDistance(dist.chordAngle())
- return m, true
- }
- return m, false
-}
-
-func (m maxDistance) fromChordAngle(o s1.ChordAngle) distance {
- return maxDistance(o)
-}
-
-// MaxDistanceToPointTarget is used for computing the maximum distance to a Point.
-type MaxDistanceToPointTarget struct {
- point Point
- dist distance
-}
-
-// NewMaxDistanceToPointTarget returns a new target for the given Point.
-func NewMaxDistanceToPointTarget(point Point) *MaxDistanceToPointTarget {
- m := maxDistance(0)
- return &MaxDistanceToPointTarget{point: point, dist: &m}
-}
-
-func (m *MaxDistanceToPointTarget) capBound() Cap {
- return CapFromCenterChordAngle(Point{m.point.Mul(-1)}, (s1.ChordAngle(0)))
-}
-
-func (m *MaxDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(ChordAngleBetweenPoints(p, m.point)))
-}
-
-func (m *MaxDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- if d, ok := UpdateMaxDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(maxDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MaxDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(cell.MaxDistance(m.point)))
-}
-
-func (m *MaxDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // For furthest points, we visit the polygons whose interior contains
- // the antipode of the target point. These are the polygons whose
- // distance to the target is maxDistance.zero()
- q := NewContainsPointQuery(index, VertexModelSemiOpen)
- return q.visitContainingShapes(Point{m.point.Mul(-1)}, func(shape Shape) bool {
- return v(shape, m.point)
- })
-}
-
-func (m *MaxDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MaxDistanceToPointTarget) maxBruteForceIndexSize() int { return 300 }
-func (m *MaxDistanceToPointTarget) distance() distance { return m.dist }
-
-// MaxDistanceToEdgeTarget is used for computing the maximum distance to an Edge.
-type MaxDistanceToEdgeTarget struct {
- e Edge
- dist distance
-}
-
-// NewMaxDistanceToEdgeTarget returns a new target for the given Edge.
-func NewMaxDistanceToEdgeTarget(e Edge) *MaxDistanceToEdgeTarget {
- m := maxDistance(0)
- return &MaxDistanceToEdgeTarget{e: e, dist: m}
-}
-
-// capBound returns a Cap that bounds the antipode of the target. (This
-// is the set of points whose maxDistance to the target is maxDistance.zero)
-func (m *MaxDistanceToEdgeTarget) capBound() Cap {
- // The following computes a radius equal to half the edge length in an
- // efficient and numerically stable way.
- d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1))
- r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2))
- return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Mul(-1).Normalize()}, s1.ChordAngleFromSquaredLength(r2))
-}
-
-func (m *MaxDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- if d, ok := UpdateMaxDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(maxDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MaxDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- if d, ok := updateEdgePairMaxDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(maxDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MaxDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(cell.MaxDistanceToEdge(m.e.V0, m.e.V1)))
-}
-
-func (m *MaxDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // We only need to test one edge point. That is because the method *must*
- // visit a polygon if it fully contains the target, and *is allowed* to
- // visit a polygon if it intersects the target. If the tested vertex is not
- // contained, we know the full edge is not contained; if the tested vertex is
- // contained, then the edge either is fully contained (must be visited) or it
- // intersects (is allowed to be visited). We visit the center of the edge so
- // that edge AB gives identical results to BA.
- target := NewMaxDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
- return target.visitContainingShapes(index, v)
-}
-
-func (m *MaxDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MaxDistanceToEdgeTarget) maxBruteForceIndexSize() int { return 110 }
-func (m *MaxDistanceToEdgeTarget) distance() distance { return m.dist }
-
-// MaxDistanceToCellTarget is used for computing the maximum distance to a Cell.
-type MaxDistanceToCellTarget struct {
- cell Cell
- dist distance
-}
-
-// NewMaxDistanceToCellTarget returns a new target for the given Cell.
-func NewMaxDistanceToCellTarget(cell Cell) *MaxDistanceToCellTarget {
- m := maxDistance(0)
- return &MaxDistanceToCellTarget{cell: cell, dist: m}
-}
-
-func (m *MaxDistanceToCellTarget) capBound() Cap {
- c := m.cell.CapBound()
- return CapFromCenterAngle(Point{c.Center().Mul(-1)}, c.Radius())
-}
-
-func (m *MaxDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(m.cell.MaxDistance(p)))
-}
-
-func (m *MaxDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(m.cell.MaxDistanceToEdge(edge.V0, edge.V1)))
-}
-
-func (m *MaxDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(maxDistance(m.cell.MaxDistanceToCell(cell)))
-}
-
-func (m *MaxDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // We only need to check one point here - cell center is simplest.
- // See comment at MaxDistanceToEdgeTarget's visitContainingShapes.
- target := NewMaxDistanceToPointTarget(m.cell.Center())
- return target.visitContainingShapes(index, v)
-}
-
-func (m *MaxDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MaxDistanceToCellTarget) maxBruteForceIndexSize() int { return 100 }
-func (m *MaxDistanceToCellTarget) distance() distance { return m.dist }
-
-// MaxDistanceToShapeIndexTarget is used for computing the maximum distance to a ShapeIndex.
-type MaxDistanceToShapeIndexTarget struct {
- index *ShapeIndex
- query *EdgeQuery
- dist distance
-}
-
-// NewMaxDistanceToShapeIndexTarget returns a new target for the given ShapeIndex.
-func NewMaxDistanceToShapeIndexTarget(index *ShapeIndex) *MaxDistanceToShapeIndexTarget {
- m := maxDistance(0)
- return &MaxDistanceToShapeIndexTarget{
- index: index,
- dist: m,
- query: NewFurthestEdgeQuery(index, NewFurthestEdgeQueryOptions()),
- }
-}
-
-// capBound returns a Cap that bounds the antipode of the target. This
-// is the set of points whose maxDistance to the target is maxDistance.zero()
-func (m *MaxDistanceToShapeIndexTarget) capBound() Cap {
- // TODO(roberts): Depends on ShapeIndexRegion
- // c := makeShapeIndexRegion(m.index).CapBound()
- // return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius())
- panic("not implemented yet")
-}
-
-func (m *MaxDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMaxDistanceToPointTarget(p)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-func (m *MaxDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMaxDistanceToEdgeTarget(edge)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-func (m *MaxDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMaxDistanceToCellTarget(cell)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-// visitContainingShapes returns the polygons containing the antipodal
-// reflection of *any* connected component for target types consisting of
-// multiple connected components. It is sufficient to test containment of
-// one vertex per connected component, since this allows us to also return
-// any polygon whose boundary has distance.zero() to the target.
-func (m *MaxDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // It is sufficient to find the set of chain starts in the target index
- // (i.e., one vertex per connected component of edges) that are contained by
- // the query index, except for one special case to handle full polygons.
- //
- // TODO(roberts): Do this by merge-joining the two ShapeIndexes and share
- // the code with BooleanOperation.
- for _, shape := range m.index.shapes {
- numChains := shape.NumChains()
- // Shapes that don't have any edges require a special case (below).
- testedPoint := false
- for c := 0; c < numChains; c++ {
- chain := shape.Chain(c)
- if chain.Length == 0 {
- continue
- }
- testedPoint = true
- target := NewMaxDistanceToPointTarget(shape.ChainEdge(c, 0).V0)
- if !target.visitContainingShapes(index, v) {
- return false
- }
- }
- if !testedPoint {
- // Special case to handle full polygons.
- ref := shape.ReferencePoint()
- if !ref.Contained {
- continue
- }
- target := NewMaxDistanceToPointTarget(ref.Point)
- if !target.visitContainingShapes(index, v) {
- return false
- }
- }
- }
- return true
-}
-
-func (m *MaxDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool {
- m.query.opts.maxError = maxErr
- return true
-}
-func (m *MaxDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 70 }
-func (m *MaxDistanceToShapeIndexTarget) distance() distance { return m.dist }
-func (m *MaxDistanceToShapeIndexTarget) setIncludeInteriors(b bool) {
- m.query.opts.includeInteriors = b
-}
-func (m *MaxDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b }
-
-// TODO(roberts): Remaining methods
-//
-// func (m *MaxDistanceToShapeIndexTarget) capBound() Cap {
-// CellUnionTarget
diff --git a/vendor/github.com/golang/geo/s2/metric.go b/vendor/github.com/golang/geo/s2/metric.go
deleted file mode 100644
index 53db3d317..000000000
--- a/vendor/github.com/golang/geo/s2/metric.go
+++ /dev/null
@@ -1,164 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// This file implements functions for various S2 measurements.
-
-import "math"
-
-// A Metric is a measure for cells. It is used to describe the shape and size
-// of cells. They are useful for deciding which cell level to use in order to
-// satisfy a given condition (e.g. that cell vertices must be no further than
-// "x" apart). You can use the Value(level) method to compute the corresponding
-// length or area on the unit sphere for cells at a given level. The minimum
-// and maximum bounds are valid for cells at all levels, but they may be
-// somewhat conservative for very large cells (e.g. face cells).
-type Metric struct {
- // Dim is either 1 or 2, for a 1D or 2D metric respectively.
- Dim int
- // Deriv is the scaling factor for the metric.
- Deriv float64
-}
-
-// Defined metrics.
-// Of the projection methods defined in C++, Go only supports the quadratic projection.
-
-// Each cell is bounded by four planes passing through its four edges and
-// the center of the sphere. These metrics relate to the angle between each
-// pair of opposite bounding planes, or equivalently, between the planes
-// corresponding to two different s-values or two different t-values.
-var (
- MinAngleSpanMetric = Metric{1, 4.0 / 3}
- AvgAngleSpanMetric = Metric{1, math.Pi / 2}
- MaxAngleSpanMetric = Metric{1, 1.704897179199218452}
-)
-
-// The width of geometric figure is defined as the distance between two
-// parallel bounding lines in a given direction. For cells, the minimum
-// width is always attained between two opposite edges, and the maximum
-// width is attained between two opposite vertices. However, for our
-// purposes we redefine the width of a cell as the perpendicular distance
-// between a pair of opposite edges. A cell therefore has two widths, one
-// in each direction. The minimum width according to this definition agrees
-// with the classic geometric one, but the maximum width is different. (The
-// maximum geometric width corresponds to MaxDiag defined below.)
-//
-// The average width in both directions for all cells at level k is approximately
-// AvgWidthMetric.Value(k).
-//
-// The width is useful for bounding the minimum or maximum distance from a
-// point on one edge of a cell to the closest point on the opposite edge.
-// For example, this is useful when growing regions by a fixed distance.
-var (
- MinWidthMetric = Metric{1, 2 * math.Sqrt2 / 3}
- AvgWidthMetric = Metric{1, 1.434523672886099389}
- MaxWidthMetric = Metric{1, MaxAngleSpanMetric.Deriv}
-)
-
-// The edge length metrics can be used to bound the minimum, maximum,
-// or average distance from the center of one cell to the center of one of
-// its edge neighbors. In particular, it can be used to bound the distance
-// between adjacent cell centers along the space-filling Hilbert curve for
-// cells at any given level.
-var (
- MinEdgeMetric = Metric{1, 2 * math.Sqrt2 / 3}
- AvgEdgeMetric = Metric{1, 1.459213746386106062}
- MaxEdgeMetric = Metric{1, MaxAngleSpanMetric.Deriv}
-
- // MaxEdgeAspect is the maximum edge aspect ratio over all cells at any level,
- // where the edge aspect ratio of a cell is defined as the ratio of its longest
- // edge length to its shortest edge length.
- MaxEdgeAspect = 1.442615274452682920
-
- MinAreaMetric = Metric{2, 8 * math.Sqrt2 / 9}
- AvgAreaMetric = Metric{2, 4 * math.Pi / 6}
- MaxAreaMetric = Metric{2, 2.635799256963161491}
-)
-
-// The maximum diagonal is also the maximum diameter of any cell,
-// and also the maximum geometric width (see the comment for widths). For
-// example, the distance from an arbitrary point to the closest cell center
-// at a given level is at most half the maximum diagonal length.
-var (
- MinDiagMetric = Metric{1, 8 * math.Sqrt2 / 9}
- AvgDiagMetric = Metric{1, 2.060422738998471683}
- MaxDiagMetric = Metric{1, 2.438654594434021032}
-
- // MaxDiagAspect is the maximum diagonal aspect ratio over all cells at any
- // level, where the diagonal aspect ratio of a cell is defined as the ratio
- // of its longest diagonal length to its shortest diagonal length.
- MaxDiagAspect = math.Sqrt(3)
-)
-
-// Value returns the value of the metric at the given level.
-func (m Metric) Value(level int) float64 {
- return math.Ldexp(m.Deriv, -m.Dim*level)
-}
-
-// MinLevel returns the minimum level such that the metric is at most
-// the given value, or maxLevel (30) if there is no such level.
-//
-// For example, MinLevel(0.1) returns the minimum level such that all cell diagonal
-// lengths are 0.1 or smaller. The returned value is always a valid level.
-//
-// In C++, this is called GetLevelForMaxValue.
-func (m Metric) MinLevel(val float64) int {
- if val < 0 {
- return maxLevel
- }
-
- level := -(math.Ilogb(val/m.Deriv) >> uint(m.Dim-1))
- if level > maxLevel {
- level = maxLevel
- }
- if level < 0 {
- level = 0
- }
- return level
-}
-
-// MaxLevel returns the maximum level such that the metric is at least
-// the given value, or zero if there is no such level.
-//
-// For example, MaxLevel(0.1) returns the maximum level such that all cells have a
-// minimum width of 0.1 or larger. The returned value is always a valid level.
-//
-// In C++, this is called GetLevelForMinValue.
-func (m Metric) MaxLevel(val float64) int {
- if val <= 0 {
- return maxLevel
- }
-
- level := math.Ilogb(m.Deriv/val) >> uint(m.Dim-1)
- if level > maxLevel {
- level = maxLevel
- }
- if level < 0 {
- level = 0
- }
- return level
-}
-
-// ClosestLevel returns the level at which the metric has approximately the given
-// value. The return value is always a valid level. For example,
-// AvgEdgeMetric.ClosestLevel(0.1) returns the level at which the average cell edge
-// length is approximately 0.1.
-func (m Metric) ClosestLevel(val float64) int {
- x := math.Sqrt2
- if m.Dim == 2 {
- x = 2
- }
- return m.MinLevel(x * val)
-}
diff --git a/vendor/github.com/golang/geo/s2/min_distance_targets.go b/vendor/github.com/golang/geo/s2/min_distance_targets.go
deleted file mode 100644
index b1948b203..000000000
--- a/vendor/github.com/golang/geo/s2/min_distance_targets.go
+++ /dev/null
@@ -1,362 +0,0 @@
-// Copyright 2019 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// minDistance implements distance interface to find closest distance types.
-type minDistance s1.ChordAngle
-
-func (m minDistance) chordAngle() s1.ChordAngle { return s1.ChordAngle(m) }
-func (m minDistance) zero() distance { return minDistance(0) }
-func (m minDistance) negative() distance { return minDistance(s1.NegativeChordAngle) }
-func (m minDistance) infinity() distance { return minDistance(s1.InfChordAngle()) }
-func (m minDistance) less(other distance) bool { return m.chordAngle() < other.chordAngle() }
-func (m minDistance) sub(other distance) distance {
- return minDistance(m.chordAngle() - other.chordAngle())
-}
-func (m minDistance) chordAngleBound() s1.ChordAngle {
- return m.chordAngle().Expanded(m.chordAngle().MaxAngleError())
-}
-
-// updateDistance updates its own value if the other value is less() than it is,
-// and reports if it updated.
-func (m minDistance) updateDistance(dist distance) (distance, bool) {
- if dist.less(m) {
- m = minDistance(dist.chordAngle())
- return m, true
- }
- return m, false
-}
-
-func (m minDistance) fromChordAngle(o s1.ChordAngle) distance {
- return minDistance(o)
-}
-
-// MinDistanceToPointTarget is a type for computing the minimum distance to a Point.
-type MinDistanceToPointTarget struct {
- point Point
- dist distance
-}
-
-// NewMinDistanceToPointTarget returns a new target for the given Point.
-func NewMinDistanceToPointTarget(point Point) *MinDistanceToPointTarget {
- m := minDistance(0)
- return &MinDistanceToPointTarget{point: point, dist: &m}
-}
-
-func (m *MinDistanceToPointTarget) capBound() Cap {
- return CapFromCenterChordAngle(m.point, s1.ChordAngle(0))
-}
-
-func (m *MinDistanceToPointTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- var ok bool
- dist, ok = dist.updateDistance(minDistance(ChordAngleBetweenPoints(p, m.point)))
- return dist, ok
-}
-
-func (m *MinDistanceToPointTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- if d, ok := UpdateMinDistance(m.point, edge.V0, edge.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(minDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MinDistanceToPointTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- var ok bool
- dist, ok = dist.updateDistance(minDistance(cell.Distance(m.point)))
- return dist, ok
-}
-
-func (m *MinDistanceToPointTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // For furthest points, we visit the polygons whose interior contains
- // the antipode of the target point. These are the polygons whose
- // distance to the target is maxDistance.zero()
- q := NewContainsPointQuery(index, VertexModelSemiOpen)
- return q.visitContainingShapes(m.point, func(shape Shape) bool {
- return v(shape, m.point)
- })
-}
-
-func (m *MinDistanceToPointTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MinDistanceToPointTarget) maxBruteForceIndexSize() int { return 120 }
-func (m *MinDistanceToPointTarget) distance() distance { return m.dist }
-
-// ----------------------------------------------------------
-
-// MinDistanceToEdgeTarget is a type for computing the minimum distance to an Edge.
-type MinDistanceToEdgeTarget struct {
- e Edge
- dist distance
-}
-
-// NewMinDistanceToEdgeTarget returns a new target for the given Edge.
-func NewMinDistanceToEdgeTarget(e Edge) *MinDistanceToEdgeTarget {
- m := minDistance(0)
- return &MinDistanceToEdgeTarget{e: e, dist: m}
-}
-
-// capBound returns a Cap that bounds the antipode of the target. (This
-// is the set of points whose maxDistance to the target is maxDistance.zero)
-func (m *MinDistanceToEdgeTarget) capBound() Cap {
- // The following computes a radius equal to half the edge length in an
- // efficient and numerically stable way.
- d2 := float64(ChordAngleBetweenPoints(m.e.V0, m.e.V1))
- r2 := (0.5 * d2) / (1 + math.Sqrt(1-0.25*d2))
- return CapFromCenterChordAngle(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()}, s1.ChordAngleFromSquaredLength(r2))
-}
-
-func (m *MinDistanceToEdgeTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- if d, ok := UpdateMinDistance(p, m.e.V0, m.e.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(minDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MinDistanceToEdgeTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- if d, ok := updateEdgePairMinDistance(m.e.V0, m.e.V1, edge.V0, edge.V1, dist.chordAngle()); ok {
- dist, _ = dist.updateDistance(minDistance(d))
- return dist, true
- }
- return dist, false
-}
-
-func (m *MinDistanceToEdgeTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(minDistance(cell.DistanceToEdge(m.e.V0, m.e.V1)))
-}
-
-func (m *MinDistanceToEdgeTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // We test the center of the edge in order to ensure that edge targets AB
- // and BA yield identical results (which is not guaranteed by the API but
- // users might expect). Other options would be to test both endpoints, or
- // return different results for AB and BA in some cases.
- target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
- return target.visitContainingShapes(index, v)
-}
-
-func (m *MinDistanceToEdgeTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MinDistanceToEdgeTarget) maxBruteForceIndexSize() int { return 60 }
-func (m *MinDistanceToEdgeTarget) distance() distance { return m.dist }
-
-// ----------------------------------------------------------
-
-// MinDistanceToCellTarget is a type for computing the minimum distance to a Cell.
-type MinDistanceToCellTarget struct {
- cell Cell
- dist distance
-}
-
-// NewMinDistanceToCellTarget returns a new target for the given Cell.
-func NewMinDistanceToCellTarget(cell Cell) *MinDistanceToCellTarget {
- m := minDistance(0)
- return &MinDistanceToCellTarget{cell: cell, dist: m}
-}
-
-func (m *MinDistanceToCellTarget) capBound() Cap {
- return m.cell.CapBound()
-}
-
-func (m *MinDistanceToCellTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- return dist.updateDistance(minDistance(m.cell.Distance(p)))
-}
-
-func (m *MinDistanceToCellTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- return dist.updateDistance(minDistance(m.cell.DistanceToEdge(edge.V0, edge.V1)))
-}
-
-func (m *MinDistanceToCellTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- return dist.updateDistance(minDistance(m.cell.DistanceToCell(cell)))
-}
-
-func (m *MinDistanceToCellTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // The simplest approach is simply to return the polygons that contain the
- // cell center. Alternatively, if the index cell is smaller than the target
- // cell then we could return all polygons that are present in the
- // shapeIndexCell, but since the index is built conservatively this may
- // include some polygons that don't quite intersect the cell. So we would
- // either need to recheck for intersection more accurately, or weaken the
- // VisitContainingShapes contract so that it only guarantees approximate
- // intersection, neither of which seems like a good tradeoff.
- target := NewMinDistanceToPointTarget(m.cell.Center())
- return target.visitContainingShapes(index, v)
-}
-func (m *MinDistanceToCellTarget) setMaxError(maxErr s1.ChordAngle) bool { return false }
-func (m *MinDistanceToCellTarget) maxBruteForceIndexSize() int { return 30 }
-func (m *MinDistanceToCellTarget) distance() distance { return m.dist }
-
-// ----------------------------------------------------------
-
-/*
-// MinDistanceToCellUnionTarget is a type for computing the minimum distance to a CellUnion.
-type MinDistanceToCellUnionTarget struct {
- cu CellUnion
- query *ClosestCellQuery
- dist distance
-}
-
-// NewMinDistanceToCellUnionTarget returns a new target for the given CellUnion.
-func NewMinDistanceToCellUnionTarget(cu CellUnion) *MinDistanceToCellUnionTarget {
- m := minDistance(0)
- return &MinDistanceToCellUnionTarget{cu: cu, dist: m}
-}
-
-func (m *MinDistanceToCellUnionTarget) capBound() Cap {
- return m.cu.CapBound()
-}
-
-func (m *MinDistanceToCellUnionTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- m.query.opts.DistanceLimit = dist.chordAngle()
- target := NewMinDistanceToPointTarget(p)
- r := m.query.findEdge(target)
- if r.ShapeID < 0 {
- return dist, false
- }
- return minDistance(r.Distance), true
-}
-
-func (m *MinDistanceToCellUnionTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // We test the center of the edge in order to ensure that edge targets AB
- // and BA yield identical results (which is not guaranteed by the API but
- // users might expect). Other options would be to test both endpoints, or
- // return different results for AB and BA in some cases.
- target := NewMinDistanceToPointTarget(Point{m.e.V0.Add(m.e.V1.Vector).Normalize()})
- return target.visitContainingShapes(index, v)
-}
-func (m *MinDistanceToCellUnionTarget) setMaxError(maxErr s1.ChordAngle) bool {
- m.query.opts.MaxError = maxErr
- return true
-}
-func (m *MinDistanceToCellUnionTarget) maxBruteForceIndexSize() int { return 30 }
-func (m *MinDistanceToCellUnionTarget) distance() distance { return m.dist }
-*/
-
-// ----------------------------------------------------------
-
-// MinDistanceToShapeIndexTarget is a type for computing the minimum distance to a ShapeIndex.
-type MinDistanceToShapeIndexTarget struct {
- index *ShapeIndex
- query *EdgeQuery
- dist distance
-}
-
-// NewMinDistanceToShapeIndexTarget returns a new target for the given ShapeIndex.
-func NewMinDistanceToShapeIndexTarget(index *ShapeIndex) *MinDistanceToShapeIndexTarget {
- m := minDistance(0)
- return &MinDistanceToShapeIndexTarget{
- index: index,
- dist: m,
- query: NewClosestEdgeQuery(index, NewClosestEdgeQueryOptions()),
- }
-}
-
-func (m *MinDistanceToShapeIndexTarget) capBound() Cap {
- // TODO(roberts): Depends on ShapeIndexRegion existing.
- // c := makeS2ShapeIndexRegion(m.index).CapBound()
- // return CapFromCenterRadius(Point{c.Center.Mul(-1)}, c.Radius())
- panic("not implemented yet")
-}
-
-func (m *MinDistanceToShapeIndexTarget) updateDistanceToPoint(p Point, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMinDistanceToPointTarget(p)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-func (m *MinDistanceToShapeIndexTarget) updateDistanceToEdge(edge Edge, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMinDistanceToEdgeTarget(edge)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-func (m *MinDistanceToShapeIndexTarget) updateDistanceToCell(cell Cell, dist distance) (distance, bool) {
- m.query.opts.distanceLimit = dist.chordAngle()
- target := NewMinDistanceToCellTarget(cell)
- r := m.query.findEdge(target, m.query.opts)
- if r.shapeID < 0 {
- return dist, false
- }
- return r.distance, true
-}
-
-// For target types consisting of multiple connected components (such as this one),
-// this method should return the polygons containing the antipodal reflection of
-// *any* connected component. (It is sufficient to test containment of one vertex per
-// connected component, since this allows us to also return any polygon whose
-// boundary has distance.zero() to the target.)
-func (m *MinDistanceToShapeIndexTarget) visitContainingShapes(index *ShapeIndex, v shapePointVisitorFunc) bool {
- // It is sufficient to find the set of chain starts in the target index
- // (i.e., one vertex per connected component of edges) that are contained by
- // the query index, except for one special case to handle full polygons.
- //
- // TODO(roberts): Do this by merge-joining the two ShapeIndexes.
- for _, shape := range m.index.shapes {
- numChains := shape.NumChains()
- // Shapes that don't have any edges require a special case (below).
- testedPoint := false
- for c := 0; c < numChains; c++ {
- chain := shape.Chain(c)
- if chain.Length == 0 {
- continue
- }
- testedPoint = true
- target := NewMinDistanceToPointTarget(shape.ChainEdge(c, 0).V0)
- if !target.visitContainingShapes(index, v) {
- return false
- }
- }
- if !testedPoint {
- // Special case to handle full polygons.
- ref := shape.ReferencePoint()
- if !ref.Contained {
- continue
- }
- target := NewMinDistanceToPointTarget(ref.Point)
- if !target.visitContainingShapes(index, v) {
- return false
- }
- }
- }
- return true
-}
-
-func (m *MinDistanceToShapeIndexTarget) setMaxError(maxErr s1.ChordAngle) bool {
- m.query.opts.maxError = maxErr
- return true
-}
-func (m *MinDistanceToShapeIndexTarget) maxBruteForceIndexSize() int { return 25 }
-func (m *MinDistanceToShapeIndexTarget) distance() distance { return m.dist }
-func (m *MinDistanceToShapeIndexTarget) setIncludeInteriors(b bool) {
- m.query.opts.includeInteriors = b
-}
-func (m *MinDistanceToShapeIndexTarget) setUseBruteForce(b bool) { m.query.opts.useBruteForce = b }
-
-// TODO(roberts): Remaining methods
-//
-// func (m *MinDistanceToShapeIndexTarget) capBound() Cap {
-// CellUnionTarget
diff --git a/vendor/github.com/golang/geo/s2/nthderivative.go b/vendor/github.com/golang/geo/s2/nthderivative.go
deleted file mode 100644
index 73445d6c9..000000000
--- a/vendor/github.com/golang/geo/s2/nthderivative.go
+++ /dev/null
@@ -1,88 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// nthDerivativeCoder provides Nth Derivative Coding.
-// (In signal processing disciplines, this is known as N-th Delta Coding.)
-//
-// Good for varint coding integer sequences with polynomial trends.
-//
-// Instead of coding a sequence of values directly, code its nth-order discrete
-// derivative. Overflow in integer addition and subtraction makes this a
-// lossless transform.
-//
-// constant linear quadratic
-// trend trend trend
-// / \ / \ / \_
-// input |0 0 0 0 1 2 3 4 9 16 25 36
-// 0th derivative(identity) |0 0 0 0 1 2 3 4 9 16 25 36
-// 1st derivative(delta coding) | 0 0 0 1 1 1 1 5 7 9 11
-// 2nd derivative(linear prediction) | 0 0 1 0 0 0 4 2 2 2
-// -------------------------------------
-// 0 1 2 3 4 5 6 7 8 9 10 11
-// n in sequence
-//
-// Higher-order codings can break even or be detrimental on other sequences.
-//
-// random oscillating
-// / \ / \_
-// input |5 9 6 1 8 8 2 -2 4 -4 6 -6
-// 0th derivative(identity) |5 9 6 1 8 8 2 -2 4 -4 6 -6
-// 1st derivative(delta coding) | 4 -3 -5 7 0 -6 -4 6 -8 10 -12
-// 2nd derivative(linear prediction) | -7 -2 12 -7 -6 2 10 -14 18 -22
-// ---------------------------------------
-// 0 1 2 3 4 5 6 7 8 9 10 11
-// n in sequence
-//
-// Note that the nth derivative isn't available until sequence item n. Earlier
-// values are coded at lower order. For the above table, read 5 4 -7 -2 12 ...
-type nthDerivativeCoder struct {
- n, m int
- memory [10]int32
-}
-
-// newNthDerivativeCoder returns a new coder, where n is the derivative order of the encoder (the N in NthDerivative).
-// n must be within [0,10].
-func newNthDerivativeCoder(n int) *nthDerivativeCoder {
- c := &nthDerivativeCoder{n: n}
- if n < 0 || n > len(c.memory) {
- panic("unsupported n. Must be within [0,10].")
- }
- return c
-}
-
-func (c *nthDerivativeCoder) encode(k int32) int32 {
- for i := 0; i < c.m; i++ {
- delta := k - c.memory[i]
- c.memory[i] = k
- k = delta
- }
- if c.m < c.n {
- c.memory[c.m] = k
- c.m++
- }
- return k
-}
-
-func (c *nthDerivativeCoder) decode(k int32) int32 {
- if c.m < c.n {
- c.m++
- }
- for i := c.m - 1; i >= 0; i-- {
- c.memory[i] += k
- k = c.memory[i]
- }
- return k
-}
diff --git a/vendor/github.com/golang/geo/s2/paddedcell.go b/vendor/github.com/golang/geo/s2/paddedcell.go
deleted file mode 100644
index ac304a6cc..000000000
--- a/vendor/github.com/golang/geo/s2/paddedcell.go
+++ /dev/null
@@ -1,252 +0,0 @@
-// Copyright 2016 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r2"
-)
-
-// PaddedCell represents a Cell whose (u,v)-range has been expanded on
-// all sides by a given amount of "padding". Unlike Cell, its methods and
-// representation are optimized for clipping edges against Cell boundaries
-// to determine which cells are intersected by a given set of edges.
-type PaddedCell struct {
- id CellID
- padding float64
- bound r2.Rect
- middle r2.Rect // A rect in (u, v)-space that belongs to all four children.
- iLo, jLo int // Minimum (i,j)-coordinates of this cell before padding
- orientation int // Hilbert curve orientation of this cell.
- level int
-}
-
-// PaddedCellFromCellID constructs a padded cell with the given padding.
-func PaddedCellFromCellID(id CellID, padding float64) *PaddedCell {
- p := &PaddedCell{
- id: id,
- padding: padding,
- middle: r2.EmptyRect(),
- }
-
- // Fast path for constructing a top-level face (the most common case).
- if id.isFace() {
- limit := padding + 1
- p.bound = r2.Rect{r1.Interval{-limit, limit}, r1.Interval{-limit, limit}}
- p.middle = r2.Rect{r1.Interval{-padding, padding}, r1.Interval{-padding, padding}}
- p.orientation = id.Face() & 1
- return p
- }
-
- _, p.iLo, p.jLo, p.orientation = id.faceIJOrientation()
- p.level = id.Level()
- p.bound = ijLevelToBoundUV(p.iLo, p.jLo, p.level).ExpandedByMargin(padding)
- ijSize := sizeIJ(p.level)
- p.iLo &= -ijSize
- p.jLo &= -ijSize
-
- return p
-}
-
-// PaddedCellFromParentIJ constructs the child of parent with the given (i,j) index.
-// The four child cells have indices of (0,0), (0,1), (1,0), (1,1), where the i and j
-// indices correspond to increasing u- and v-values respectively.
-func PaddedCellFromParentIJ(parent *PaddedCell, i, j int) *PaddedCell {
- // Compute the position and orientation of the child incrementally from the
- // orientation of the parent.
- pos := ijToPos[parent.orientation][2*i+j]
-
- p := &PaddedCell{
- id: parent.id.Children()[pos],
- padding: parent.padding,
- bound: parent.bound,
- orientation: parent.orientation ^ posToOrientation[pos],
- level: parent.level + 1,
- middle: r2.EmptyRect(),
- }
-
- ijSize := sizeIJ(p.level)
- p.iLo = parent.iLo + i*ijSize
- p.jLo = parent.jLo + j*ijSize
-
- // For each child, one corner of the bound is taken directly from the parent
- // while the diagonally opposite corner is taken from middle().
- middle := parent.Middle()
- if i == 1 {
- p.bound.X.Lo = middle.X.Lo
- } else {
- p.bound.X.Hi = middle.X.Hi
- }
- if j == 1 {
- p.bound.Y.Lo = middle.Y.Lo
- } else {
- p.bound.Y.Hi = middle.Y.Hi
- }
-
- return p
-}
-
-// CellID returns the CellID this padded cell represents.
-func (p PaddedCell) CellID() CellID {
- return p.id
-}
-
-// Padding returns the amount of padding on this cell.
-func (p PaddedCell) Padding() float64 {
- return p.padding
-}
-
-// Level returns the level this cell is at.
-func (p PaddedCell) Level() int {
- return p.level
-}
-
-// Center returns the center of this cell.
-func (p PaddedCell) Center() Point {
- ijSize := sizeIJ(p.level)
- si := uint32(2*p.iLo + ijSize)
- ti := uint32(2*p.jLo + ijSize)
- return Point{faceSiTiToXYZ(p.id.Face(), si, ti).Normalize()}
-}
-
-// Middle returns the rectangle in the middle of this cell that belongs to
-// all four of its children in (u,v)-space.
-func (p *PaddedCell) Middle() r2.Rect {
- // We compute this field lazily because it is not needed the majority of the
- // time (i.e., for cells where the recursion terminates).
- if p.middle.IsEmpty() {
- ijSize := sizeIJ(p.level)
- u := stToUV(siTiToST(uint32(2*p.iLo + ijSize)))
- v := stToUV(siTiToST(uint32(2*p.jLo + ijSize)))
- p.middle = r2.Rect{
- r1.Interval{u - p.padding, u + p.padding},
- r1.Interval{v - p.padding, v + p.padding},
- }
- }
- return p.middle
-}
-
-// Bound returns the bounds for this cell in (u,v)-space including padding.
-func (p PaddedCell) Bound() r2.Rect {
- return p.bound
-}
-
-// ChildIJ returns the (i,j) coordinates for the child cell at the given traversal
-// position. The traversal position corresponds to the order in which child
-// cells are visited by the Hilbert curve.
-func (p PaddedCell) ChildIJ(pos int) (i, j int) {
- ij := posToIJ[p.orientation][pos]
- return ij >> 1, ij & 1
-}
-
-// EntryVertex return the vertex where the space-filling curve enters this cell.
-func (p PaddedCell) EntryVertex() Point {
- // The curve enters at the (0,0) vertex unless the axis directions are
- // reversed, in which case it enters at the (1,1) vertex.
- i := p.iLo
- j := p.jLo
- if p.orientation&invertMask != 0 {
- ijSize := sizeIJ(p.level)
- i += ijSize
- j += ijSize
- }
- return Point{faceSiTiToXYZ(p.id.Face(), uint32(2*i), uint32(2*j)).Normalize()}
-}
-
-// ExitVertex returns the vertex where the space-filling curve exits this cell.
-func (p PaddedCell) ExitVertex() Point {
- // The curve exits at the (1,0) vertex unless the axes are swapped or
- // inverted but not both, in which case it exits at the (0,1) vertex.
- i := p.iLo
- j := p.jLo
- ijSize := sizeIJ(p.level)
- if p.orientation == 0 || p.orientation == swapMask+invertMask {
- i += ijSize
- } else {
- j += ijSize
- }
- return Point{faceSiTiToXYZ(p.id.Face(), uint32(2*i), uint32(2*j)).Normalize()}
-}
-
-// ShrinkToFit returns the smallest CellID that contains all descendants of this
-// padded cell whose bounds intersect the given rect. For algorithms that use
-// recursive subdivision to find the cells that intersect a particular object, this
-// method can be used to skip all of the initial subdivision steps where only
-// one child needs to be expanded.
-//
-// Note that this method is not the same as returning the smallest cell that contains
-// the intersection of this cell with rect. Because of the padding, even if one child
-// completely contains rect it is still possible that a neighboring child may also
-// intersect the given rect.
-//
-// The provided Rect must intersect the bounds of this cell.
-func (p *PaddedCell) ShrinkToFit(rect r2.Rect) CellID {
- // Quick rejection test: if rect contains the center of this cell along
- // either axis, then no further shrinking is possible.
- if p.level == 0 {
- // Fast path (most calls to this function start with a face cell).
- if rect.X.Contains(0) || rect.Y.Contains(0) {
- return p.id
- }
- }
-
- ijSize := sizeIJ(p.level)
- if rect.X.Contains(stToUV(siTiToST(uint32(2*p.iLo+ijSize)))) ||
- rect.Y.Contains(stToUV(siTiToST(uint32(2*p.jLo+ijSize)))) {
- return p.id
- }
-
- // Otherwise we expand rect by the given padding on all sides and find
- // the range of coordinates that it spans along the i- and j-axes. We then
- // compute the highest bit position at which the min and max coordinates
- // differ. This corresponds to the first cell level at which at least two
- // children intersect rect.
-
- // Increase the padding to compensate for the error in uvToST.
- // (The constant below is a provable upper bound on the additional error.)
- padded := rect.ExpandedByMargin(p.padding + 1.5*dblEpsilon)
- iMin, jMin := p.iLo, p.jLo // Min i- or j- coordinate spanned by padded
- var iXor, jXor int // XOR of the min and max i- or j-coordinates
-
- if iMin < stToIJ(uvToST(padded.X.Lo)) {
- iMin = stToIJ(uvToST(padded.X.Lo))
- }
- if a, b := p.iLo+ijSize-1, stToIJ(uvToST(padded.X.Hi)); a <= b {
- iXor = iMin ^ a
- } else {
- iXor = iMin ^ b
- }
-
- if jMin < stToIJ(uvToST(padded.Y.Lo)) {
- jMin = stToIJ(uvToST(padded.Y.Lo))
- }
- if a, b := p.jLo+ijSize-1, stToIJ(uvToST(padded.Y.Hi)); a <= b {
- jXor = jMin ^ a
- } else {
- jXor = jMin ^ b
- }
-
- // Compute the highest bit position where the two i- or j-endpoints differ,
- // and then choose the cell level that includes both of these endpoints. So
- // if both pairs of endpoints are equal we choose maxLevel; if they differ
- // only at bit 0, we choose (maxLevel - 1), and so on.
- levelMSB := uint64(((iXor | jXor) << 1) + 1)
- level := maxLevel - findMSBSetNonZero64(levelMSB)
- if level <= p.level {
- return p.id
- }
-
- return cellIDFromFaceIJ(p.id.Face(), iMin, jMin).Parent(level)
-}
diff --git a/vendor/github.com/golang/geo/s2/point.go b/vendor/github.com/golang/geo/s2/point.go
deleted file mode 100644
index 89e7ae0ed..000000000
--- a/vendor/github.com/golang/geo/s2/point.go
+++ /dev/null
@@ -1,258 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
- "sort"
-
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// Point represents a point on the unit sphere as a normalized 3D vector.
-// Fields should be treated as read-only. Use one of the factory methods for creation.
-type Point struct {
- r3.Vector
-}
-
-// sortPoints sorts the slice of Points in place.
-func sortPoints(e []Point) {
- sort.Sort(points(e))
-}
-
-// points implements the Sort interface for slices of Point.
-type points []Point
-
-func (p points) Len() int { return len(p) }
-func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
-func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 }
-
-// PointFromCoords creates a new normalized point from coordinates.
-//
-// This always returns a valid point. If the given coordinates can not be normalized
-// the origin point will be returned.
-//
-// This behavior is different from the C++ construction of a S2Point from coordinates
-// (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize.
-func PointFromCoords(x, y, z float64) Point {
- if x == 0 && y == 0 && z == 0 {
- return OriginPoint()
- }
- return Point{r3.Vector{x, y, z}.Normalize()}
-}
-
-// OriginPoint returns a unique "origin" on the sphere for operations that need a fixed
-// reference point. In particular, this is the "point at infinity" used for
-// point-in-polygon testing (by counting the number of edge crossings).
-//
-// It should *not* be a point that is commonly used in edge tests in order
-// to avoid triggering code to handle degenerate cases (this rules out the
-// north and south poles). It should also not be on the boundary of any
-// low-level S2Cell for the same reason.
-func OriginPoint() Point {
- return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}}
-}
-
-// PointCross returns a Point that is orthogonal to both p and op. This is similar to
-// p.Cross(op) (the true cross product) except that it does a better job of
-// ensuring orthogonality when the Point is nearly parallel to op, it returns
-// a non-zero result even when p == op or p == -op and the result is a Point.
-//
-// It satisfies the following properties (f == PointCross):
-//
-// (1) f(p, op) != 0 for all p, op
-// (2) f(op,p) == -f(p,op) unless p == op or p == -op
-// (3) f(-p,op) == -f(p,op) unless p == op or p == -op
-// (4) f(p,-op) == -f(p,op) unless p == op or p == -op
-func (p Point) PointCross(op Point) Point {
- // NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd",
- // but PointCross more accurately describes how this method is used.
- x := p.Add(op.Vector).Cross(op.Sub(p.Vector))
-
- // Compare exactly to the 0 vector.
- if x == (r3.Vector{}) {
- // The only result that makes sense mathematically is to return zero, but
- // we find it more convenient to return an arbitrary orthogonal vector.
- return Point{p.Ortho()}
- }
-
- return Point{x}
-}
-
-// OrderedCCW returns true if the edges OA, OB, and OC are encountered in that
-// order while sweeping CCW around the point O.
-//
-// You can think of this as testing whether A <= B <= C with respect to the
-// CCW ordering around O that starts at A, or equivalently, whether B is
-// contained in the range of angles (inclusive) that starts at A and extends
-// CCW to C. Properties:
-//
-// (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b
-// (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c
-// (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c
-// (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true
-// (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false
-func OrderedCCW(a, b, c, o Point) bool {
- sum := 0
- if RobustSign(b, o, a) != Clockwise {
- sum++
- }
- if RobustSign(c, o, b) != Clockwise {
- sum++
- }
- if RobustSign(a, o, c) == CounterClockwise {
- sum++
- }
- return sum >= 2
-}
-
-// Distance returns the angle between two points.
-func (p Point) Distance(b Point) s1.Angle {
- return p.Vector.Angle(b.Vector)
-}
-
-// ApproxEqual reports whether the two points are similar enough to be equal.
-func (p Point) ApproxEqual(other Point) bool {
- return p.approxEqual(other, s1.Angle(epsilon))
-}
-
-// approxEqual reports whether the two points are within the given epsilon.
-func (p Point) approxEqual(other Point, eps s1.Angle) bool {
- return p.Vector.Angle(other.Vector) <= eps
-}
-
-// ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance
-// between the two given points. The points must be unit length.
-func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle {
- return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2()))
-}
-
-// regularPoints generates a slice of points shaped as a regular polygon with
-// the numVertices vertices, all located on a circle of the specified angular radius
-// around the center. The radius is the actual distance from center to each vertex.
-func regularPoints(center Point, radius s1.Angle, numVertices int) []Point {
- return regularPointsForFrame(getFrame(center), radius, numVertices)
-}
-
-// regularPointsForFrame generates a slice of points shaped as a regular polygon
-// with numVertices vertices, all on a circle of the specified angular radius around
-// the center. The radius is the actual distance from the center to each vertex.
-func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point {
- // We construct the loop in the given frame coordinates, with the center at
- // (0, 0, 1). For a loop of radius r, the loop vertices have the form
- // (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the
- // sphere (arc length) from each vertex to the center is acos(cos(r)) = r.
- z := math.Cos(radius.Radians())
- r := math.Sin(radius.Radians())
- radianStep := 2 * math.Pi / float64(numVertices)
- var vertices []Point
-
- for i := 0; i < numVertices; i++ {
- angle := float64(i) * radianStep
- p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}}
- vertices = append(vertices, Point{fromFrame(frame, p).Normalize()})
- }
-
- return vertices
-}
-
-// CapBound returns a bounding cap for this point.
-func (p Point) CapBound() Cap {
- return CapFromPoint(p)
-}
-
-// RectBound returns a bounding latitude-longitude rectangle from this point.
-func (p Point) RectBound() Rect {
- return RectFromLatLng(LatLngFromPoint(p))
-}
-
-// ContainsCell returns false as Points do not contain any other S2 types.
-func (p Point) ContainsCell(c Cell) bool { return false }
-
-// IntersectsCell reports whether this Point intersects the given cell.
-func (p Point) IntersectsCell(c Cell) bool {
- return c.ContainsPoint(p)
-}
-
-// ContainsPoint reports if this Point contains the other Point.
-// (This method is named to satisfy the Region interface.)
-func (p Point) ContainsPoint(other Point) bool {
- return p.Contains(other)
-}
-
-// CellUnionBound computes a covering of the Point.
-func (p Point) CellUnionBound() []CellID {
- return p.CapBound().CellUnionBound()
-}
-
-// Contains reports if this Point contains the other Point.
-// (This method matches all other s2 types where the reflexive Contains
-// method does not contain the type's name.)
-func (p Point) Contains(other Point) bool { return p == other }
-
-// Encode encodes the Point.
-func (p Point) Encode(w io.Writer) error {
- e := &encoder{w: w}
- p.encode(e)
- return e.err
-}
-
-func (p Point) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeFloat64(p.X)
- e.writeFloat64(p.Y)
- e.writeFloat64(p.Z)
-}
-
-// Decode decodes the Point.
-func (p *Point) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- p.decode(d)
- return d.err
-}
-
-func (p *Point) decode(d *decoder) {
- version := d.readInt8()
- if d.err != nil {
- return
- }
- if version != encodingVersion {
- d.err = fmt.Errorf("only version %d is supported", encodingVersion)
- return
- }
- p.X = d.readFloat64()
- p.Y = d.readFloat64()
- p.Z = d.readFloat64()
-}
-
-// Rotate the given point about the given axis by the given angle. p and
-// axis must be unit length; angle has no restrictions (e.g., it can be
-// positive, negative, greater than 360 degrees, etc).
-func Rotate(p, axis Point, angle s1.Angle) Point {
- // Let M be the plane through P that is perpendicular to axis, and let
- // center be the point where M intersects axis. We construct a
- // right-handed orthogonal frame (dx, dy, center) such that dx is the
- // vector from center to P, and dy has the same length as dx. The
- // result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center).
- center := axis.Mul(p.Dot(axis.Vector))
- dx := p.Sub(center)
- dy := axis.Cross(p.Vector)
- // Mathematically the result is unit length, but normalization is necessary
- // to ensure that numerical errors don't accumulate.
- return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()}
-}
diff --git a/vendor/github.com/golang/geo/s2/point_measures.go b/vendor/github.com/golang/geo/s2/point_measures.go
deleted file mode 100644
index 6fa9b7ae4..000000000
--- a/vendor/github.com/golang/geo/s2/point_measures.go
+++ /dev/null
@@ -1,149 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// PointArea returns the area of triangle ABC. This method combines two different
-// algorithms to get accurate results for both large and small triangles.
-// The maximum error is about 5e-15 (about 0.25 square meters on the Earth's
-// surface), the same as GirardArea below, but unlike that method it is
-// also accurate for small triangles. Example: when the true area is 100
-// square meters, PointArea yields an error about 1 trillion times smaller than
-// GirardArea.
-//
-// All points should be unit length, and no two points should be antipodal.
-// The area is always positive.
-func PointArea(a, b, c Point) float64 {
- // This method is based on l'Huilier's theorem,
- //
- // tan(E/4) = sqrt(tan(s/2) tan((s-a)/2) tan((s-b)/2) tan((s-c)/2))
- //
- // where E is the spherical excess of the triangle (i.e. its area),
- // a, b, c are the side lengths, and
- // s is the semiperimeter (a + b + c) / 2.
- //
- // The only significant source of error using l'Huilier's method is the
- // cancellation error of the terms (s-a), (s-b), (s-c). This leads to a
- // *relative* error of about 1e-16 * s / min(s-a, s-b, s-c). This compares
- // to a relative error of about 1e-15 / E using Girard's formula, where E is
- // the true area of the triangle. Girard's formula can be even worse than
- // this for very small triangles, e.g. a triangle with a true area of 1e-30
- // might evaluate to 1e-5.
- //
- // So, we prefer l'Huilier's formula unless dmin < s * (0.1 * E), where
- // dmin = min(s-a, s-b, s-c). This basically includes all triangles
- // except for extremely long and skinny ones.
- //
- // Since we don't know E, we would like a conservative upper bound on
- // the triangle area in terms of s and dmin. It's possible to show that
- // E <= k1 * s * sqrt(s * dmin), where k1 = 2*sqrt(3)/Pi (about 1).
- // Using this, it's easy to show that we should always use l'Huilier's
- // method if dmin >= k2 * s^5, where k2 is about 1e-2. Furthermore,
- // if dmin < k2 * s^5, the triangle area is at most k3 * s^4, where
- // k3 is about 0.1. Since the best case error using Girard's formula
- // is about 1e-15, this means that we shouldn't even consider it unless
- // s >= 3e-4 or so.
- sa := float64(b.Angle(c.Vector))
- sb := float64(c.Angle(a.Vector))
- sc := float64(a.Angle(b.Vector))
- s := 0.5 * (sa + sb + sc)
- if s >= 3e-4 {
- // Consider whether Girard's formula might be more accurate.
- dmin := s - math.Max(sa, math.Max(sb, sc))
- if dmin < 1e-2*s*s*s*s*s {
- // This triangle is skinny enough to use Girard's formula.
- area := GirardArea(a, b, c)
- if dmin < s*0.1*area {
- return area
- }
- }
- }
-
- // Use l'Huilier's formula.
- return 4 * math.Atan(math.Sqrt(math.Max(0.0, math.Tan(0.5*s)*math.Tan(0.5*(s-sa))*
- math.Tan(0.5*(s-sb))*math.Tan(0.5*(s-sc)))))
-}
-
-// GirardArea returns the area of the triangle computed using Girard's formula.
-// All points should be unit length, and no two points should be antipodal.
-//
-// This method is about twice as fast as PointArea() but has poor relative
-// accuracy for small triangles. The maximum error is about 5e-15 (about
-// 0.25 square meters on the Earth's surface) and the average error is about
-// 1e-15. These bounds apply to triangles of any size, even as the maximum
-// edge length of the triangle approaches 180 degrees. But note that for
-// such triangles, tiny perturbations of the input points can change the
-// true mathematical area dramatically.
-func GirardArea(a, b, c Point) float64 {
- // This is equivalent to the usual Girard's formula but is slightly more
- // accurate, faster to compute, and handles a == b == c without a special
- // case. PointCross is necessary to get good accuracy when two of
- // the input points are very close together.
- ab := a.PointCross(b)
- bc := b.PointCross(c)
- ac := a.PointCross(c)
-
- area := float64(ab.Angle(ac.Vector) - ab.Angle(bc.Vector) + bc.Angle(ac.Vector))
- if area < 0 {
- area = 0
- }
- return area
-}
-
-// SignedArea returns a positive value for counterclockwise triangles and a negative
-// value otherwise (similar to PointArea).
-func SignedArea(a, b, c Point) float64 {
- return float64(RobustSign(a, b, c)) * PointArea(a, b, c)
-}
-
-// Angle returns the interior angle at the vertex B in the triangle ABC. The
-// return value is always in the range [0, pi]. All points should be
-// normalized. Ensures that Angle(a,b,c) == Angle(c,b,a) for all a,b,c.
-//
-// The angle is undefined if A or C is diametrically opposite from B, and
-// becomes numerically unstable as the length of edge AB or BC approaches
-// 180 degrees.
-func Angle(a, b, c Point) s1.Angle {
- // PointCross is necessary to get good accuracy when two of the input
- // points are very close together.
- return a.PointCross(b).Angle(c.PointCross(b).Vector)
-}
-
-// TurnAngle returns the exterior angle at vertex B in the triangle ABC. The
-// return value is positive if ABC is counterclockwise and negative otherwise.
-// If you imagine an ant walking from A to B to C, this is the angle that the
-// ant turns at vertex B (positive = left = CCW, negative = right = CW).
-// This quantity is also known as the "geodesic curvature" at B.
-//
-// Ensures that TurnAngle(a,b,c) == -TurnAngle(c,b,a) for all distinct
-// a,b,c. The result is undefined if (a == b || b == c), but is either
-// -Pi or Pi if (a == c). All points should be normalized.
-func TurnAngle(a, b, c Point) s1.Angle {
- // We use PointCross to get good accuracy when two points are very
- // close together, and RobustSign to ensure that the sign is correct for
- // turns that are close to 180 degrees.
- angle := a.PointCross(b).Angle(b.PointCross(c).Vector)
-
- // Don't return RobustSign * angle because it is legal to have (a == c).
- if RobustSign(a, b, c) == CounterClockwise {
- return angle
- }
- return -angle
-}
diff --git a/vendor/github.com/golang/geo/s2/point_vector.go b/vendor/github.com/golang/geo/s2/point_vector.go
deleted file mode 100644
index f8e6f65b5..000000000
--- a/vendor/github.com/golang/geo/s2/point_vector.go
+++ /dev/null
@@ -1,42 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// Shape interface enforcement
-var (
- _ Shape = (*PointVector)(nil)
-)
-
-// PointVector is a Shape representing a set of Points. Each point
-// is represented as a degenerate edge with the same starting and ending
-// vertices.
-//
-// This type is useful for adding a collection of points to an ShapeIndex.
-//
-// Its methods are on *PointVector due to implementation details of ShapeIndex.
-type PointVector []Point
-
-func (p *PointVector) NumEdges() int { return len(*p) }
-func (p *PointVector) Edge(i int) Edge { return Edge{(*p)[i], (*p)[i]} }
-func (p *PointVector) ReferencePoint() ReferencePoint { return OriginReferencePoint(false) }
-func (p *PointVector) NumChains() int { return len(*p) }
-func (p *PointVector) Chain(i int) Chain { return Chain{i, 1} }
-func (p *PointVector) ChainEdge(i, j int) Edge { return Edge{(*p)[i], (*p)[j]} }
-func (p *PointVector) ChainPosition(e int) ChainPosition { return ChainPosition{e, 0} }
-func (p *PointVector) Dimension() int { return 0 }
-func (p *PointVector) IsEmpty() bool { return defaultShapeIsEmpty(p) }
-func (p *PointVector) IsFull() bool { return defaultShapeIsFull(p) }
-func (p *PointVector) typeTag() typeTag { return typeTagPointVector }
-func (p *PointVector) privateInterface() {}
diff --git a/vendor/github.com/golang/geo/s2/pointcompression.go b/vendor/github.com/golang/geo/s2/pointcompression.go
deleted file mode 100644
index 018381799..000000000
--- a/vendor/github.com/golang/geo/s2/pointcompression.go
+++ /dev/null
@@ -1,319 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "errors"
- "fmt"
-
- "github.com/golang/geo/r3"
-)
-
-// maxEncodedVertices is the maximum number of vertices, in a row, to be encoded or decoded.
-// On decode, this defends against malicious encodings that try and have us exceed RAM.
-const maxEncodedVertices = 50000000
-
-// xyzFaceSiTi represents the The XYZ and face,si,ti coordinates of a Point
-// and, if this point is equal to the center of a Cell, the level of this cell
-// (-1 otherwise). This is used for Loops and Polygons to store data in a more
-// compressed format.
-type xyzFaceSiTi struct {
- xyz Point
- face int
- si, ti uint32
- level int
-}
-
-const derivativeEncodingOrder = 2
-
-func appendFace(faces []faceRun, face int) []faceRun {
- if len(faces) == 0 || faces[len(faces)-1].face != face {
- return append(faces, faceRun{face, 1})
- }
- faces[len(faces)-1].count++
- return faces
-}
-
-// encodePointsCompressed uses an optimized compressed format to encode the given values.
-func encodePointsCompressed(e *encoder, vertices []xyzFaceSiTi, level int) {
- var faces []faceRun
- for _, v := range vertices {
- faces = appendFace(faces, v.face)
- }
- encodeFaces(e, faces)
-
- type piQi struct {
- pi, qi uint32
- }
- verticesPiQi := make([]piQi, len(vertices))
- for i, v := range vertices {
- verticesPiQi[i] = piQi{siTitoPiQi(v.si, level), siTitoPiQi(v.ti, level)}
- }
- piCoder, qiCoder := newNthDerivativeCoder(derivativeEncodingOrder), newNthDerivativeCoder(derivativeEncodingOrder)
- for i, v := range verticesPiQi {
- f := encodePointCompressed
- if i == 0 {
- // The first point will be just the (pi, qi) coordinates
- // of the Point. NthDerivativeCoder will not save anything
- // in that case, so we encode in fixed format rather than varint
- // to avoid the varint overhead.
- f = encodeFirstPointFixedLength
- }
- f(e, v.pi, v.qi, level, piCoder, qiCoder)
- }
-
- var offCenter []int
- for i, v := range vertices {
- if v.level != level {
- offCenter = append(offCenter, i)
- }
- }
- e.writeUvarint(uint64(len(offCenter)))
- for _, idx := range offCenter {
- e.writeUvarint(uint64(idx))
- e.writeFloat64(vertices[idx].xyz.X)
- e.writeFloat64(vertices[idx].xyz.Y)
- e.writeFloat64(vertices[idx].xyz.Z)
- }
-}
-
-func encodeFirstPointFixedLength(e *encoder, pi, qi uint32, level int, piCoder, qiCoder *nthDerivativeCoder) {
- // Do not ZigZagEncode the first point, since it cannot be negative.
- codedPi, codedQi := piCoder.encode(int32(pi)), qiCoder.encode(int32(qi))
- // Interleave to reduce overhead from two partial bytes to one.
- interleaved := interleaveUint32(uint32(codedPi), uint32(codedQi))
-
- // Write as little endian.
- bytesRequired := (level + 7) / 8 * 2
- for i := 0; i < bytesRequired; i++ {
- e.writeUint8(uint8(interleaved))
- interleaved >>= 8
- }
-}
-
-// encodePointCompressed encodes points into e.
-// Given a sequence of Points assumed to be the center of level-k cells,
-// compresses it into a stream using the following method:
-// - decompose the points into (face, si, ti) tuples.
-// - run-length encode the faces, combining face number and count into a
-// varint32. See the faceRun struct.
-// - right shift the (si, ti) to remove the part that's constant for all cells
-// of level-k. The result is called the (pi, qi) space.
-// - 2nd derivative encode the pi and qi sequences (linear prediction)
-// - zig-zag encode all derivative values but the first, which cannot be
-// negative
-// - interleave the zig-zag encoded values
-// - encode the first interleaved value in a fixed length encoding
-// (varint would make this value larger)
-// - encode the remaining interleaved values as varint64s, as the
-// derivative encoding should make the values small.
-// In addition, provides a lossless method to compress a sequence of points even
-// if some points are not the center of level-k cells. These points are stored
-// exactly, using 3 double precision values, after the above encoded string,
-// together with their index in the sequence (this leads to some redundancy - it
-// is expected that only a small fraction of the points are not cell centers).
-//
-// To encode leaf cells, this requires 8 bytes for the first vertex plus
-// an average of 3.8 bytes for each additional vertex, when computed on
-// Google's geographic repository.
-func encodePointCompressed(e *encoder, pi, qi uint32, level int, piCoder, qiCoder *nthDerivativeCoder) {
- // ZigZagEncode, as varint requires the maximum number of bytes for
- // negative numbers.
- zzPi := zigzagEncode(piCoder.encode(int32(pi)))
- zzQi := zigzagEncode(qiCoder.encode(int32(qi)))
- // Interleave to reduce overhead from two partial bytes to one.
- interleaved := interleaveUint32(zzPi, zzQi)
- e.writeUvarint(interleaved)
-}
-
-type faceRun struct {
- face, count int
-}
-
-func decodeFaceRun(d *decoder) faceRun {
- faceAndCount := d.readUvarint()
- ret := faceRun{
- face: int(faceAndCount % numFaces),
- count: int(faceAndCount / numFaces),
- }
- if ret.count <= 0 && d.err == nil {
- d.err = errors.New("non-positive count for face run")
- }
- return ret
-}
-
-func decodeFaces(numVertices int, d *decoder) []faceRun {
- var frs []faceRun
- for nparsed := 0; nparsed < numVertices; {
- fr := decodeFaceRun(d)
- if d.err != nil {
- return nil
- }
- frs = append(frs, fr)
- nparsed += fr.count
- }
- return frs
-}
-
-// encodeFaceRun encodes each faceRun as a varint64 with value numFaces * count + face.
-func encodeFaceRun(e *encoder, fr faceRun) {
- // It isn't necessary to encode the number of faces left for the last run,
- // but since this would only help if there were more than 21 faces, it will
- // be a small overall savings, much smaller than the bound encoding.
- coded := numFaces*uint64(fr.count) + uint64(fr.face)
- e.writeUvarint(coded)
-}
-
-func encodeFaces(e *encoder, frs []faceRun) {
- for _, fr := range frs {
- encodeFaceRun(e, fr)
- }
-}
-
-type facesIterator struct {
- faces []faceRun
- // How often have we yet shown the current face?
- numCurrentFaceShown int
- curFace int
-}
-
-func (fi *facesIterator) next() (ok bool) {
- if len(fi.faces) == 0 {
- return false
- }
- fi.curFace = fi.faces[0].face
- fi.numCurrentFaceShown++
-
- // Advance fs if needed.
- if fi.faces[0].count <= fi.numCurrentFaceShown {
- fi.faces = fi.faces[1:]
- fi.numCurrentFaceShown = 0
- }
-
- return true
-}
-
-func decodePointsCompressed(d *decoder, level int, target []Point) {
- faces := decodeFaces(len(target), d)
-
- piCoder := newNthDerivativeCoder(derivativeEncodingOrder)
- qiCoder := newNthDerivativeCoder(derivativeEncodingOrder)
-
- iter := facesIterator{faces: faces}
- for i := range target {
- decodeFn := decodePointCompressed
- if i == 0 {
- decodeFn = decodeFirstPointFixedLength
- }
- pi, qi := decodeFn(d, level, piCoder, qiCoder)
- if ok := iter.next(); !ok && d.err == nil {
- d.err = fmt.Errorf("ran out of faces at target %d", i)
- return
- }
- target[i] = Point{facePiQitoXYZ(iter.curFace, pi, qi, level)}
- }
-
- numOffCenter := int(d.readUvarint())
- if d.err != nil {
- return
- }
- if numOffCenter > len(target) {
- d.err = fmt.Errorf("numOffCenter = %d, should be at most len(target) = %d", numOffCenter, len(target))
- return
- }
- for i := 0; i < numOffCenter; i++ {
- idx := int(d.readUvarint())
- if d.err != nil {
- return
- }
- if idx >= len(target) {
- d.err = fmt.Errorf("off center index = %d, should be < len(target) = %d", idx, len(target))
- return
- }
- target[idx].X = d.readFloat64()
- target[idx].Y = d.readFloat64()
- target[idx].Z = d.readFloat64()
- }
-}
-
-func decodeFirstPointFixedLength(d *decoder, level int, piCoder, qiCoder *nthDerivativeCoder) (pi, qi uint32) {
- bytesToRead := (level + 7) / 8 * 2
- var interleaved uint64
- for i := 0; i < bytesToRead; i++ {
- rr := d.readUint8()
- interleaved |= (uint64(rr) << uint(i*8))
- }
-
- piCoded, qiCoded := deinterleaveUint32(interleaved)
-
- return uint32(piCoder.decode(int32(piCoded))), uint32(qiCoder.decode(int32(qiCoded)))
-}
-
-func zigzagEncode(x int32) uint32 {
- return (uint32(x) << 1) ^ uint32(x>>31)
-}
-
-func zigzagDecode(x uint32) int32 {
- return int32((x >> 1) ^ uint32((int32(x&1)<<31)>>31))
-}
-
-func decodePointCompressed(d *decoder, level int, piCoder, qiCoder *nthDerivativeCoder) (pi, qi uint32) {
- interleavedZigZagEncodedDerivPiQi := d.readUvarint()
- piZigzag, qiZigzag := deinterleaveUint32(interleavedZigZagEncodedDerivPiQi)
- return uint32(piCoder.decode(zigzagDecode(piZigzag))), uint32(qiCoder.decode(zigzagDecode(qiZigzag)))
-}
-
-// We introduce a new coordinate system (pi, qi), which is (si, ti)
-// with the bits that are constant for cells of that level shifted
-// off to the right.
-// si = round(s * 2^31)
-// pi = si >> (31 - level)
-// = floor(s * 2^level)
-// If the point has been snapped to the level, the bits that are
-// shifted off will be a 1 in the msb, then 0s after that, so the
-// fractional part discarded by the cast is (close to) 0.5.
-
-// stToPiQi returns the value transformed to the PiQi coordinate space.
-func stToPiQi(s float64, level uint) uint32 {
- return uint32(s * float64(int(1)<<level))
-}
-
-// siTiToPiQi returns the value transformed into the PiQi coordinate spade.
-// encodeFirstPointFixedLength encodes the return value using level bits,
-// so we clamp si to the range [0, 2**level - 1] before trying to encode
-// it. This is okay because if si == maxSiTi, then it is not a cell center
-// anyway and will be encoded separately as an off-center point.
-func siTitoPiQi(siTi uint32, level int) uint32 {
- s := uint(siTi)
- const max = maxSiTi - 1
- if s > max {
- s = max
- }
-
- return uint32(s >> (maxLevel + 1 - uint(level)))
-}
-
-// piQiToST returns the value transformed to ST space.
-func piQiToST(pi uint32, level int) float64 {
- // We want to recover the position at the center of the cell. If the point
- // was snapped to the center of the cell, then math.Modf(s * 2^level) == 0.5.
- // Inverting STtoPiQi gives:
- // s = (pi + 0.5) / 2^level.
- return (float64(pi) + 0.5) / float64(int(1)<<uint(level))
-}
-
-func facePiQitoXYZ(face int, pi, qi uint32, level int) r3.Vector {
- return faceUVToXYZ(face, stToUV(piQiToST(pi, level)), stToUV(piQiToST(qi, level))).Normalize()
-}
diff --git a/vendor/github.com/golang/geo/s2/polygon.go b/vendor/github.com/golang/geo/s2/polygon.go
deleted file mode 100644
index 57c43fbcf..000000000
--- a/vendor/github.com/golang/geo/s2/polygon.go
+++ /dev/null
@@ -1,1212 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-)
-
-// Polygon represents a sequence of zero or more loops; recall that the
-// interior of a loop is defined to be its left-hand side (see Loop).
-//
-// When the polygon is initialized, the given loops are automatically converted
-// into a canonical form consisting of "shells" and "holes". Shells and holes
-// are both oriented CCW, and are nested hierarchically. The loops are
-// reordered to correspond to a pre-order traversal of the nesting hierarchy.
-//
-// Polygons may represent any region of the sphere with a polygonal boundary,
-// including the entire sphere (known as the "full" polygon). The full polygon
-// consists of a single full loop (see Loop), whereas the empty polygon has no
-// loops at all.
-//
-// Use FullPolygon() to construct a full polygon. The zero value of Polygon is
-// treated as the empty polygon.
-//
-// Polygons have the following restrictions:
-//
-// - Loops may not cross, i.e. the boundary of a loop may not intersect
-// both the interior and exterior of any other loop.
-//
-// - Loops may not share edges, i.e. if a loop contains an edge AB, then
-// no other loop may contain AB or BA.
-//
-// - Loops may share vertices, however no vertex may appear twice in a
-// single loop (see Loop).
-//
-// - No loop may be empty. The full loop may appear only in the full polygon.
-type Polygon struct {
- loops []*Loop
-
- // index is a spatial index of all the polygon loops.
- index *ShapeIndex
-
- // hasHoles tracks if this polygon has at least one hole.
- hasHoles bool
-
- // numVertices keeps the running total of all of the vertices of the contained loops.
- numVertices int
-
- // numEdges tracks the total number of edges in all the loops in this polygon.
- numEdges int
-
- // bound is a conservative bound on all points contained by this loop.
- // If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
- bound Rect
-
- // Since bound is not exact, it is possible that a loop A contains
- // another loop B whose bounds are slightly larger. subregionBound
- // has been expanded sufficiently to account for this error, i.e.
- // if A.Contains(B), then A.subregionBound.Contains(B.bound).
- subregionBound Rect
-
- // A slice where element i is the cumulative number of edges in the
- // preceding loops in the polygon. This field is used for polygons that
- // have a large number of loops, and may be empty for polygons with few loops.
- cumulativeEdges []int
-}
-
-// PolygonFromLoops constructs a polygon from the given set of loops. The polygon
-// interior consists of the points contained by an odd number of loops. (Recall
-// that a loop contains the set of points on its left-hand side.)
-//
-// This method determines the loop nesting hierarchy and assigns every loop a
-// depth. Shells have even depths, and holes have odd depths.
-//
-// Note: The given set of loops are reordered by this method so that the hierarchy
-// can be traversed using Parent, LastDescendant and the loops depths.
-func PolygonFromLoops(loops []*Loop) *Polygon {
- p := &Polygon{}
- // Empty polygons do not contain any loops, even the Empty loop.
- if len(loops) == 1 && loops[0].IsEmpty() {
- p.initLoopProperties()
- return p
- }
- p.loops = loops
- p.initNested()
- return p
-}
-
-// PolygonFromOrientedLoops returns a Polygon from the given set of loops,
-// like PolygonFromLoops. It expects loops to be oriented such that the polygon
-// interior is on the left-hand side of all loops. This implies that shells
-// and holes should have opposite orientations in the input to this method.
-// (During initialization, loops representing holes will automatically be
-// inverted.)
-func PolygonFromOrientedLoops(loops []*Loop) *Polygon {
- // Here is the algorithm:
- //
- // 1. Remember which of the given loops contain OriginPoint.
- //
- // 2. Invert loops as necessary to ensure that they are nestable (i.e., no
- // loop contains the complement of any other loop). This may result in a
- // set of loops corresponding to the complement of the given polygon, but
- // we will fix that problem later.
- //
- // We make the loops nestable by first normalizing all the loops (i.e.,
- // inverting any loops whose turning angle is negative). This handles
- // all loops except those whose turning angle is very close to zero
- // (within the maximum error tolerance). Any such loops are inverted if
- // and only if they contain OriginPoint(). (In theory this step is only
- // necessary if there are at least two such loops.) The resulting set of
- // loops is guaranteed to be nestable.
- //
- // 3. Build the polygon. This yields either the desired polygon or its
- // complement.
- //
- // 4. If there is at least one loop, we find a loop L that is adjacent to
- // OriginPoint() (where "adjacent" means that there exists a path
- // connecting OriginPoint() to some vertex of L such that the path does
- // not cross any loop). There may be a single such adjacent loop, or
- // there may be several (in which case they should all have the same
- // contains_origin() value). We choose L to be the loop containing the
- // origin whose depth is greatest, or loop(0) (a top-level shell) if no
- // such loop exists.
- //
- // 5. If (L originally contained origin) != (polygon contains origin), we
- // invert the polygon. This is done by inverting a top-level shell whose
- // turning angle is minimal and then fixing the nesting hierarchy. Note
- // that because we normalized all the loops initially, this step is only
- // necessary if the polygon requires at least one non-normalized loop to
- // represent it.
-
- containedOrigin := make(map[*Loop]bool)
- for _, l := range loops {
- containedOrigin[l] = l.ContainsOrigin()
- }
-
- for _, l := range loops {
- angle := l.TurningAngle()
- if math.Abs(angle) > l.turningAngleMaxError() {
- // Normalize the loop.
- if angle < 0 {
- l.Invert()
- }
- } else {
- // Ensure that the loop does not contain the origin.
- if l.ContainsOrigin() {
- l.Invert()
- }
- }
- }
-
- p := PolygonFromLoops(loops)
-
- if p.NumLoops() > 0 {
- originLoop := p.Loop(0)
- polygonContainsOrigin := false
- for _, l := range p.Loops() {
- if l.ContainsOrigin() {
- polygonContainsOrigin = !polygonContainsOrigin
-
- originLoop = l
- }
- }
- if containedOrigin[originLoop] != polygonContainsOrigin {
- p.Invert()
- }
- }
-
- return p
-}
-
-// Invert inverts the polygon (replaces it by its complement).
-func (p *Polygon) Invert() {
- // Inverting any one loop will invert the polygon. The best loop to invert
- // is the one whose area is largest, since this yields the smallest area
- // after inversion. The loop with the largest area is always at depth 0.
- // The descendents of this loop all have their depth reduced by 1, while the
- // former siblings of this loop all have their depth increased by 1.
-
- // The empty and full polygons are handled specially.
- if p.IsEmpty() {
- *p = *FullPolygon()
- return
- }
- if p.IsFull() {
- *p = Polygon{}
- return
- }
-
- // Find the loop whose area is largest (i.e., whose turning angle is
- // smallest), minimizing calls to TurningAngle(). In particular, for
- // polygons with a single shell at level 0 there is no need to call
- // TurningAngle() at all. (This method is relatively expensive.)
- best := 0
- const none = 10.0 // Flag that means "not computed yet"
- bestAngle := none
- for i := 1; i < p.NumLoops(); i++ {
- if p.Loop(i).depth != 0 {
- continue
- }
- // We defer computing the turning angle of loop 0 until we discover
- // that the polygon has another top-level shell.
- if bestAngle == none {
- bestAngle = p.Loop(best).TurningAngle()
- }
- angle := p.Loop(i).TurningAngle()
- // We break ties deterministically in order to avoid having the output
- // depend on the input order of the loops.
- if angle < bestAngle || (angle == bestAngle && compareLoops(p.Loop(i), p.Loop(best)) < 0) {
- best = i
- bestAngle = angle
- }
- }
- // Build the new loops vector, starting with the inverted loop.
- p.Loop(best).Invert()
- newLoops := make([]*Loop, 0, p.NumLoops())
- // Add the former siblings of this loop as descendants.
- lastBest := p.LastDescendant(best)
- newLoops = append(newLoops, p.Loop(best))
- for i, l := range p.Loops() {
- if i < best || i > lastBest {
- l.depth++
- newLoops = append(newLoops, l)
- }
- }
- // Add the former children of this loop as siblings.
- for i, l := range p.Loops() {
- if i > best && i <= lastBest {
- l.depth--
- newLoops = append(newLoops, l)
- }
- }
- p.loops = newLoops
- p.initLoopProperties()
-}
-
-// Defines a total ordering on Loops that does not depend on the cyclic
-// order of loop vertices. This function is used to choose which loop to
-// invert in the case where several loops have exactly the same area.
-func compareLoops(a, b *Loop) int {
- if na, nb := a.NumVertices(), b.NumVertices(); na != nb {
- return na - nb
- }
- ai, aDir := a.CanonicalFirstVertex()
- bi, bDir := b.CanonicalFirstVertex()
- if aDir != bDir {
- return aDir - bDir
- }
- for n := a.NumVertices() - 1; n >= 0; n, ai, bi = n-1, ai+aDir, bi+bDir {
- if cmp := a.Vertex(ai).Cmp(b.Vertex(bi).Vector); cmp != 0 {
- return cmp
- }
- }
- return 0
-}
-
-// PolygonFromCell returns a Polygon from a single loop created from the given Cell.
-func PolygonFromCell(cell Cell) *Polygon {
- return PolygonFromLoops([]*Loop{LoopFromCell(cell)})
-}
-
-// initNested takes the set of loops in this polygon and performs the nesting
-// computations to set the proper nesting and parent/child relationships.
-func (p *Polygon) initNested() {
- if len(p.loops) == 1 {
- p.initOneLoop()
- return
- }
-
- lm := make(loopMap)
-
- for _, l := range p.loops {
- lm.insertLoop(l, nil)
- }
- // The loops have all been added to the loopMap for ordering. Clear the
- // loops slice because we add all the loops in-order in initLoops.
- p.loops = nil
-
- // Reorder the loops in depth-first traversal order.
- p.initLoops(lm)
- p.initLoopProperties()
-}
-
-// loopMap is a map of a loop to its immediate children with respect to nesting.
-// It is used to determine which loops are shells and which are holes.
-type loopMap map[*Loop][]*Loop
-
-// insertLoop adds the given loop to the loop map under the specified parent.
-// All children of the new entry are checked to see if the need to move up to
-// a different level.
-func (lm loopMap) insertLoop(newLoop, parent *Loop) {
- var children []*Loop
- for done := false; !done; {
- children = lm[parent]
- done = true
- for _, child := range children {
- if child.ContainsNested(newLoop) {
- parent = child
- done = false
- break
- }
- }
- }
-
- // Now, we have found a parent for this loop, it may be that some of the
- // children of the parent of this loop may now be children of the new loop.
- newChildren := lm[newLoop]
- for i := 0; i < len(children); {
- child := children[i]
- if newLoop.ContainsNested(child) {
- newChildren = append(newChildren, child)
- children = append(children[0:i], children[i+1:]...)
- } else {
- i++
- }
- }
-
- lm[newLoop] = newChildren
- lm[parent] = append(children, newLoop)
-}
-
-// loopStack simplifies access to the loops while being initialized.
-type loopStack []*Loop
-
-func (s *loopStack) push(v *Loop) {
- *s = append(*s, v)
-}
-func (s *loopStack) pop() *Loop {
- l := len(*s)
- r := (*s)[l-1]
- *s = (*s)[:l-1]
- return r
-}
-
-// initLoops walks the mapping of loops to all of their children, and adds them in
-// order into to the polygons set of loops.
-func (p *Polygon) initLoops(lm loopMap) {
- var stack loopStack
- stack.push(nil)
- depth := -1
-
- for len(stack) > 0 {
- loop := stack.pop()
- if loop != nil {
- depth = loop.depth
- p.loops = append(p.loops, loop)
- }
- children := lm[loop]
- for i := len(children) - 1; i >= 0; i-- {
- child := children[i]
- child.depth = depth + 1
- stack.push(child)
- }
- }
-}
-
-// initOneLoop set the properties for a polygon made of a single loop.
-// TODO(roberts): Can this be merged with initLoopProperties
-func (p *Polygon) initOneLoop() {
- p.hasHoles = false
- p.numVertices = len(p.loops[0].vertices)
- p.bound = p.loops[0].RectBound()
- p.subregionBound = ExpandForSubregions(p.bound)
- // Ensure the loops depth is set correctly.
- p.loops[0].depth = 0
-
- p.initEdgesAndIndex()
-}
-
-// initLoopProperties sets the properties for polygons with multiple loops.
-func (p *Polygon) initLoopProperties() {
- // the loops depths are set by initNested/initOriented prior to this.
- p.bound = EmptyRect()
- p.hasHoles = false
- for _, l := range p.loops {
- if l.IsHole() {
- p.hasHoles = true
- } else {
- p.bound = p.bound.Union(l.RectBound())
- }
- p.numVertices += l.NumVertices()
- }
- p.subregionBound = ExpandForSubregions(p.bound)
-
- p.initEdgesAndIndex()
-}
-
-// initEdgesAndIndex performs the shape related initializations and adds the final
-// polygon to the index.
-func (p *Polygon) initEdgesAndIndex() {
- if p.IsFull() {
- return
- }
- const maxLinearSearchLoops = 12 // Based on benchmarks.
- if len(p.loops) > maxLinearSearchLoops {
- p.cumulativeEdges = make([]int, 0, len(p.loops))
- }
-
- for _, l := range p.loops {
- if p.cumulativeEdges != nil {
- p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges)
- }
- p.numEdges += len(l.vertices)
- }
-
- p.index = NewShapeIndex()
- p.index.Add(p)
-}
-
-// FullPolygon returns a special "full" polygon.
-func FullPolygon() *Polygon {
- ret := &Polygon{
- loops: []*Loop{
- FullLoop(),
- },
- numVertices: len(FullLoop().Vertices()),
- bound: FullRect(),
- subregionBound: FullRect(),
- }
- ret.initEdgesAndIndex()
- return ret
-}
-
-// Validate checks whether this is a valid polygon,
-// including checking whether all the loops are themselves valid.
-func (p *Polygon) Validate() error {
- for i, l := range p.loops {
- // Check for loop errors that don't require building a ShapeIndex.
- if err := l.findValidationErrorNoIndex(); err != nil {
- return fmt.Errorf("loop %d: %v", i, err)
- }
- // Check that no loop is empty, and that the full loop only appears in the
- // full polygon.
- if l.IsEmpty() {
- return fmt.Errorf("loop %d: empty loops are not allowed", i)
- }
- if l.IsFull() && len(p.loops) > 1 {
- return fmt.Errorf("loop %d: full loop appears in non-full polygon", i)
- }
- }
-
- // TODO(roberts): Uncomment the remaining checks when they are completed.
-
- // Check for loop self-intersections and loop pairs that cross
- // (including duplicate edges and vertices).
- // if findSelfIntersection(p.index) {
- // return fmt.Errorf("polygon has loop pairs that cross")
- // }
-
- // Check whether initOriented detected inconsistent loop orientations.
- // if p.hasInconsistentLoopOrientations {
- // return fmt.Errorf("inconsistent loop orientations detected")
- // }
-
- // Finally, verify the loop nesting hierarchy.
- return p.findLoopNestingError()
-}
-
-// findLoopNestingError reports if there is an error in the loop nesting hierarchy.
-func (p *Polygon) findLoopNestingError() error {
- // First check that the loop depths make sense.
- lastDepth := -1
- for i, l := range p.loops {
- depth := l.depth
- if depth < 0 || depth > lastDepth+1 {
- return fmt.Errorf("loop %d: invalid loop depth (%d)", i, depth)
- }
- lastDepth = depth
- }
- // Then check that they correspond to the actual loop nesting. This test
- // is quadratic in the number of loops but the cost per iteration is small.
- for i, l := range p.loops {
- last := p.LastDescendant(i)
- for j, l2 := range p.loops {
- if i == j {
- continue
- }
- nested := (j >= i+1) && (j <= last)
- const reverseB = false
-
- if l.containsNonCrossingBoundary(l2, reverseB) != nested {
- nestedStr := ""
- if !nested {
- nestedStr = "not "
- }
- return fmt.Errorf("invalid nesting: loop %d should %scontain loop %d", i, nestedStr, j)
- }
- }
- }
- return nil
-}
-
-// IsEmpty reports whether this is the special "empty" polygon (consisting of no loops).
-func (p *Polygon) IsEmpty() bool {
- return len(p.loops) == 0
-}
-
-// IsFull reports whether this is the special "full" polygon (consisting of a
-// single loop that encompasses the entire sphere).
-func (p *Polygon) IsFull() bool {
- return len(p.loops) == 1 && p.loops[0].IsFull()
-}
-
-// NumLoops returns the number of loops in this polygon.
-func (p *Polygon) NumLoops() int {
- return len(p.loops)
-}
-
-// Loops returns the loops in this polygon.
-func (p *Polygon) Loops() []*Loop {
- return p.loops
-}
-
-// Loop returns the loop at the given index. Note that during initialization,
-// the given loops are reordered according to a pre-order traversal of the loop
-// nesting hierarchy. This implies that every loop is immediately followed by
-// its descendants. This hierarchy can be traversed using the methods Parent,
-// LastDescendant, and Loop.depth.
-func (p *Polygon) Loop(k int) *Loop {
- return p.loops[k]
-}
-
-// Parent returns the index of the parent of loop k.
-// If the loop does not have a parent, ok=false is returned.
-func (p *Polygon) Parent(k int) (index int, ok bool) {
- // See where we are on the depth hierarchy.
- depth := p.loops[k].depth
- if depth == 0 {
- return -1, false
- }
-
- // There may be several loops at the same nesting level as us that share a
- // parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop.
- // we don't know how many may be next to us before we get back to our parent loop.)
- // Move up one position from us, and then begin traversing back through the set of loops
- // until we find the one that is our parent or we get to the top of the polygon.
- for k--; k >= 0 && p.loops[k].depth <= depth; k-- {
- }
- return k, true
-}
-
-// LastDescendant returns the index of the last loop that is contained within loop k.
-// If k is negative, it returns the last loop in the polygon.
-// Note that loops are indexed according to a pre-order traversal of the nesting
-// hierarchy, so the immediate children of loop k can be found by iterating over
-// the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal
-// to Loop(k).depth+1.
-func (p *Polygon) LastDescendant(k int) int {
- if k < 0 {
- return len(p.loops) - 1
- }
-
- depth := p.loops[k].depth
-
- // Find the next loop immediately past us in the set of loops, and then start
- // moving down the list until we either get to the end or find the next loop
- // that is higher up the hierarchy than we are.
- for k++; k < len(p.loops) && p.loops[k].depth > depth; k++ {
- }
- return k - 1
-}
-
-// CapBound returns a bounding spherical cap.
-func (p *Polygon) CapBound() Cap { return p.bound.CapBound() }
-
-// RectBound returns a bounding latitude-longitude rectangle.
-func (p *Polygon) RectBound() Rect { return p.bound }
-
-// ContainsPoint reports whether the polygon contains the point.
-func (p *Polygon) ContainsPoint(point Point) bool {
- // NOTE: A bounds check slows down this function by about 50%. It is
- // worthwhile only when it might allow us to delay building the index.
- if !p.index.IsFresh() && !p.bound.ContainsPoint(point) {
- return false
- }
-
- // For small polygons, and during initial construction, it is faster to just
- // check all the crossing.
- const maxBruteForceVertices = 32
- if p.numVertices < maxBruteForceVertices || p.index == nil {
- inside := false
- for _, l := range p.loops {
- // use loops bruteforce to avoid building the index on each loop.
- inside = inside != l.bruteForceContainsPoint(point)
- }
- return inside
- }
-
- // Otherwise, look up the ShapeIndex cell containing this point.
- it := p.index.Iterator()
- if !it.LocatePoint(point) {
- return false
- }
-
- return p.iteratorContainsPoint(it, point)
-}
-
-// ContainsCell reports whether the polygon contains the given cell.
-func (p *Polygon) ContainsCell(cell Cell) bool {
- it := p.index.Iterator()
- relation := it.LocateCellID(cell.ID())
-
- // If "cell" is disjoint from all index cells, it is not contained.
- // Similarly, if "cell" is subdivided into one or more index cells then it
- // is not contained, since index cells are subdivided only if they (nearly)
- // intersect a sufficient number of edges. (But note that if "cell" itself
- // is an index cell then it may be contained, since it could be a cell with
- // no edges in the loop interior.)
- if relation != Indexed {
- return false
- }
-
- // Otherwise check if any edges intersect "cell".
- if p.boundaryApproxIntersects(it, cell) {
- return false
- }
-
- // Otherwise check if the loop contains the center of "cell".
- return p.iteratorContainsPoint(it, cell.Center())
-}
-
-// IntersectsCell reports whether the polygon intersects the given cell.
-func (p *Polygon) IntersectsCell(cell Cell) bool {
- it := p.index.Iterator()
- relation := it.LocateCellID(cell.ID())
-
- // If cell does not overlap any index cell, there is no intersection.
- if relation == Disjoint {
- return false
- }
- // If cell is subdivided into one or more index cells, there is an
- // intersection to within the S2ShapeIndex error bound (see Contains).
- if relation == Subdivided {
- return true
- }
- // If cell is an index cell, there is an intersection because index cells
- // are created only if they have at least one edge or they are entirely
- // contained by the loop.
- if it.CellID() == cell.id {
- return true
- }
- // Otherwise check if any edges intersect cell.
- if p.boundaryApproxIntersects(it, cell) {
- return true
- }
- // Otherwise check if the loop contains the center of cell.
- return p.iteratorContainsPoint(it, cell.Center())
-}
-
-// CellUnionBound computes a covering of the Polygon.
-func (p *Polygon) CellUnionBound() []CellID {
- // TODO(roberts): Use ShapeIndexRegion when it's available.
- return p.CapBound().CellUnionBound()
-}
-
-// boundaryApproxIntersects reports whether the loop's boundary intersects cell.
-// It may also return true when the loop boundary does not intersect cell but
-// some edge comes within the worst-case error tolerance.
-//
-// This requires that it.Locate(cell) returned Indexed.
-func (p *Polygon) boundaryApproxIntersects(it *ShapeIndexIterator, cell Cell) bool {
- aClipped := it.IndexCell().findByShapeID(0)
-
- // If there are no edges, there is no intersection.
- if len(aClipped.edges) == 0 {
- return false
- }
-
- // We can save some work if cell is the index cell itself.
- if it.CellID() == cell.ID() {
- return true
- }
-
- // Otherwise check whether any of the edges intersect cell.
- maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist)
- bound := cell.BoundUV().ExpandedByMargin(maxError)
- for _, e := range aClipped.edges {
- edge := p.index.Shape(0).Edge(e)
- v0, v1, ok := ClipToPaddedFace(edge.V0, edge.V1, cell.Face(), maxError)
- if ok && edgeIntersectsRect(v0, v1, bound) {
- return true
- }
- }
-
- return false
-}
-
-// iteratorContainsPoint reports whether the iterator that is positioned at the
-// ShapeIndexCell that may contain p, contains the point p.
-func (p *Polygon) iteratorContainsPoint(it *ShapeIndexIterator, point Point) bool {
- // Test containment by drawing a line segment from the cell center to the
- // given point and counting edge crossings.
- aClipped := it.IndexCell().findByShapeID(0)
- inside := aClipped.containsCenter
-
- if len(aClipped.edges) == 0 {
- return inside
- }
-
- // This block requires ShapeIndex.
- crosser := NewEdgeCrosser(it.Center(), point)
- shape := p.index.Shape(0)
- for _, e := range aClipped.edges {
- edge := shape.Edge(e)
- inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1)
- }
-
- return inside
-}
-
-// Shape Interface
-
-// NumEdges returns the number of edges in this shape.
-func (p *Polygon) NumEdges() int {
- return p.numEdges
-}
-
-// Edge returns endpoints for the given edge index.
-func (p *Polygon) Edge(e int) Edge {
- var i int
-
- if len(p.cumulativeEdges) > 0 {
- for i = range p.cumulativeEdges {
- if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] {
- e -= p.cumulativeEdges[i]
- break
- }
- }
- } else {
- // When the number of loops is small, use linear search. Most often
- // there is exactly one loop and the code below executes zero times.
- for i = 0; e >= len(p.Loop(i).vertices); i++ {
- e -= len(p.Loop(i).vertices)
- }
- }
-
- return Edge{p.Loop(i).OrientedVertex(e), p.Loop(i).OrientedVertex(e + 1)}
-}
-
-// ReferencePoint returns the reference point for this polygon.
-func (p *Polygon) ReferencePoint() ReferencePoint {
- containsOrigin := false
- for _, l := range p.loops {
- containsOrigin = containsOrigin != l.ContainsOrigin()
- }
- return OriginReferencePoint(containsOrigin)
-}
-
-// NumChains reports the number of contiguous edge chains in the Polygon.
-func (p *Polygon) NumChains() int {
- return p.NumLoops()
-}
-
-// Chain returns the i-th edge Chain (loop) in the Shape.
-func (p *Polygon) Chain(chainID int) Chain {
- if p.cumulativeEdges != nil {
- return Chain{p.cumulativeEdges[chainID], len(p.Loop(chainID).vertices)}
- }
- e := 0
- for j := 0; j < chainID; j++ {
- e += len(p.Loop(j).vertices)
- }
-
- // Polygon represents a full loop as a loop with one vertex, while
- // Shape represents a full loop as a chain with no vertices.
- if numVertices := p.Loop(chainID).NumVertices(); numVertices != 1 {
- return Chain{e, numVertices}
- }
- return Chain{e, 0}
-}
-
-// ChainEdge returns the j-th edge of the i-th edge Chain (loop).
-func (p *Polygon) ChainEdge(i, j int) Edge {
- return Edge{p.Loop(i).OrientedVertex(j), p.Loop(i).OrientedVertex(j + 1)}
-}
-
-// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
-// of the i-th edge Chain.
-func (p *Polygon) ChainPosition(edgeID int) ChainPosition {
- var i int
-
- if len(p.cumulativeEdges) > 0 {
- for i = range p.cumulativeEdges {
- if i+1 >= len(p.cumulativeEdges) || edgeID < p.cumulativeEdges[i+1] {
- edgeID -= p.cumulativeEdges[i]
- break
- }
- }
- } else {
- // When the number of loops is small, use linear search. Most often
- // there is exactly one loop and the code below executes zero times.
- for i = 0; edgeID >= len(p.Loop(i).vertices); i++ {
- edgeID -= len(p.Loop(i).vertices)
- }
- }
- // TODO(roberts): unify this and Edge since they are mostly identical.
- return ChainPosition{i, edgeID}
-}
-
-// Dimension returns the dimension of the geometry represented by this Polygon.
-func (p *Polygon) Dimension() int { return 2 }
-
-func (p *Polygon) typeTag() typeTag { return typeTagPolygon }
-
-func (p *Polygon) privateInterface() {}
-
-// Contains reports whether this polygon contains the other polygon.
-// Specifically, it reports whether all the points in the other polygon
-// are also in this polygon.
-func (p *Polygon) Contains(o *Polygon) bool {
- // If both polygons have one loop, use the more efficient Loop method.
- // Note that Loop's Contains does its own bounding rectangle check.
- if len(p.loops) == 1 && len(o.loops) == 1 {
- return p.loops[0].Contains(o.loops[0])
- }
-
- // Otherwise if neither polygon has holes, we can still use the more
- // efficient Loop's Contains method (rather than compareBoundary),
- // but it's worthwhile to do our own bounds check first.
- if !p.subregionBound.Contains(o.bound) {
- // Even though Bound(A) does not contain Bound(B), it is still possible
- // that A contains B. This can only happen when union of the two bounds
- // spans all longitudes. For example, suppose that B consists of two
- // shells with a longitude gap between them, while A consists of one shell
- // that surrounds both shells of B but goes the other way around the
- // sphere (so that it does not intersect the longitude gap).
- if !p.bound.Lng.Union(o.bound.Lng).IsFull() {
- return false
- }
- }
-
- if !p.hasHoles && !o.hasHoles {
- for _, l := range o.loops {
- if !p.anyLoopContains(l) {
- return false
- }
- }
- return true
- }
-
- // Polygon A contains B iff B does not intersect the complement of A. From
- // the intersection algorithm below, this means that the complement of A
- // must exclude the entire boundary of B, and B must exclude all shell
- // boundaries of the complement of A. (It can be shown that B must then
- // exclude the entire boundary of the complement of A.) The first call
- // below returns false if the boundaries cross, therefore the second call
- // does not need to check for any crossing edges (which makes it cheaper).
- return p.containsBoundary(o) && o.excludesNonCrossingComplementShells(p)
-}
-
-// Intersects reports whether this polygon intersects the other polygon, i.e.
-// if there is a point that is contained by both polygons.
-func (p *Polygon) Intersects(o *Polygon) bool {
- // If both polygons have one loop, use the more efficient Loop method.
- // Note that Loop Intersects does its own bounding rectangle check.
- if len(p.loops) == 1 && len(o.loops) == 1 {
- return p.loops[0].Intersects(o.loops[0])
- }
-
- // Otherwise if neither polygon has holes, we can still use the more
- // efficient Loop.Intersects method. The polygons intersect if and
- // only if some pair of loop regions intersect.
- if !p.bound.Intersects(o.bound) {
- return false
- }
-
- if !p.hasHoles && !o.hasHoles {
- for _, l := range o.loops {
- if p.anyLoopIntersects(l) {
- return true
- }
- }
- return false
- }
-
- // Polygon A is disjoint from B if A excludes the entire boundary of B and B
- // excludes all shell boundaries of A. (It can be shown that B must then
- // exclude the entire boundary of A.) The first call below returns false if
- // the boundaries cross, therefore the second call does not need to check
- // for crossing edges.
- return !p.excludesBoundary(o) || !o.excludesNonCrossingShells(p)
-}
-
-// compareBoundary returns +1 if this polygon contains the boundary of B, -1 if A
-// excludes the boundary of B, and 0 if the boundaries of A and B cross.
-func (p *Polygon) compareBoundary(o *Loop) int {
- result := -1
- for i := 0; i < len(p.loops) && result != 0; i++ {
- // If B crosses any loop of A, the result is 0. Otherwise the result
- // changes sign each time B is contained by a loop of A.
- result *= -p.loops[i].compareBoundary(o)
- }
- return result
-}
-
-// containsBoundary reports whether this polygon contains the entire boundary of B.
-func (p *Polygon) containsBoundary(o *Polygon) bool {
- for _, l := range o.loops {
- if p.compareBoundary(l) <= 0 {
- return false
- }
- }
- return true
-}
-
-// excludesBoundary reports whether this polygon excludes the entire boundary of B.
-func (p *Polygon) excludesBoundary(o *Polygon) bool {
- for _, l := range o.loops {
- if p.compareBoundary(l) >= 0 {
- return false
- }
- }
- return true
-}
-
-// containsNonCrossingBoundary reports whether polygon A contains the boundary of
-// loop B. Shared edges are handled according to the rule described in loops
-// containsNonCrossingBoundary.
-func (p *Polygon) containsNonCrossingBoundary(o *Loop, reverse bool) bool {
- var inside bool
- for _, l := range p.loops {
- x := l.containsNonCrossingBoundary(o, reverse)
- inside = (inside != x)
- }
- return inside
-}
-
-// excludesNonCrossingShells reports wheterh given two polygons A and B such that the
-// boundary of A does not cross any loop of B, if A excludes all shell boundaries of B.
-func (p *Polygon) excludesNonCrossingShells(o *Polygon) bool {
- for _, l := range o.loops {
- if l.IsHole() {
- continue
- }
- if p.containsNonCrossingBoundary(l, false) {
- return false
- }
- }
- return true
-}
-
-// excludesNonCrossingComplementShells reports whether given two polygons A and B
-// such that the boundary of A does not cross any loop of B, if A excludes all
-// shell boundaries of the complement of B.
-func (p *Polygon) excludesNonCrossingComplementShells(o *Polygon) bool {
- // Special case to handle the complement of the empty or full polygons.
- if o.IsEmpty() {
- return !p.IsFull()
- }
- if o.IsFull() {
- return true
- }
-
- // Otherwise the complement of B may be obtained by inverting loop(0) and
- // then swapping the shell/hole status of all other loops. This implies
- // that the shells of the complement consist of loop 0 plus all the holes of
- // the original polygon.
- for j, l := range o.loops {
- if j > 0 && !l.IsHole() {
- continue
- }
-
- // The interior of the complement is to the right of loop 0, and to the
- // left of the loops that were originally holes.
- if p.containsNonCrossingBoundary(l, j == 0) {
- return false
- }
- }
- return true
-}
-
-// anyLoopContains reports whether any loop in this polygon contains the given loop.
-func (p *Polygon) anyLoopContains(o *Loop) bool {
- for _, l := range p.loops {
- if l.Contains(o) {
- return true
- }
- }
- return false
-}
-
-// anyLoopIntersects reports whether any loop in this polygon intersects the given loop.
-func (p *Polygon) anyLoopIntersects(o *Loop) bool {
- for _, l := range p.loops {
- if l.Intersects(o) {
- return true
- }
- }
- return false
-}
-
-// Area returns the area of the polygon interior, i.e. the region on the left side
-// of an odd number of loops. The return value is between 0 and 4*Pi.
-func (p *Polygon) Area() float64 {
- var area float64
- for _, loop := range p.loops {
- area += float64(loop.Sign()) * loop.Area()
- }
- return area
-}
-
-// Encode encodes the Polygon
-func (p *Polygon) Encode(w io.Writer) error {
- e := &encoder{w: w}
- p.encode(e)
- return e.err
-}
-
-// encode only supports lossless encoding and not compressed format.
-func (p *Polygon) encode(e *encoder) {
- if p.numVertices == 0 {
- p.encodeCompressed(e, maxLevel, nil)
- return
- }
-
- // Convert all the polygon vertices to XYZFaceSiTi format.
- vs := make([]xyzFaceSiTi, 0, p.numVertices)
- for _, l := range p.loops {
- vs = append(vs, l.xyzFaceSiTiVertices()...)
- }
-
- // Computes a histogram of the cell levels at which the vertices are snapped.
- // (histogram[0] is the number of unsnapped vertices, histogram[i] the number
- // of vertices snapped at level i-1).
- histogram := make([]int, maxLevel+2)
- for _, v := range vs {
- histogram[v.level+1]++
- }
-
- // Compute the level at which most of the vertices are snapped.
- // If multiple levels have the same maximum number of vertices
- // snapped to it, the first one (lowest level number / largest
- // area / smallest encoding length) will be chosen, so this
- // is desired.
- var snapLevel, numSnapped int
- for level, h := range histogram[1:] {
- if h > numSnapped {
- snapLevel, numSnapped = level, h
- }
- }
-
- // Choose an encoding format based on the number of unsnapped vertices and a
- // rough estimate of the encoded sizes.
- numUnsnapped := p.numVertices - numSnapped // Number of vertices that won't be snapped at snapLevel.
- const pointSize = 3 * 8 // s2.Point is an r3.Vector, which is 3 float64s. That's 3*8 = 24 bytes.
- compressedSize := 4*p.numVertices + (pointSize+2)*numUnsnapped
- losslessSize := pointSize * p.numVertices
- if compressedSize < losslessSize {
- p.encodeCompressed(e, snapLevel, vs)
- } else {
- p.encodeLossless(e)
- }
-}
-
-// encodeLossless encodes the polygon's Points as float64s.
-func (p *Polygon) encodeLossless(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeBool(true) // a legacy c++ value. must be true.
- e.writeBool(p.hasHoles)
- e.writeUint32(uint32(len(p.loops)))
-
- if e.err != nil {
- return
- }
- if len(p.loops) > maxEncodedLoops {
- e.err = fmt.Errorf("too many loops (%d; max is %d)", len(p.loops), maxEncodedLoops)
- return
- }
- for _, l := range p.loops {
- l.encode(e)
- }
-
- // Encode the bound.
- p.bound.encode(e)
-}
-
-func (p *Polygon) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) {
- e.writeUint8(uint8(encodingCompressedVersion))
- e.writeUint8(uint8(snapLevel))
- e.writeUvarint(uint64(len(p.loops)))
-
- if e.err != nil {
- return
- }
- if l := len(p.loops); l > maxEncodedLoops {
- e.err = fmt.Errorf("too many loops to encode: %d; max is %d", l, maxEncodedLoops)
- return
- }
-
- for _, l := range p.loops {
- l.encodeCompressed(e, snapLevel, vertices[:len(l.vertices)])
- vertices = vertices[len(l.vertices):]
- }
- // Do not write the bound, num_vertices, or has_holes_ as they can be
- // cheaply recomputed by decodeCompressed. Microbenchmarks show the
- // speed difference is inconsequential.
-}
-
-// Decode decodes the Polygon.
-func (p *Polygon) Decode(r io.Reader) error {
- d := &decoder{r: asByteReader(r)}
- version := int8(d.readUint8())
- var dec func(*decoder)
- switch version {
- case encodingVersion:
- dec = p.decode
- case encodingCompressedVersion:
- dec = p.decodeCompressed
- default:
- return fmt.Errorf("unsupported version %d", version)
- }
- dec(d)
- return d.err
-}
-
-// maxEncodedLoops is the biggest supported number of loops in a polygon during encoding.
-// Setting a maximum guards an allocation: it prevents an attacker from easily pushing us OOM.
-const maxEncodedLoops = 10000000
-
-func (p *Polygon) decode(d *decoder) {
- *p = Polygon{}
- d.readUint8() // Ignore irrelevant serialized owns_loops_ value.
-
- p.hasHoles = d.readBool()
-
- // Polygons with no loops are explicitly allowed here: a newly created
- // polygon has zero loops and such polygons encode and decode properly.
- nloops := d.readUint32()
- if d.err != nil {
- return
- }
- if nloops > maxEncodedLoops {
- d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
- return
- }
- p.loops = make([]*Loop, nloops)
- for i := range p.loops {
- p.loops[i] = new(Loop)
- p.loops[i].decode(d)
- p.numVertices += len(p.loops[i].vertices)
- }
-
- p.bound.decode(d)
- if d.err != nil {
- return
- }
- p.subregionBound = ExpandForSubregions(p.bound)
- p.initEdgesAndIndex()
-}
-
-func (p *Polygon) decodeCompressed(d *decoder) {
- snapLevel := int(d.readUint8())
-
- if snapLevel > maxLevel {
- d.err = fmt.Errorf("snaplevel too big: %d", snapLevel)
- return
- }
- // Polygons with no loops are explicitly allowed here: a newly created
- // polygon has zero loops and such polygons encode and decode properly.
- nloops := int(d.readUvarint())
- if nloops > maxEncodedLoops {
- d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
- }
- p.loops = make([]*Loop, nloops)
- for i := range p.loops {
- p.loops[i] = new(Loop)
- p.loops[i].decodeCompressed(d, snapLevel)
- }
- p.initLoopProperties()
-}
-
-// TODO(roberts): Differences from C++
-// Centroid
-// SnapLevel
-// DistanceToPoint
-// DistanceToBoundary
-// Project
-// ProjectToBoundary
-// ApproxContains/ApproxDisjoint for Polygons
-// InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff}
-// InitToSimplified
-// InitToSnapped
-// IntersectWithPolyline
-// ApproxIntersectWithPolyline
-// SubtractFromPolyline
-// ApproxSubtractFromPolyline
-// DestructiveUnion
-// DestructiveApproxUnion
-// InitToCellUnionBorder
-// IsNormalized
-// Equal/BoundaryEqual/BoundaryApproxEqual/BoundaryNear Polygons
-// BreakEdgesAndAddToBuilder
-//
-// clearLoops
-// findLoopNestingError
-// initToSimplifiedInternal
-// internalClipPolyline
-// clipBoundary
diff --git a/vendor/github.com/golang/geo/s2/polyline.go b/vendor/github.com/golang/geo/s2/polyline.go
deleted file mode 100644
index 517968342..000000000
--- a/vendor/github.com/golang/geo/s2/polyline.go
+++ /dev/null
@@ -1,589 +0,0 @@
-// Copyright 2016 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-// Polyline represents a sequence of zero or more vertices connected by
-// straight edges (geodesics). Edges of length 0 and 180 degrees are not
-// allowed, i.e. adjacent vertices should not be identical or antipodal.
-type Polyline []Point
-
-// PolylineFromLatLngs creates a new Polyline from the given LatLngs.
-func PolylineFromLatLngs(points []LatLng) *Polyline {
- p := make(Polyline, len(points))
- for k, v := range points {
- p[k] = PointFromLatLng(v)
- }
- return &p
-}
-
-// Reverse reverses the order of the Polyline vertices.
-func (p *Polyline) Reverse() {
- for i := 0; i < len(*p)/2; i++ {
- (*p)[i], (*p)[len(*p)-i-1] = (*p)[len(*p)-i-1], (*p)[i]
- }
-}
-
-// Length returns the length of this Polyline.
-func (p *Polyline) Length() s1.Angle {
- var length s1.Angle
-
- for i := 1; i < len(*p); i++ {
- length += (*p)[i-1].Distance((*p)[i])
- }
- return length
-}
-
-// Centroid returns the true centroid of the polyline multiplied by the length of the
-// polyline. The result is not unit length, so you may wish to normalize it.
-//
-// Scaling by the Polyline length makes it easy to compute the centroid
-// of several Polylines (by simply adding up their centroids).
-func (p *Polyline) Centroid() Point {
- var centroid Point
- for i := 1; i < len(*p); i++ {
- // The centroid (multiplied by length) is a vector toward the midpoint
- // of the edge, whose length is twice the sin of half the angle between
- // the two vertices. Defining theta to be this angle, we have:
- vSum := (*p)[i-1].Add((*p)[i].Vector) // Length == 2*cos(theta)
- vDiff := (*p)[i-1].Sub((*p)[i].Vector) // Length == 2*sin(theta)
-
- // Length == 2*sin(theta)
- centroid = Point{centroid.Add(vSum.Mul(math.Sqrt(vDiff.Norm2() / vSum.Norm2())))}
- }
- return centroid
-}
-
-// Equal reports whether the given Polyline is exactly the same as this one.
-func (p *Polyline) Equal(b *Polyline) bool {
- if len(*p) != len(*b) {
- return false
- }
- for i, v := range *p {
- if v != (*b)[i] {
- return false
- }
- }
-
- return true
-}
-
-// ApproxEqual reports whether two polylines have the same number of vertices,
-// and corresponding vertex pairs are separated by no more the standard margin.
-func (p *Polyline) ApproxEqual(o *Polyline) bool {
- return p.approxEqual(o, s1.Angle(epsilon))
-}
-
-// approxEqual reports whether two polylines are equal within the given margin.
-func (p *Polyline) approxEqual(o *Polyline, maxError s1.Angle) bool {
- if len(*p) != len(*o) {
- return false
- }
- for offset, val := range *p {
- if !val.approxEqual((*o)[offset], maxError) {
- return false
- }
- }
- return true
-}
-
-// CapBound returns the bounding Cap for this Polyline.
-func (p *Polyline) CapBound() Cap {
- return p.RectBound().CapBound()
-}
-
-// RectBound returns the bounding Rect for this Polyline.
-func (p *Polyline) RectBound() Rect {
- rb := NewRectBounder()
- for _, v := range *p {
- rb.AddPoint(v)
- }
- return rb.RectBound()
-}
-
-// ContainsCell reports whether this Polyline contains the given Cell. Always returns false
-// because "containment" is not numerically well-defined except at the Polyline vertices.
-func (p *Polyline) ContainsCell(cell Cell) bool {
- return false
-}
-
-// IntersectsCell reports whether this Polyline intersects the given Cell.
-func (p *Polyline) IntersectsCell(cell Cell) bool {
- if len(*p) == 0 {
- return false
- }
-
- // We only need to check whether the cell contains vertex 0 for correctness,
- // but these tests are cheap compared to edge crossings so we might as well
- // check all the vertices.
- for _, v := range *p {
- if cell.ContainsPoint(v) {
- return true
- }
- }
-
- cellVertices := []Point{
- cell.Vertex(0),
- cell.Vertex(1),
- cell.Vertex(2),
- cell.Vertex(3),
- }
-
- for j := 0; j < 4; j++ {
- crosser := NewChainEdgeCrosser(cellVertices[j], cellVertices[(j+1)&3], (*p)[0])
- for i := 1; i < len(*p); i++ {
- if crosser.ChainCrossingSign((*p)[i]) != DoNotCross {
- // There is a proper crossing, or two vertices were the same.
- return true
- }
- }
- }
- return false
-}
-
-// ContainsPoint returns false since Polylines are not closed.
-func (p *Polyline) ContainsPoint(point Point) bool {
- return false
-}
-
-// CellUnionBound computes a covering of the Polyline.
-func (p *Polyline) CellUnionBound() []CellID {
- return p.CapBound().CellUnionBound()
-}
-
-// NumEdges returns the number of edges in this shape.
-func (p *Polyline) NumEdges() int {
- if len(*p) == 0 {
- return 0
- }
- return len(*p) - 1
-}
-
-// Edge returns endpoints for the given edge index.
-func (p *Polyline) Edge(i int) Edge {
- return Edge{(*p)[i], (*p)[i+1]}
-}
-
-// ReferencePoint returns the default reference point with negative containment because Polylines are not closed.
-func (p *Polyline) ReferencePoint() ReferencePoint {
- return OriginReferencePoint(false)
-}
-
-// NumChains reports the number of contiguous edge chains in this Polyline.
-func (p *Polyline) NumChains() int {
- return minInt(1, p.NumEdges())
-}
-
-// Chain returns the i-th edge Chain in the Shape.
-func (p *Polyline) Chain(chainID int) Chain {
- return Chain{0, p.NumEdges()}
-}
-
-// ChainEdge returns the j-th edge of the i-th edge Chain.
-func (p *Polyline) ChainEdge(chainID, offset int) Edge {
- return Edge{(*p)[offset], (*p)[offset+1]}
-}
-
-// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
-func (p *Polyline) ChainPosition(edgeID int) ChainPosition {
- return ChainPosition{0, edgeID}
-}
-
-// Dimension returns the dimension of the geometry represented by this Polyline.
-func (p *Polyline) Dimension() int { return 1 }
-
-// IsEmpty reports whether this shape contains no points.
-func (p *Polyline) IsEmpty() bool { return defaultShapeIsEmpty(p) }
-
-// IsFull reports whether this shape contains all points on the sphere.
-func (p *Polyline) IsFull() bool { return defaultShapeIsFull(p) }
-
-func (p *Polyline) typeTag() typeTag { return typeTagPolyline }
-
-func (p *Polyline) privateInterface() {}
-
-// findEndVertex reports the maximal end index such that the line segment between
-// the start index and this one such that the line segment between these two
-// vertices passes within the given tolerance of all interior vertices, in order.
-func findEndVertex(p Polyline, tolerance s1.Angle, index int) int {
- // The basic idea is to keep track of the "pie wedge" of angles
- // from the starting vertex such that a ray from the starting
- // vertex at that angle will pass through the discs of radius
- // tolerance centered around all vertices processed so far.
- //
- // First we define a coordinate frame for the tangent and normal
- // spaces at the starting vertex. Essentially this means picking
- // three orthonormal vectors X,Y,Z such that X and Y span the
- // tangent plane at the starting vertex, and Z is up. We use
- // the coordinate frame to define a mapping from 3D direction
- // vectors to a one-dimensional ray angle in the range (-π,
- // π]. The angle of a direction vector is computed by
- // transforming it into the X,Y,Z basis, and then calculating
- // atan2(y,x). This mapping allows us to represent a wedge of
- // angles as a 1D interval. Since the interval wraps around, we
- // represent it as an Interval, i.e. an interval on the unit
- // circle.
- origin := p[index]
- frame := getFrame(origin)
-
- // As we go along, we keep track of the current wedge of angles
- // and the distance to the last vertex (which must be
- // non-decreasing).
- currentWedge := s1.FullInterval()
- var lastDistance s1.Angle
-
- for index++; index < len(p); index++ {
- candidate := p[index]
- distance := origin.Distance(candidate)
-
- // We don't allow simplification to create edges longer than
- // 90 degrees, to avoid numeric instability as lengths
- // approach 180 degrees. We do need to allow for original
- // edges longer than 90 degrees, though.
- if distance > math.Pi/2 && lastDistance > 0 {
- break
- }
-
- // Vertices must be in increasing order along the ray, except
- // for the initial disc around the origin.
- if distance < lastDistance && lastDistance > tolerance {
- break
- }
-
- lastDistance = distance
-
- // Points that are within the tolerance distance of the origin
- // do not constrain the ray direction, so we can ignore them.
- if distance <= tolerance {
- continue
- }
-
- // If the current wedge of angles does not contain the angle
- // to this vertex, then stop right now. Note that the wedge
- // of possible ray angles is not necessarily empty yet, but we
- // can't continue unless we are willing to backtrack to the
- // last vertex that was contained within the wedge (since we
- // don't create new vertices). This would be more complicated
- // and also make the worst-case running time more than linear.
- direction := toFrame(frame, candidate)
- center := math.Atan2(direction.Y, direction.X)
- if !currentWedge.Contains(center) {
- break
- }
-
- // To determine how this vertex constrains the possible ray
- // angles, consider the triangle ABC where A is the origin, B
- // is the candidate vertex, and C is one of the two tangent
- // points between A and the spherical cap of radius
- // tolerance centered at B. Then from the spherical law of
- // sines, sin(a)/sin(A) = sin(c)/sin(C), where a and c are
- // the lengths of the edges opposite A and C. In our case C
- // is a 90 degree angle, therefore A = asin(sin(a) / sin(c)).
- // Angle A is the half-angle of the allowable wedge.
- halfAngle := math.Asin(math.Sin(tolerance.Radians()) / math.Sin(distance.Radians()))
- target := s1.IntervalFromPointPair(center, center).Expanded(halfAngle)
- currentWedge = currentWedge.Intersection(target)
- }
-
- // We break out of the loop when we reach a vertex index that
- // can't be included in the line segment, so back up by one
- // vertex.
- return index - 1
-}
-
-// SubsampleVertices returns a subsequence of vertex indices such that the
-// polyline connecting these vertices is never further than the given tolerance from
-// the original polyline. Provided the first and last vertices are distinct,
-// they are always preserved; if they are not, the subsequence may contain
-// only a single index.
-//
-// Some useful properties of the algorithm:
-//
-// - It runs in linear time.
-//
-// - The output always represents a valid polyline. In particular, adjacent
-// output vertices are never identical or antipodal.
-//
-// - The method is not optimal, but it tends to produce 2-3% fewer
-// vertices than the Douglas-Peucker algorithm with the same tolerance.
-//
-// - The output is parametrically equivalent to the original polyline to
-// within the given tolerance. For example, if a polyline backtracks on
-// itself and then proceeds onwards, the backtracking will be preserved
-// (to within the given tolerance). This is different than the
-// Douglas-Peucker algorithm which only guarantees geometric equivalence.
-func (p *Polyline) SubsampleVertices(tolerance s1.Angle) []int {
- var result []int
-
- if len(*p) < 1 {
- return result
- }
-
- result = append(result, 0)
- clampedTolerance := s1.Angle(math.Max(tolerance.Radians(), 0))
-
- for index := 0; index+1 < len(*p); {
- nextIndex := findEndVertex(*p, clampedTolerance, index)
- // Don't create duplicate adjacent vertices.
- if (*p)[nextIndex] != (*p)[index] {
- result = append(result, nextIndex)
- }
- index = nextIndex
- }
-
- return result
-}
-
-// Encode encodes the Polyline.
-func (p Polyline) Encode(w io.Writer) error {
- e := &encoder{w: w}
- p.encode(e)
- return e.err
-}
-
-func (p Polyline) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeUint32(uint32(len(p)))
- for _, v := range p {
- e.writeFloat64(v.X)
- e.writeFloat64(v.Y)
- e.writeFloat64(v.Z)
- }
-}
-
-// Decode decodes the polyline.
-func (p *Polyline) Decode(r io.Reader) error {
- d := decoder{r: asByteReader(r)}
- p.decode(d)
- return d.err
-}
-
-func (p *Polyline) decode(d decoder) {
- version := d.readInt8()
- if d.err != nil {
- return
- }
- if int(version) != int(encodingVersion) {
- d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion)
- return
- }
- nvertices := d.readUint32()
- if d.err != nil {
- return
- }
- if nvertices > maxEncodedVertices {
- d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices)
- return
- }
- *p = make([]Point, nvertices)
- for i := range *p {
- (*p)[i].X = d.readFloat64()
- (*p)[i].Y = d.readFloat64()
- (*p)[i].Z = d.readFloat64()
- }
-}
-
-// Project returns a point on the polyline that is closest to the given point,
-// and the index of the next vertex after the projected point. The
-// value of that index is always in the range [1, len(polyline)].
-// The polyline must not be empty.
-func (p *Polyline) Project(point Point) (Point, int) {
- if len(*p) == 1 {
- // If there is only one vertex, it is always closest to any given point.
- return (*p)[0], 1
- }
-
- // Initial value larger than any possible distance on the unit sphere.
- minDist := 10 * s1.Radian
- minIndex := -1
-
- // Find the line segment in the polyline that is closest to the point given.
- for i := 1; i < len(*p); i++ {
- if dist := DistanceFromSegment(point, (*p)[i-1], (*p)[i]); dist < minDist {
- minDist = dist
- minIndex = i
- }
- }
-
- // Compute the point on the segment found that is closest to the point given.
- closest := Project(point, (*p)[minIndex-1], (*p)[minIndex])
- if closest == (*p)[minIndex] {
- minIndex++
- }
-
- return closest, minIndex
-}
-
-// IsOnRight reports whether the point given is on the right hand side of the
-// polyline, using a naive definition of "right-hand-sideness" where the point
-// is on the RHS of the polyline iff the point is on the RHS of the line segment
-// in the polyline which it is closest to.
-// The polyline must have at least 2 vertices.
-func (p *Polyline) IsOnRight(point Point) bool {
- // If the closest point C is an interior vertex of the polyline, let B and D
- // be the previous and next vertices. The given point P is on the right of
- // the polyline (locally) if B, P, D are ordered CCW around vertex C.
- closest, next := p.Project(point)
- if closest == (*p)[next-1] && next > 1 && next < len(*p) {
- if point == (*p)[next-1] {
- // Polyline vertices are not on the RHS.
- return false
- }
- return OrderedCCW((*p)[next-2], point, (*p)[next], (*p)[next-1])
- }
- // Otherwise, the closest point C is incident to exactly one polyline edge.
- // We test the point P against that edge.
- if next == len(*p) {
- next--
- }
- return Sign(point, (*p)[next], (*p)[next-1])
-}
-
-// Validate checks whether this is a valid polyline or not.
-func (p *Polyline) Validate() error {
- // All vertices must be unit length.
- for i, pt := range *p {
- if !pt.IsUnit() {
- return fmt.Errorf("vertex %d is not unit length", i)
- }
- }
-
- // Adjacent vertices must not be identical or antipodal.
- for i := 1; i < len(*p); i++ {
- prev, cur := (*p)[i-1], (*p)[i]
- if prev == cur {
- return fmt.Errorf("vertices %d and %d are identical", i-1, i)
- }
- if prev == (Point{cur.Mul(-1)}) {
- return fmt.Errorf("vertices %d and %d are antipodal", i-1, i)
- }
- }
-
- return nil
-}
-
-// Intersects reports whether this polyline intersects the given polyline. If
-// the polylines share a vertex they are considered to be intersecting. When a
-// polyline endpoint is the only intersection with the other polyline, the
-// function may return true or false arbitrarily.
-//
-// The running time is quadratic in the number of vertices.
-func (p *Polyline) Intersects(o *Polyline) bool {
- if len(*p) == 0 || len(*o) == 0 {
- return false
- }
-
- if !p.RectBound().Intersects(o.RectBound()) {
- return false
- }
-
- // TODO(roberts): Use ShapeIndex here.
- for i := 1; i < len(*p); i++ {
- crosser := NewChainEdgeCrosser((*p)[i-1], (*p)[i], (*o)[0])
- for j := 1; j < len(*o); j++ {
- if crosser.ChainCrossingSign((*o)[j]) != DoNotCross {
- return true
- }
- }
- }
- return false
-}
-
-// Interpolate returns the point whose distance from vertex 0 along the polyline is
-// the given fraction of the polyline's total length, and the index of
-// the next vertex after the interpolated point P. Fractions less than zero
-// or greater than one are clamped. The return value is unit length. The cost of
-// this function is currently linear in the number of vertices.
-//
-// This method allows the caller to easily construct a given suffix of the
-// polyline by concatenating P with the polyline vertices starting at that next
-// vertex. Note that P is guaranteed to be different than the point at the next
-// vertex, so this will never result in a duplicate vertex.
-//
-// The polyline must not be empty. Note that if fraction >= 1.0, then the next
-// vertex will be set to len(p) (indicating that no vertices from the polyline
-// need to be appended). The value of the next vertex is always between 1 and
-// len(p).
-//
-// This method can also be used to construct a prefix of the polyline, by
-// taking the polyline vertices up to next vertex-1 and appending the
-// returned point P if it is different from the last vertex (since in this
-// case there is no guarantee of distinctness).
-func (p *Polyline) Interpolate(fraction float64) (Point, int) {
- // We intentionally let the (fraction >= 1) case fall through, since
- // we need to handle it in the loop below in any case because of
- // possible roundoff errors.
- if fraction <= 0 {
- return (*p)[0], 1
- }
- target := s1.Angle(fraction) * p.Length()
-
- for i := 1; i < len(*p); i++ {
- length := (*p)[i-1].Distance((*p)[i])
- if target < length {
- // This interpolates with respect to arc length rather than
- // straight-line distance, and produces a unit-length result.
- result := InterpolateAtDistance(target, (*p)[i-1], (*p)[i])
-
- // It is possible that (result == vertex(i)) due to rounding errors.
- if result == (*p)[i] {
- return result, i + 1
- }
- return result, i
- }
- target -= length
- }
-
- return (*p)[len(*p)-1], len(*p)
-}
-
-// Uninterpolate is the inverse operation of Interpolate. Given a point on the
-// polyline, it returns the ratio of the distance to the point from the
-// beginning of the polyline over the length of the polyline. The return
-// value is always betwen 0 and 1 inclusive.
-//
-// The polyline should not be empty. If it has fewer than 2 vertices, the
-// return value is zero.
-func (p *Polyline) Uninterpolate(point Point, nextVertex int) float64 {
- if len(*p) < 2 {
- return 0
- }
-
- var sum s1.Angle
- for i := 1; i < nextVertex; i++ {
- sum += (*p)[i-1].Distance((*p)[i])
- }
- lengthToPoint := sum + (*p)[nextVertex-1].Distance(point)
- for i := nextVertex; i < len(*p); i++ {
- sum += (*p)[i-1].Distance((*p)[i])
- }
- // The ratio can be greater than 1.0 due to rounding errors or because the
- // point is not exactly on the polyline.
- return minFloat64(1.0, float64(lengthToPoint/sum))
-}
-
-// TODO(roberts): Differences from C++.
-// NearlyCoversPolyline
-// InitToSnapped
-// InitToSimplified
-// SnapLevel
-// encode/decode compressed
diff --git a/vendor/github.com/golang/geo/s2/polyline_measures.go b/vendor/github.com/golang/geo/s2/polyline_measures.go
deleted file mode 100644
index 38ce991b5..000000000
--- a/vendor/github.com/golang/geo/s2/polyline_measures.go
+++ /dev/null
@@ -1,53 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// This file defines various measures for polylines on the sphere. These are
-// low-level methods that work directly with arrays of Points. They are used to
-// implement the methods in various other measures files.
-
-import (
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// polylineLength returns the length of the given Polyline.
-// It returns 0 for polylines with fewer than two vertices.
-func polylineLength(p []Point) s1.Angle {
- var length s1.Angle
-
- for i := 1; i < len(p); i++ {
- length += p[i-1].Distance(p[i])
- }
- return length
-}
-
-// polylineCentroid returns the true centroid of the polyline multiplied by the
-// length of the polyline. The result is not unit length, so you may wish to
-// normalize it.
-//
-// Scaling by the Polyline length makes it easy to compute the centroid
-// of several Polylines (by simply adding up their centroids).
-//
-// Note that for degenerate Polylines (e.g., AA) this returns Point(0, 0, 0).
-// (This answer is correct; the result of this function is a line integral over
-// the polyline, whose value is always zero if the polyline is degenerate.)
-func polylineCentroid(p []Point) Point {
- var centroid r3.Vector
- for i := 1; i < len(p); i++ {
- centroid = centroid.Add(EdgeTrueCentroid(p[i-1], p[i]).Vector)
- }
- return Point{centroid}
-}
diff --git a/vendor/github.com/golang/geo/s2/predicates.go b/vendor/github.com/golang/geo/s2/predicates.go
deleted file mode 100644
index 9fc5e1751..000000000
--- a/vendor/github.com/golang/geo/s2/predicates.go
+++ /dev/null
@@ -1,701 +0,0 @@
-// Copyright 2016 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// This file contains various predicates that are guaranteed to produce
-// correct, consistent results. They are also relatively efficient. This is
-// achieved by computing conservative error bounds and falling back to high
-// precision or even exact arithmetic when the result is uncertain. Such
-// predicates are useful in implementing robust algorithms.
-//
-// See also EdgeCrosser, which implements various exact
-// edge-crossing predicates more efficiently than can be done here.
-
-import (
- "math"
- "math/big"
-
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-const (
- // If any other machine architectures need to be suppported, these next three
- // values will need to be updated.
-
- // epsilon is a small number that represents a reasonable level of noise between two
- // values that can be considered to be equal.
- epsilon = 1e-15
- // dblEpsilon is a smaller number for values that require more precision.
- // This is the C++ DBL_EPSILON equivalent.
- dblEpsilon = 2.220446049250313e-16
- // dblError is the C++ value for S2 rounding_epsilon().
- dblError = 1.110223024625156e-16
-
- // maxDeterminantError is the maximum error in computing (AxB).C where all vectors
- // are unit length. Using standard inequalities, it can be shown that
- //
- // fl(AxB) = AxB + D where |D| <= (|AxB| + (2/sqrt(3))*|A|*|B|) * e
- //
- // where "fl()" denotes a calculation done in floating-point arithmetic,
- // |x| denotes either absolute value or the L2-norm as appropriate, and
- // e is a reasonably small value near the noise level of floating point
- // number accuracy. Similarly,
- //
- // fl(B.C) = B.C + d where |d| <= (|B.C| + 2*|B|*|C|) * e .
- //
- // Applying these bounds to the unit-length vectors A,B,C and neglecting
- // relative error (which does not affect the sign of the result), we get
- //
- // fl((AxB).C) = (AxB).C + d where |d| <= (3 + 2/sqrt(3)) * e
- maxDeterminantError = 1.8274 * dblEpsilon
-
- // detErrorMultiplier is the factor to scale the magnitudes by when checking
- // for the sign of set of points with certainty. Using a similar technique to
- // the one used for maxDeterminantError, the error is at most:
- //
- // |d| <= (3 + 6/sqrt(3)) * |A-C| * |B-C| * e
- //
- // If the determinant magnitude is larger than this value then we know
- // its sign with certainty.
- detErrorMultiplier = 3.2321 * dblEpsilon
-)
-
-// Direction is an indication of the ordering of a set of points.
-type Direction int
-
-// These are the three options for the direction of a set of points.
-const (
- Clockwise Direction = -1
- Indeterminate Direction = 0
- CounterClockwise Direction = 1
-)
-
-// newBigFloat constructs a new big.Float with maximum precision.
-func newBigFloat() *big.Float { return new(big.Float).SetPrec(big.MaxPrec) }
-
-// Sign returns true if the points A, B, C are strictly counterclockwise,
-// and returns false if the points are clockwise or collinear (i.e. if they are all
-// contained on some great circle).
-//
-// Due to numerical errors, situations may arise that are mathematically
-// impossible, e.g. ABC may be considered strictly CCW while BCA is not.
-// However, the implementation guarantees the following:
-//
-// If Sign(a,b,c), then !Sign(c,b,a) for all a,b,c.
-func Sign(a, b, c Point) bool {
- // NOTE(dnadasi): In the C++ API the equivalent method here was known as "SimpleSign".
-
- // We compute the signed volume of the parallelepiped ABC. The usual
- // formula for this is (A ⨯ B) · C, but we compute it here using (C ⨯ A) · B
- // in order to ensure that ABC and CBA are not both CCW. This follows
- // from the following identities (which are true numerically, not just
- // mathematically):
- //
- // (1) x ⨯ y == -(y ⨯ x)
- // (2) -x · y == -(x · y)
- return c.Cross(a.Vector).Dot(b.Vector) > 0
-}
-
-// RobustSign returns a Direction representing the ordering of the points.
-// CounterClockwise is returned if the points are in counter-clockwise order,
-// Clockwise for clockwise, and Indeterminate if any two points are the same (collinear),
-// or the sign could not completely be determined.
-//
-// This function has additional logic to make sure that the above properties hold even
-// when the three points are coplanar, and to deal with the limitations of
-// floating-point arithmetic.
-//
-// RobustSign satisfies the following conditions:
-//
-// (1) RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a
-// (2) RobustSign(b,c,a) == RobustSign(a,b,c) for all a,b,c
-// (3) RobustSign(c,b,a) == -RobustSign(a,b,c) for all a,b,c
-//
-// In other words:
-//
-// (1) The result is Indeterminate if and only if two points are the same.
-// (2) Rotating the order of the arguments does not affect the result.
-// (3) Exchanging any two arguments inverts the result.
-//
-// On the other hand, note that it is not true in general that
-// RobustSign(-a,b,c) == -RobustSign(a,b,c), or any similar identities
-// involving antipodal points.
-func RobustSign(a, b, c Point) Direction {
- sign := triageSign(a, b, c)
- if sign == Indeterminate {
- sign = expensiveSign(a, b, c)
- }
- return sign
-}
-
-// stableSign reports the direction sign of the points in a numerically stable way.
-// Unlike triageSign, this method can usually compute the correct determinant sign
-// even when all three points are as collinear as possible. For example if three
-// points are spaced 1km apart along a random line on the Earth's surface using
-// the nearest representable points, there is only a 0.4% chance that this method
-// will not be able to find the determinant sign. The probability of failure
-// decreases as the points get closer together; if the collinear points are 1 meter
-// apart, the failure rate drops to 0.0004%.
-//
-// This method could be extended to also handle nearly-antipodal points, but antipodal
-// points are rare in practice so it seems better to simply fall back to
-// exact arithmetic in that case.
-func stableSign(a, b, c Point) Direction {
- ab := b.Sub(a.Vector)
- ab2 := ab.Norm2()
- bc := c.Sub(b.Vector)
- bc2 := bc.Norm2()
- ca := a.Sub(c.Vector)
- ca2 := ca.Norm2()
-
- // Now compute the determinant ((A-C)x(B-C)).C, where the vertices have been
- // cyclically permuted if necessary so that AB is the longest edge. (This
- // minimizes the magnitude of cross product.) At the same time we also
- // compute the maximum error in the determinant.
-
- // The two shortest edges, pointing away from their common point.
- var e1, e2, op r3.Vector
- if ab2 >= bc2 && ab2 >= ca2 {
- // AB is the longest edge.
- e1, e2, op = ca, bc, c.Vector
- } else if bc2 >= ca2 {
- // BC is the longest edge.
- e1, e2, op = ab, ca, a.Vector
- } else {
- // CA is the longest edge.
- e1, e2, op = bc, ab, b.Vector
- }
-
- det := -e1.Cross(e2).Dot(op)
- maxErr := detErrorMultiplier * math.Sqrt(e1.Norm2()*e2.Norm2())
-
- // If the determinant isn't zero, within maxErr, we know definitively the point ordering.
- if det > maxErr {
- return CounterClockwise
- }
- if det < -maxErr {
- return Clockwise
- }
- return Indeterminate
-}
-
-// triageSign returns the direction sign of the points. It returns Indeterminate if two
-// points are identical or the result is uncertain. Uncertain cases can be resolved, if
-// desired, by calling expensiveSign.
-//
-// The purpose of this method is to allow additional cheap tests to be done without
-// calling expensiveSign.
-func triageSign(a, b, c Point) Direction {
- det := a.Cross(b.Vector).Dot(c.Vector)
- if det > maxDeterminantError {
- return CounterClockwise
- }
- if det < -maxDeterminantError {
- return Clockwise
- }
- return Indeterminate
-}
-
-// expensiveSign reports the direction sign of the points. It returns Indeterminate
-// if two of the input points are the same. It uses multiple-precision arithmetic
-// to ensure that its results are always self-consistent.
-func expensiveSign(a, b, c Point) Direction {
- // Return Indeterminate if and only if two points are the same.
- // This ensures RobustSign(a,b,c) == Indeterminate if and only if a == b, b == c, or c == a.
- // ie. Property 1 of RobustSign.
- if a == b || b == c || c == a {
- return Indeterminate
- }
-
- // Next we try recomputing the determinant still using floating-point
- // arithmetic but in a more precise way. This is more expensive than the
- // simple calculation done by triageSign, but it is still *much* cheaper
- // than using arbitrary-precision arithmetic. This optimization is able to
- // compute the correct determinant sign in virtually all cases except when
- // the three points are truly collinear (e.g., three points on the equator).
- detSign := stableSign(a, b, c)
- if detSign != Indeterminate {
- return detSign
- }
-
- // Otherwise fall back to exact arithmetic and symbolic permutations.
- return exactSign(a, b, c, true)
-}
-
-// exactSign reports the direction sign of the points computed using high-precision
-// arithmetic and/or symbolic perturbations.
-func exactSign(a, b, c Point, perturb bool) Direction {
- // Sort the three points in lexicographic order, keeping track of the sign
- // of the permutation. (Each exchange inverts the sign of the determinant.)
- permSign := CounterClockwise
- pa := &a
- pb := &b
- pc := &c
- if pa.Cmp(pb.Vector) > 0 {
- pa, pb = pb, pa
- permSign = -permSign
- }
- if pb.Cmp(pc.Vector) > 0 {
- pb, pc = pc, pb
- permSign = -permSign
- }
- if pa.Cmp(pb.Vector) > 0 {
- pa, pb = pb, pa
- permSign = -permSign
- }
-
- // Construct multiple-precision versions of the sorted points and compute
- // their precise 3x3 determinant.
- xa := r3.PreciseVectorFromVector(pa.Vector)
- xb := r3.PreciseVectorFromVector(pb.Vector)
- xc := r3.PreciseVectorFromVector(pc.Vector)
- xbCrossXc := xb.Cross(xc)
- det := xa.Dot(xbCrossXc)
-
- // The precision of big.Float is high enough that the result should always
- // be exact enough (no rounding was performed).
-
- // If the exact determinant is non-zero, we're done.
- detSign := Direction(det.Sign())
- if detSign == Indeterminate && perturb {
- // Otherwise, we need to resort to symbolic perturbations to resolve the
- // sign of the determinant.
- detSign = symbolicallyPerturbedSign(xa, xb, xc, xbCrossXc)
- }
- return permSign * detSign
-}
-
-// symbolicallyPerturbedSign reports the sign of the determinant of three points
-// A, B, C under a model where every possible Point is slightly perturbed by
-// a unique infinitesmal amount such that no three perturbed points are
-// collinear and no four points are coplanar. The perturbations are so small
-// that they do not change the sign of any determinant that was non-zero
-// before the perturbations, and therefore can be safely ignored unless the
-// determinant of three points is exactly zero (using multiple-precision
-// arithmetic). This returns CounterClockwise or Clockwise according to the
-// sign of the determinant after the symbolic perturbations are taken into account.
-//
-// Since the symbolic perturbation of a given point is fixed (i.e., the
-// perturbation is the same for all calls to this method and does not depend
-// on the other two arguments), the results of this method are always
-// self-consistent. It will never return results that would correspond to an
-// impossible configuration of non-degenerate points.
-//
-// This requires that the 3x3 determinant of A, B, C must be exactly zero.
-// And the points must be distinct, with A < B < C in lexicographic order.
-//
-// Reference:
-// "Simulation of Simplicity" (Edelsbrunner and Muecke, ACM Transactions on
-// Graphics, 1990).
-//
-func symbolicallyPerturbedSign(a, b, c, bCrossC r3.PreciseVector) Direction {
- // This method requires that the points are sorted in lexicographically
- // increasing order. This is because every possible Point has its own
- // symbolic perturbation such that if A < B then the symbolic perturbation
- // for A is much larger than the perturbation for B.
- //
- // Alternatively, we could sort the points in this method and keep track of
- // the sign of the permutation, but it is more efficient to do this before
- // converting the inputs to the multi-precision representation, and this
- // also lets us re-use the result of the cross product B x C.
- //
- // Every input coordinate x[i] is assigned a symbolic perturbation dx[i].
- // We then compute the sign of the determinant of the perturbed points,
- // i.e.
- // | a.X+da.X a.Y+da.Y a.Z+da.Z |
- // | b.X+db.X b.Y+db.Y b.Z+db.Z |
- // | c.X+dc.X c.Y+dc.Y c.Z+dc.Z |
- //
- // The perturbations are chosen such that
- //
- // da.Z > da.Y > da.X > db.Z > db.Y > db.X > dc.Z > dc.Y > dc.X
- //
- // where each perturbation is so much smaller than the previous one that we
- // don't even need to consider it unless the coefficients of all previous
- // perturbations are zero. In fact, it is so small that we don't need to
- // consider it unless the coefficient of all products of the previous
- // perturbations are zero. For example, we don't need to consider the
- // coefficient of db.Y unless the coefficient of db.Z *da.X is zero.
- //
- // The follow code simply enumerates the coefficients of the perturbations
- // (and products of perturbations) that appear in the determinant above, in
- // order of decreasing perturbation magnitude. The first non-zero
- // coefficient determines the sign of the result. The easiest way to
- // enumerate the coefficients in the correct order is to pretend that each
- // perturbation is some tiny value "eps" raised to a power of two:
- //
- // eps** 1 2 4 8 16 32 64 128 256
- // da.Z da.Y da.X db.Z db.Y db.X dc.Z dc.Y dc.X
- //
- // Essentially we can then just count in binary and test the corresponding
- // subset of perturbations at each step. So for example, we must test the
- // coefficient of db.Z*da.X before db.Y because eps**12 > eps**16.
- //
- // Of course, not all products of these perturbations appear in the
- // determinant above, since the determinant only contains the products of
- // elements in distinct rows and columns. Thus we don't need to consider
- // da.Z*da.Y, db.Y *da.Y, etc. Furthermore, sometimes different pairs of
- // perturbations have the same coefficient in the determinant; for example,
- // da.Y*db.X and db.Y*da.X have the same coefficient (c.Z). Therefore
- // we only need to test this coefficient the first time we encounter it in
- // the binary order above (which will be db.Y*da.X).
- //
- // The sequence of tests below also appears in Table 4-ii of the paper
- // referenced above, if you just want to look it up, with the following
- // translations: [a,b,c] -> [i,j,k] and [0,1,2] -> [1,2,3]. Also note that
- // some of the signs are different because the opposite cross product is
- // used (e.g., B x C rather than C x B).
-
- detSign := bCrossC.Z.Sign() // da.Z
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = bCrossC.Y.Sign() // da.Y
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = bCrossC.X.Sign() // da.X
- if detSign != 0 {
- return Direction(detSign)
- }
-
- detSign = newBigFloat().Sub(newBigFloat().Mul(c.X, a.Y), newBigFloat().Mul(c.Y, a.X)).Sign() // db.Z
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = c.X.Sign() // db.Z * da.Y
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = -(c.Y.Sign()) // db.Z * da.X
- if detSign != 0 {
- return Direction(detSign)
- }
-
- detSign = newBigFloat().Sub(newBigFloat().Mul(c.Z, a.X), newBigFloat().Mul(c.X, a.Z)).Sign() // db.Y
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = c.Z.Sign() // db.Y * da.X
- if detSign != 0 {
- return Direction(detSign)
- }
-
- // The following test is listed in the paper, but it is redundant because
- // the previous tests guarantee that C == (0, 0, 0).
- // (c.Y*a.Z - c.Z*a.Y).Sign() // db.X
-
- detSign = newBigFloat().Sub(newBigFloat().Mul(a.X, b.Y), newBigFloat().Mul(a.Y, b.X)).Sign() // dc.Z
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = -(b.X.Sign()) // dc.Z * da.Y
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = b.Y.Sign() // dc.Z * da.X
- if detSign != 0 {
- return Direction(detSign)
- }
- detSign = a.X.Sign() // dc.Z * db.Y
- if detSign != 0 {
- return Direction(detSign)
- }
- return CounterClockwise // dc.Z * db.Y * da.X
-}
-
-// CompareDistances returns -1, 0, or +1 according to whether AX < BX, A == B,
-// or AX > BX respectively. Distances are measured with respect to the positions
-// of X, A, and B as though they were reprojected to lie exactly on the surface of
-// the unit sphere. Furthermore, this method uses symbolic perturbations to
-// ensure that the result is non-zero whenever A != B, even when AX == BX
-// exactly, or even when A and B project to the same point on the sphere.
-// Such results are guaranteed to be self-consistent, i.e. if AB < BC and
-// BC < AC, then AB < AC.
-func CompareDistances(x, a, b Point) int {
- // We start by comparing distances using dot products (i.e., cosine of the
- // angle), because (1) this is the cheapest technique, and (2) it is valid
- // over the entire range of possible angles. (We can only use the sin^2
- // technique if both angles are less than 90 degrees or both angles are
- // greater than 90 degrees.)
- sign := triageCompareCosDistances(x, a, b)
- if sign != 0 {
- return sign
- }
-
- // Optimization for (a == b) to avoid falling back to exact arithmetic.
- if a == b {
- return 0
- }
-
- // It is much better numerically to compare distances using cos(angle) if
- // the distances are near 90 degrees and sin^2(angle) if the distances are
- // near 0 or 180 degrees. We only need to check one of the two angles when
- // making this decision because the fact that the test above failed means
- // that angles "a" and "b" are very close together.
- cosAX := a.Dot(x.Vector)
- if cosAX > 1/math.Sqrt2 {
- // Angles < 45 degrees.
- sign = triageCompareSin2Distances(x, a, b)
- } else if cosAX < -1/math.Sqrt2 {
- // Angles > 135 degrees. sin^2(angle) is decreasing in this range.
- sign = -triageCompareSin2Distances(x, a, b)
- }
- // C++ adds an additional check here using 80-bit floats.
- // This is skipped in Go because we only have 32 and 64 bit floats.
-
- if sign != 0 {
- return sign
- }
-
- sign = exactCompareDistances(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(a.Vector), r3.PreciseVectorFromVector(b.Vector))
- if sign != 0 {
- return sign
- }
- return symbolicCompareDistances(x, a, b)
-}
-
-// cosDistance returns cos(XY) where XY is the angle between X and Y, and the
-// maximum error amount in the result. This requires X and Y be normalized.
-func cosDistance(x, y Point) (cos, err float64) {
- cos = x.Dot(y.Vector)
- return cos, 9.5*dblError*math.Abs(cos) + 1.5*dblError
-}
-
-// sin2Distance returns sin**2(XY), where XY is the angle between X and Y,
-// and the maximum error amount in the result. This requires X and Y be normalized.
-func sin2Distance(x, y Point) (sin2, err float64) {
- // The (x-y).Cross(x+y) trick eliminates almost all of error due to x
- // and y being not quite unit length. This method is extremely accurate
- // for small distances; the *relative* error in the result is O(dblError) for
- // distances as small as dblError.
- n := x.Sub(y.Vector).Cross(x.Add(y.Vector))
- sin2 = 0.25 * n.Norm2()
- err = ((21+4*math.Sqrt(3))*dblError*sin2 +
- 32*math.Sqrt(3)*dblError*dblError*math.Sqrt(sin2) +
- 768*dblError*dblError*dblError*dblError)
- return sin2, err
-}
-
-// triageCompareCosDistances returns -1, 0, or +1 according to whether AX < BX,
-// A == B, or AX > BX by comparing the distances between them using cosDistance.
-func triageCompareCosDistances(x, a, b Point) int {
- cosAX, cosAXerror := cosDistance(a, x)
- cosBX, cosBXerror := cosDistance(b, x)
- diff := cosAX - cosBX
- err := cosAXerror + cosBXerror
- if diff > err {
- return -1
- }
- if diff < -err {
- return 1
- }
- return 0
-}
-
-// triageCompareSin2Distances returns -1, 0, or +1 according to whether AX < BX,
-// A == B, or AX > BX by comparing the distances between them using sin2Distance.
-func triageCompareSin2Distances(x, a, b Point) int {
- sin2AX, sin2AXerror := sin2Distance(a, x)
- sin2BX, sin2BXerror := sin2Distance(b, x)
- diff := sin2AX - sin2BX
- err := sin2AXerror + sin2BXerror
- if diff > err {
- return 1
- }
- if diff < -err {
- return -1
- }
- return 0
-}
-
-// exactCompareDistances returns -1, 0, or 1 after comparing using the values as
-// PreciseVectors.
-func exactCompareDistances(x, a, b r3.PreciseVector) int {
- // This code produces the same result as though all points were reprojected
- // to lie exactly on the surface of the unit sphere. It is based on testing
- // whether x.Dot(a.Normalize()) < x.Dot(b.Normalize()), reformulated
- // so that it can be evaluated using exact arithmetic.
- cosAX := x.Dot(a)
- cosBX := x.Dot(b)
-
- // If the two values have different signs, we need to handle that case now
- // before squaring them below.
- aSign := cosAX.Sign()
- bSign := cosBX.Sign()
- if aSign != bSign {
- // If cos(AX) > cos(BX), then AX < BX.
- if aSign > bSign {
- return -1
- }
- return 1
- }
- cosAX2 := newBigFloat().Mul(cosAX, cosAX)
- cosBX2 := newBigFloat().Mul(cosBX, cosBX)
- cmp := newBigFloat().Sub(cosBX2.Mul(cosBX2, a.Norm2()), cosAX2.Mul(cosAX2, b.Norm2()))
- return aSign * cmp.Sign()
-}
-
-// symbolicCompareDistances returns -1, 0, or +1 given three points such that AX == BX
-// (exactly) according to whether AX < BX, AX == BX, or AX > BX after symbolic
-// perturbations are taken into account.
-func symbolicCompareDistances(x, a, b Point) int {
- // Our symbolic perturbation strategy is based on the following model.
- // Similar to "simulation of simplicity", we assign a perturbation to every
- // point such that if A < B, then the symbolic perturbation for A is much,
- // much larger than the symbolic perturbation for B. We imagine that
- // rather than projecting every point to lie exactly on the unit sphere,
- // instead each point is positioned on its own tiny pedestal that raises it
- // just off the surface of the unit sphere. This means that the distance AX
- // is actually the true distance AX plus the (symbolic) heights of the
- // pedestals for A and X. The pedestals are infinitesmally thin, so they do
- // not affect distance measurements except at the two endpoints. If several
- // points project to exactly the same point on the unit sphere, we imagine
- // that they are placed on separate pedestals placed close together, where
- // the distance between pedestals is much, much less than the height of any
- // pedestal. (There are a finite number of Points, and therefore a finite
- // number of pedestals, so this is possible.)
- //
- // If A < B, then A is on a higher pedestal than B, and therefore AX > BX.
- switch a.Cmp(b.Vector) {
- case -1:
- return 1
- case 1:
- return -1
- default:
- return 0
- }
-}
-
-var (
- // ca45Degrees is a predefined ChordAngle representing (approximately) 45 degrees.
- ca45Degrees = s1.ChordAngleFromSquaredLength(2 - math.Sqrt2)
-)
-
-// CompareDistance returns -1, 0, or +1 according to whether the distance XY is
-// respectively less than, equal to, or greater than the provided chord angle. Distances are measured
-// with respect to the positions of all points as though they are projected to lie
-// exactly on the surface of the unit sphere.
-func CompareDistance(x, y Point, r s1.ChordAngle) int {
- // As with CompareDistances, we start by comparing dot products because
- // the sin^2 method is only valid when the distance XY and the limit "r" are
- // both less than 90 degrees.
- sign := triageCompareCosDistance(x, y, float64(r))
- if sign != 0 {
- return sign
- }
-
- // Unlike with CompareDistances, it's not worth using the sin^2 method
- // when the distance limit is near 180 degrees because the ChordAngle
- // representation itself has has a rounding error of up to 2e-8 radians for
- // distances near 180 degrees.
- if r < ca45Degrees {
- sign = triageCompareSin2Distance(x, y, float64(r))
- if sign != 0 {
- return sign
- }
- }
- return exactCompareDistance(r3.PreciseVectorFromVector(x.Vector), r3.PreciseVectorFromVector(y.Vector), big.NewFloat(float64(r)).SetPrec(big.MaxPrec))
-}
-
-// triageCompareCosDistance returns -1, 0, or +1 according to whether the distance XY is
-// less than, equal to, or greater than r2 respectively using cos distance.
-func triageCompareCosDistance(x, y Point, r2 float64) int {
- cosXY, cosXYError := cosDistance(x, y)
- cosR := 1.0 - 0.5*r2
- cosRError := 2.0 * dblError * cosR
- diff := cosXY - cosR
- err := cosXYError + cosRError
- if diff > err {
- return -1
- }
- if diff < -err {
- return 1
- }
- return 0
-}
-
-// triageCompareSin2Distance returns -1, 0, or +1 according to whether the distance XY is
-// less than, equal to, or greater than r2 respectively using sin^2 distance.
-func triageCompareSin2Distance(x, y Point, r2 float64) int {
- // Only valid for distance limits < 90 degrees.
- sin2XY, sin2XYError := sin2Distance(x, y)
- sin2R := r2 * (1.0 - 0.25*r2)
- sin2RError := 3.0 * dblError * sin2R
- diff := sin2XY - sin2R
- err := sin2XYError + sin2RError
- if diff > err {
- return 1
- }
- if diff < -err {
- return -1
- }
- return 0
-}
-
-var (
- bigOne = big.NewFloat(1.0).SetPrec(big.MaxPrec)
- bigHalf = big.NewFloat(0.5).SetPrec(big.MaxPrec)
-)
-
-// exactCompareDistance returns -1, 0, or +1 after comparing using PreciseVectors.
-func exactCompareDistance(x, y r3.PreciseVector, r2 *big.Float) int {
- // This code produces the same result as though all points were reprojected
- // to lie exactly on the surface of the unit sphere. It is based on
- // comparing the cosine of the angle XY (when both points are projected to
- // lie exactly on the sphere) to the given threshold.
- cosXY := x.Dot(y)
- cosR := newBigFloat().Sub(bigOne, newBigFloat().Mul(bigHalf, r2))
-
- // If the two values have different signs, we need to handle that case now
- // before squaring them below.
- xySign := cosXY.Sign()
- rSign := cosR.Sign()
- if xySign != rSign {
- if xySign > rSign {
- return -1
- }
- return 1 // If cos(XY) > cos(r), then XY < r.
- }
- cmp := newBigFloat().Sub(
- newBigFloat().Mul(
- newBigFloat().Mul(cosR, cosR), newBigFloat().Mul(x.Norm2(), y.Norm2())),
- newBigFloat().Mul(cosXY, cosXY))
- return xySign * cmp.Sign()
-}
-
-// TODO(roberts): Differences from C++
-// CompareEdgeDistance
-// CompareEdgeDirections
-// EdgeCircumcenterSign
-// GetVoronoiSiteExclusion
-// GetClosestVertex
-// TriageCompareLineSin2Distance
-// TriageCompareLineCos2Distance
-// TriageCompareLineDistance
-// TriageCompareEdgeDistance
-// ExactCompareLineDistance
-// ExactCompareEdgeDistance
-// TriageCompareEdgeDirections
-// ExactCompareEdgeDirections
-// ArePointsAntipodal
-// ArePointsLinearlyDependent
-// GetCircumcenter
-// TriageEdgeCircumcenterSign
-// ExactEdgeCircumcenterSign
-// UnperturbedSign
-// SymbolicEdgeCircumcenterSign
-// ExactVoronoiSiteExclusion
diff --git a/vendor/github.com/golang/geo/s2/projections.go b/vendor/github.com/golang/geo/s2/projections.go
deleted file mode 100644
index 07b8e62d2..000000000
--- a/vendor/github.com/golang/geo/s2/projections.go
+++ /dev/null
@@ -1,203 +0,0 @@
-// Copyright 2018 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r2"
- "github.com/golang/geo/s1"
-)
-
-// Projection defines an interface for different ways of mapping between s2 and r2 Points.
-// It can also define the coordinate wrapping behavior along each axis.
-type Projection interface {
- // Project converts a point on the sphere to a projected 2D point.
- Project(p Point) r2.Point
-
- // Unproject converts a projected 2D point to a point on the sphere.
- //
- // If wrapping is defined for a given axis (see below), then this method
- // should accept any real number for the corresponding coordinate.
- Unproject(p r2.Point) Point
-
- // FromLatLng is a convenience function equivalent to Project(LatLngToPoint(ll)),
- // but the implementation is more efficient.
- FromLatLng(ll LatLng) r2.Point
-
- // ToLatLng is a convenience function equivalent to LatLngFromPoint(Unproject(p)),
- // but the implementation is more efficient.
- ToLatLng(p r2.Point) LatLng
-
- // Interpolate returns the point obtained by interpolating the given
- // fraction of the distance along the line from A to B.
- // Fractions < 0 or > 1 result in extrapolation instead.
- Interpolate(f float64, a, b r2.Point) r2.Point
-
- // WrapDistance reports the coordinate wrapping distance along each axis.
- // If this value is non-zero for a given axis, the coordinates are assumed
- // to "wrap" with the given period. For example, if WrapDistance.Y == 360
- // then (x, y) and (x, y + 360) should map to the same Point.
- //
- // This information is used to ensure that edges takes the shortest path
- // between two given points. For example, if coordinates represent
- // (latitude, longitude) pairs in degrees and WrapDistance().Y == 360,
- // then the edge (5:179, 5:-179) would be interpreted as spanning 2 degrees
- // of longitude rather than 358 degrees.
- //
- // If a given axis does not wrap, its WrapDistance should be set to zero.
- WrapDistance() r2.Point
-}
-
-// PlateCarreeProjection defines the "plate carree" (square plate) projection,
-// which converts points on the sphere to (longitude, latitude) pairs.
-// Coordinates can be scaled so that they represent radians, degrees, etc, but
-// the projection is always centered around (latitude=0, longitude=0).
-//
-// Note that (x, y) coordinates are backwards compared to the usual (latitude,
-// longitude) ordering, in order to match the usual convention for graphs in
-// which "x" is horizontal and "y" is vertical.
-type PlateCarreeProjection struct {
- xWrap float64
- toRadians float64 // Multiplier to convert coordinates to radians.
- fromRadians float64 // Multiplier to convert coordinates from radians.
-}
-
-// NewPlateCarreeProjection constructs a plate carree projection where the
-// x-coordinates (lng) span [-xScale, xScale] and the y coordinates (lat)
-// span [-xScale/2, xScale/2]. For example if xScale==180 then the x
-// range is [-180, 180] and the y range is [-90, 90].
-//
-// By default coordinates are expressed in radians, i.e. the x range is
-// [-Pi, Pi] and the y range is [-Pi/2, Pi/2].
-func NewPlateCarreeProjection(xScale float64) Projection {
- return &PlateCarreeProjection{
- xWrap: 2 * xScale,
- toRadians: math.Pi / xScale,
- fromRadians: xScale / math.Pi,
- }
-}
-
-// Project converts a point on the sphere to a projected 2D point.
-func (p *PlateCarreeProjection) Project(pt Point) r2.Point {
- return p.FromLatLng(LatLngFromPoint(pt))
-}
-
-// Unproject converts a projected 2D point to a point on the sphere.
-func (p *PlateCarreeProjection) Unproject(pt r2.Point) Point {
- return PointFromLatLng(p.ToLatLng(pt))
-}
-
-// FromLatLng returns the LatLng projected into an R2 Point.
-func (p *PlateCarreeProjection) FromLatLng(ll LatLng) r2.Point {
- return r2.Point{
- X: p.fromRadians * ll.Lng.Radians(),
- Y: p.fromRadians * ll.Lat.Radians(),
- }
-}
-
-// ToLatLng returns the LatLng projected from the given R2 Point.
-func (p *PlateCarreeProjection) ToLatLng(pt r2.Point) LatLng {
- return LatLng{
- Lat: s1.Angle(p.toRadians * pt.Y),
- Lng: s1.Angle(p.toRadians * math.Remainder(pt.X, p.xWrap)),
- }
-}
-
-// Interpolate returns the point obtained by interpolating the given
-// fraction of the distance along the line from A to B.
-func (p *PlateCarreeProjection) Interpolate(f float64, a, b r2.Point) r2.Point {
- return a.Mul(1 - f).Add(b.Mul(f))
-}
-
-// WrapDistance reports the coordinate wrapping distance along each axis.
-func (p *PlateCarreeProjection) WrapDistance() r2.Point {
- return r2.Point{p.xWrap, 0}
-}
-
-// MercatorProjection defines the spherical Mercator projection. Google Maps
-// uses this projection together with WGS84 coordinates, in which case it is
-// known as the "Web Mercator" projection (see Wikipedia). This class makes
-// no assumptions regarding the coordinate system of its input points, but
-// simply applies the spherical Mercator projection to them.
-//
-// The Mercator projection is finite in width (x) but infinite in height (y).
-// "x" corresponds to longitude, and spans a finite range such as [-180, 180]
-// (with coordinate wrapping), while "y" is a function of latitude and spans
-// an infinite range. (As "y" coordinates get larger, points get closer to
-// the north pole but never quite reach it.) The north and south poles have
-// infinite "y" values. (Note that this will cause problems if you tessellate
-// a Mercator edge where one endpoint is a pole. If you need to do this, clip
-// the edge first so that the "y" coordinate is no more than about 5 * maxX.)
-type MercatorProjection struct {
- xWrap float64
- toRadians float64 // Multiplier to convert coordinates to radians.
- fromRadians float64 // Multiplier to convert coordinates from radians.
-}
-
-// NewMercatorProjection constructs a Mercator projection with the given maximum
-// longitude axis value corresponding to a range of [-maxLng, maxLng].
-// The horizontal and vertical axes are scaled equally.
-func NewMercatorProjection(maxLng float64) Projection {
- return &MercatorProjection{
- xWrap: 2 * maxLng,
- toRadians: math.Pi / maxLng,
- fromRadians: maxLng / math.Pi,
- }
-}
-
-// Project converts a point on the sphere to a projected 2D point.
-func (p *MercatorProjection) Project(pt Point) r2.Point {
- return p.FromLatLng(LatLngFromPoint(pt))
-}
-
-// Unproject converts a projected 2D point to a point on the sphere.
-func (p *MercatorProjection) Unproject(pt r2.Point) Point {
- return PointFromLatLng(p.ToLatLng(pt))
-}
-
-// FromLatLng returns the LatLng projected into an R2 Point.
-func (p *MercatorProjection) FromLatLng(ll LatLng) r2.Point {
- // This formula is more accurate near zero than the log(tan()) version.
- // Note that latitudes of +/- 90 degrees yield "y" values of +/- infinity.
- sinPhi := math.Sin(float64(ll.Lat))
- y := 0.5 * math.Log((1+sinPhi)/(1-sinPhi))
- return r2.Point{p.fromRadians * float64(ll.Lng), p.fromRadians * y}
-}
-
-// ToLatLng returns the LatLng projected from the given R2 Point.
-func (p *MercatorProjection) ToLatLng(pt r2.Point) LatLng {
- // This formula is more accurate near zero than the atan(exp()) version.
- x := p.toRadians * math.Remainder(pt.X, p.xWrap)
- k := math.Exp(2 * p.toRadians * pt.Y)
- var y float64
- if math.IsInf(k, 0) {
- y = math.Pi / 2
- } else {
- y = math.Asin((k - 1) / (k + 1))
- }
- return LatLng{s1.Angle(y), s1.Angle(x)}
-}
-
-// Interpolate returns the point obtained by interpolating the given
-// fraction of the distance along the line from A to B.
-func (p *MercatorProjection) Interpolate(f float64, a, b r2.Point) r2.Point {
- return a.Mul(1 - f).Add(b.Mul(f))
-}
-
-// WrapDistance reports the coordinate wrapping distance along each axis.
-func (p *MercatorProjection) WrapDistance() r2.Point {
- return r2.Point{p.xWrap, 0}
-}
diff --git a/vendor/github.com/golang/geo/s2/query_options.go b/vendor/github.com/golang/geo/s2/query_options.go
deleted file mode 100644
index 9b7e38d62..000000000
--- a/vendor/github.com/golang/geo/s2/query_options.go
+++ /dev/null
@@ -1,196 +0,0 @@
-// Copyright 2019 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/s1"
-)
-
-const maxQueryResults = math.MaxInt32
-
-// queryOptions represents the set of all configurable parameters used by all of
-// the Query types. Most of these fields have non-zero defaults, so initialization
-// is handled within each Query type. All of the exported methods accept user
-// supplied sets of options to set or adjust as necessary.
-//
-// Several of the defaults depend on the distance interface type being used
-// (e.g. minDistance, maxDistance, etc.)
-//
-// If a user sets an option value that a given query type doesn't use, it is ignored.
-type queryOptions struct {
- // maxResults specifies that at most MaxResults edges should be returned.
- // This must be at least 1.
- //
- // The default value is to return all results.
- maxResults int
-
- // distanceLimit specifies that only edges whose distance to the target is
- // within this distance should be returned.
- //
- // Note that edges whose distance is exactly equal to this are
- // not returned. In most cases this doesn't matter (since distances are
- // not computed exactly in the first place), but if such edges are needed
- // then you can retrieve them by specifying the distance as the next
- // largest representable distance. i.e. distanceLimit.Successor().
- //
- // The default value is the infinity value, such that all results will be
- // returned.
- distanceLimit s1.ChordAngle
-
- // maxError specifies that edges up to MaxError further away than the true
- // closest edges may be substituted in the result set, as long as such
- // edges satisfy all the remaining search criteria (such as DistanceLimit).
- // This option only has an effect if MaxResults is also specified;
- // otherwise all edges closer than MaxDistance will always be returned.
- //
- // Note that this does not affect how the distance between edges is
- // computed; it simply gives the algorithm permission to stop the search
- // early as soon as the best possible improvement drops below MaxError.
- //
- // This can be used to implement distance predicates efficiently. For
- // example, to determine whether the minimum distance is less than D, set
- // MaxResults == 1 and MaxDistance == MaxError == D. This causes
- // the algorithm to terminate as soon as it finds any edge whose distance
- // is less than D, rather than continuing to search for an edge that is
- // even closer.
- //
- // The default value is zero.
- maxError s1.ChordAngle
-
- // includeInteriors specifies that polygon interiors should be included
- // when measuring distances. In other words, polygons that contain the target
- // should have a distance of zero. (For targets consisting of multiple connected
- // components, the distance is zero if any component is contained.) This
- // is indicated in the results by returning a (ShapeID, EdgeID) pair
- // with EdgeID == -1, i.e. this value denotes the polygons's interior.
- //
- // Note that for efficiency, any polygon that intersects the target may or
- // may not have an EdgeID == -1 result. Such results are optional
- // because in that case the distance to the polygon is already zero.
- //
- // The default value is true.
- includeInteriors bool
-
- // specifies that distances should be computed by examining every edge
- // rather than using the ShapeIndex.
- //
- // TODO(roberts): When optimized is implemented, update the default to false.
- // The default value is true.
- useBruteForce bool
-
- // region specifies that results must intersect the given Region.
- //
- // Note that if you want to set the region to a disc around a target
- // point, it is faster to use a PointTarget with distanceLimit set
- // instead. You can also set a distance limit and also require that results
- // lie within a given rectangle.
- //
- // The default is nil (no region limits).
- region Region
-}
-
-// UseBruteForce sets or disables the use of brute force in a query.
-func (q *queryOptions) UseBruteForce(x bool) *queryOptions {
- q.useBruteForce = x
- return q
-}
-
-// IncludeInteriors specifies whether polygon interiors should be
-// included when measuring distances.
-func (q *queryOptions) IncludeInteriors(x bool) *queryOptions {
- q.includeInteriors = x
- return q
-}
-
-// MaxError specifies that edges up to dist away than the true
-// matching edges may be substituted in the result set, as long as such
-// edges satisfy all the remaining search criteria (such as DistanceLimit).
-// This option only has an effect if MaxResults is also specified;
-// otherwise all edges closer than MaxDistance will always be returned.
-func (q *queryOptions) MaxError(x s1.ChordAngle) *queryOptions {
- q.maxError = x
- return q
-}
-
-// MaxResults specifies that at most MaxResults edges should be returned.
-// This must be at least 1.
-func (q *queryOptions) MaxResults(x int) *queryOptions {
- // TODO(roberts): What should be done if the value is <= 0?
- q.maxResults = int(x)
- return q
-}
-
-// DistanceLimit specifies that only edges whose distance to the target is
-// within, this distance should be returned. Edges whose distance is equal
-// are not returned.
-//
-// To include values that are equal, specify the limit with the next largest
-// representable distance such as limit.Successor(), or set the option with
-// Furthest/ClosestInclusiveDistanceLimit.
-func (q *queryOptions) DistanceLimit(x s1.ChordAngle) *queryOptions {
- q.distanceLimit = x
- return q
-}
-
-// ClosestInclusiveDistanceLimit sets the distance limit such that results whose
-// distance is exactly equal to the limit are also returned.
-func (q *queryOptions) ClosestInclusiveDistanceLimit(limit s1.ChordAngle) *queryOptions {
- q.distanceLimit = limit.Successor()
- return q
-}
-
-// FurthestInclusiveDistanceLimit sets the distance limit such that results whose
-// distance is exactly equal to the limit are also returned.
-func (q *queryOptions) FurthestInclusiveDistanceLimit(limit s1.ChordAngle) *queryOptions {
- q.distanceLimit = limit.Predecessor()
- return q
-}
-
-// ClosestConservativeDistanceLimit sets the distance limit such that results
-// also incorporates the error in distance calculations. This ensures that all
-// edges whose true distance is less than or equal to limit will be returned
-// (along with some edges whose true distance is slightly greater).
-//
-// Algorithms that need to do exact distance comparisons can use this
-// option to find a set of candidate edges that can then be filtered
-// further (e.g., using CompareDistance).
-func (q *queryOptions) ClosestConservativeDistanceLimit(limit s1.ChordAngle) *queryOptions {
- q.distanceLimit = limit.Expanded(minUpdateDistanceMaxError(limit))
- return q
-}
-
-// FurthestConservativeDistanceLimit sets the distance limit such that results
-// also incorporates the error in distance calculations. This ensures that all
-// edges whose true distance is greater than or equal to limit will be returned
-// (along with some edges whose true distance is slightly less).
-func (q *queryOptions) FurthestConservativeDistanceLimit(limit s1.ChordAngle) *queryOptions {
- q.distanceLimit = limit.Expanded(-minUpdateDistanceMaxError(limit))
- return q
-}
-
-// newQueryOptions returns a set of options using the given distance type
-// with the proper default values.
-func newQueryOptions(d distance) *queryOptions {
- return &queryOptions{
- maxResults: maxQueryResults,
- distanceLimit: d.infinity().chordAngle(),
- maxError: 0,
- includeInteriors: true,
- useBruteForce: false,
- region: nil,
- }
-}
diff --git a/vendor/github.com/golang/geo/s2/rect.go b/vendor/github.com/golang/geo/s2/rect.go
deleted file mode 100644
index cb4c93180..000000000
--- a/vendor/github.com/golang/geo/s2/rect.go
+++ /dev/null
@@ -1,710 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "fmt"
- "io"
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// Rect represents a closed latitude-longitude rectangle.
-type Rect struct {
- Lat r1.Interval
- Lng s1.Interval
-}
-
-var (
- validRectLatRange = r1.Interval{-math.Pi / 2, math.Pi / 2}
- validRectLngRange = s1.FullInterval()
-)
-
-// EmptyRect returns the empty rectangle.
-func EmptyRect() Rect { return Rect{r1.EmptyInterval(), s1.EmptyInterval()} }
-
-// FullRect returns the full rectangle.
-func FullRect() Rect { return Rect{validRectLatRange, validRectLngRange} }
-
-// RectFromLatLng constructs a rectangle containing a single point p.
-func RectFromLatLng(p LatLng) Rect {
- return Rect{
- Lat: r1.Interval{p.Lat.Radians(), p.Lat.Radians()},
- Lng: s1.Interval{p.Lng.Radians(), p.Lng.Radians()},
- }
-}
-
-// RectFromCenterSize constructs a rectangle with the given size and center.
-// center needs to be normalized, but size does not. The latitude
-// interval of the result is clamped to [-90,90] degrees, and the longitude
-// interval of the result is FullRect() if and only if the longitude size is
-// 360 degrees or more.
-//
-// Examples of clamping (in degrees):
-// center=(80,170), size=(40,60) -> lat=[60,90], lng=[140,-160]
-// center=(10,40), size=(210,400) -> lat=[-90,90], lng=[-180,180]
-// center=(-90,180), size=(20,50) -> lat=[-90,-80], lng=[155,-155]
-func RectFromCenterSize(center, size LatLng) Rect {
- half := LatLng{size.Lat / 2, size.Lng / 2}
- return RectFromLatLng(center).expanded(half)
-}
-
-// IsValid returns true iff the rectangle is valid.
-// This requires Lat ⊆ [-π/2,π/2] and Lng ⊆ [-π,π], and Lat = ∅ iff Lng = ∅
-func (r Rect) IsValid() bool {
- return math.Abs(r.Lat.Lo) <= math.Pi/2 &&
- math.Abs(r.Lat.Hi) <= math.Pi/2 &&
- r.Lng.IsValid() &&
- r.Lat.IsEmpty() == r.Lng.IsEmpty()
-}
-
-// IsEmpty reports whether the rectangle is empty.
-func (r Rect) IsEmpty() bool { return r.Lat.IsEmpty() }
-
-// IsFull reports whether the rectangle is full.
-func (r Rect) IsFull() bool { return r.Lat.Equal(validRectLatRange) && r.Lng.IsFull() }
-
-// IsPoint reports whether the rectangle is a single point.
-func (r Rect) IsPoint() bool { return r.Lat.Lo == r.Lat.Hi && r.Lng.Lo == r.Lng.Hi }
-
-// Vertex returns the i-th vertex of the rectangle (i = 0,1,2,3) in CCW order
-// (lower left, lower right, upper right, upper left).
-func (r Rect) Vertex(i int) LatLng {
- var lat, lng float64
-
- switch i {
- case 0:
- lat = r.Lat.Lo
- lng = r.Lng.Lo
- case 1:
- lat = r.Lat.Lo
- lng = r.Lng.Hi
- case 2:
- lat = r.Lat.Hi
- lng = r.Lng.Hi
- case 3:
- lat = r.Lat.Hi
- lng = r.Lng.Lo
- }
- return LatLng{s1.Angle(lat) * s1.Radian, s1.Angle(lng) * s1.Radian}
-}
-
-// Lo returns one corner of the rectangle.
-func (r Rect) Lo() LatLng {
- return LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(r.Lng.Lo) * s1.Radian}
-}
-
-// Hi returns the other corner of the rectangle.
-func (r Rect) Hi() LatLng {
- return LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(r.Lng.Hi) * s1.Radian}
-}
-
-// Center returns the center of the rectangle.
-func (r Rect) Center() LatLng {
- return LatLng{s1.Angle(r.Lat.Center()) * s1.Radian, s1.Angle(r.Lng.Center()) * s1.Radian}
-}
-
-// Size returns the size of the Rect.
-func (r Rect) Size() LatLng {
- return LatLng{s1.Angle(r.Lat.Length()) * s1.Radian, s1.Angle(r.Lng.Length()) * s1.Radian}
-}
-
-// Area returns the surface area of the Rect.
-func (r Rect) Area() float64 {
- if r.IsEmpty() {
- return 0
- }
- capDiff := math.Abs(math.Sin(r.Lat.Hi) - math.Sin(r.Lat.Lo))
- return r.Lng.Length() * capDiff
-}
-
-// AddPoint increases the size of the rectangle to include the given point.
-func (r Rect) AddPoint(ll LatLng) Rect {
- if !ll.IsValid() {
- return r
- }
- return Rect{
- Lat: r.Lat.AddPoint(ll.Lat.Radians()),
- Lng: r.Lng.AddPoint(ll.Lng.Radians()),
- }
-}
-
-// expanded returns a rectangle that has been expanded by margin.Lat on each side
-// in the latitude direction, and by margin.Lng on each side in the longitude
-// direction. If either margin is negative, then it shrinks the rectangle on
-// the corresponding sides instead. The resulting rectangle may be empty.
-//
-// The latitude-longitude space has the topology of a cylinder. Longitudes
-// "wrap around" at +/-180 degrees, while latitudes are clamped to range [-90, 90].
-// This means that any expansion (positive or negative) of the full longitude range
-// remains full (since the "rectangle" is actually a continuous band around the
-// cylinder), while expansion of the full latitude range remains full only if the
-// margin is positive.
-//
-// If either the latitude or longitude interval becomes empty after
-// expansion by a negative margin, the result is empty.
-//
-// Note that if an expanded rectangle contains a pole, it may not contain
-// all possible lat/lng representations of that pole, e.g., both points [π/2,0]
-// and [π/2,1] represent the same pole, but they might not be contained by the
-// same Rect.
-//
-// If you are trying to grow a rectangle by a certain distance on the
-// sphere (e.g. 5km), refer to the ExpandedByDistance() C++ method implementation
-// instead.
-func (r Rect) expanded(margin LatLng) Rect {
- lat := r.Lat.Expanded(margin.Lat.Radians())
- lng := r.Lng.Expanded(margin.Lng.Radians())
-
- if lat.IsEmpty() || lng.IsEmpty() {
- return EmptyRect()
- }
-
- return Rect{
- Lat: lat.Intersection(validRectLatRange),
- Lng: lng,
- }
-}
-
-func (r Rect) String() string { return fmt.Sprintf("[Lo%v, Hi%v]", r.Lo(), r.Hi()) }
-
-// PolarClosure returns the rectangle unmodified if it does not include either pole.
-// If it includes either pole, PolarClosure returns an expansion of the rectangle along
-// the longitudinal range to include all possible representations of the contained poles.
-func (r Rect) PolarClosure() Rect {
- if r.Lat.Lo == -math.Pi/2 || r.Lat.Hi == math.Pi/2 {
- return Rect{r.Lat, s1.FullInterval()}
- }
- return r
-}
-
-// Union returns the smallest Rect containing the union of this rectangle and the given rectangle.
-func (r Rect) Union(other Rect) Rect {
- return Rect{
- Lat: r.Lat.Union(other.Lat),
- Lng: r.Lng.Union(other.Lng),
- }
-}
-
-// Intersection returns the smallest rectangle containing the intersection of
-// this rectangle and the given rectangle. Note that the region of intersection
-// may consist of two disjoint rectangles, in which case a single rectangle
-// spanning both of them is returned.
-func (r Rect) Intersection(other Rect) Rect {
- lat := r.Lat.Intersection(other.Lat)
- lng := r.Lng.Intersection(other.Lng)
-
- if lat.IsEmpty() || lng.IsEmpty() {
- return EmptyRect()
- }
- return Rect{lat, lng}
-}
-
-// Intersects reports whether this rectangle and the other have any points in common.
-func (r Rect) Intersects(other Rect) bool {
- return r.Lat.Intersects(other.Lat) && r.Lng.Intersects(other.Lng)
-}
-
-// CapBound returns a cap that contains Rect.
-func (r Rect) CapBound() Cap {
- // We consider two possible bounding caps, one whose axis passes
- // through the center of the lat-long rectangle and one whose axis
- // is the north or south pole. We return the smaller of the two caps.
-
- if r.IsEmpty() {
- return EmptyCap()
- }
-
- var poleZ, poleAngle float64
- if r.Lat.Hi+r.Lat.Lo < 0 {
- // South pole axis yields smaller cap.
- poleZ = -1
- poleAngle = math.Pi/2 + r.Lat.Hi
- } else {
- poleZ = 1
- poleAngle = math.Pi/2 - r.Lat.Lo
- }
- poleCap := CapFromCenterAngle(Point{r3.Vector{0, 0, poleZ}}, s1.Angle(poleAngle)*s1.Radian)
-
- // For bounding rectangles that span 180 degrees or less in longitude, the
- // maximum cap size is achieved at one of the rectangle vertices. For
- // rectangles that are larger than 180 degrees, we punt and always return a
- // bounding cap centered at one of the two poles.
- if math.Remainder(r.Lng.Hi-r.Lng.Lo, 2*math.Pi) >= 0 && r.Lng.Hi-r.Lng.Lo < 2*math.Pi {
- midCap := CapFromPoint(PointFromLatLng(r.Center())).AddPoint(PointFromLatLng(r.Lo())).AddPoint(PointFromLatLng(r.Hi()))
- if midCap.Height() < poleCap.Height() {
- return midCap
- }
- }
- return poleCap
-}
-
-// RectBound returns itself.
-func (r Rect) RectBound() Rect {
- return r
-}
-
-// Contains reports whether this Rect contains the other Rect.
-func (r Rect) Contains(other Rect) bool {
- return r.Lat.ContainsInterval(other.Lat) && r.Lng.ContainsInterval(other.Lng)
-}
-
-// ContainsCell reports whether the given Cell is contained by this Rect.
-func (r Rect) ContainsCell(c Cell) bool {
- // A latitude-longitude rectangle contains a cell if and only if it contains
- // the cell's bounding rectangle. This test is exact from a mathematical
- // point of view, assuming that the bounds returned by Cell.RectBound()
- // are tight. However, note that there can be a loss of precision when
- // converting between representations -- for example, if an s2.Cell is
- // converted to a polygon, the polygon's bounding rectangle may not contain
- // the cell's bounding rectangle. This has some slightly unexpected side
- // effects; for instance, if one creates an s2.Polygon from an s2.Cell, the
- // polygon will contain the cell, but the polygon's bounding box will not.
- return r.Contains(c.RectBound())
-}
-
-// ContainsLatLng reports whether the given LatLng is within the Rect.
-func (r Rect) ContainsLatLng(ll LatLng) bool {
- if !ll.IsValid() {
- return false
- }
- return r.Lat.Contains(ll.Lat.Radians()) && r.Lng.Contains(ll.Lng.Radians())
-}
-
-// ContainsPoint reports whether the given Point is within the Rect.
-func (r Rect) ContainsPoint(p Point) bool {
- return r.ContainsLatLng(LatLngFromPoint(p))
-}
-
-// CellUnionBound computes a covering of the Rect.
-func (r Rect) CellUnionBound() []CellID {
- return r.CapBound().CellUnionBound()
-}
-
-// intersectsLatEdge reports whether the edge AB intersects the given edge of constant
-// latitude. Requires the points to have unit length.
-func intersectsLatEdge(a, b Point, lat s1.Angle, lng s1.Interval) bool {
- // Unfortunately, lines of constant latitude are curves on
- // the sphere. They can intersect a straight edge in 0, 1, or 2 points.
-
- // First, compute the normal to the plane AB that points vaguely north.
- z := Point{a.PointCross(b).Normalize()}
- if z.Z < 0 {
- z = Point{z.Mul(-1)}
- }
-
- // Extend this to an orthonormal frame (x,y,z) where x is the direction
- // where the great circle through AB achieves its maximium latitude.
- y := Point{z.PointCross(PointFromCoords(0, 0, 1)).Normalize()}
- x := y.Cross(z.Vector)
-
- // Compute the angle "theta" from the x-axis (in the x-y plane defined
- // above) where the great circle intersects the given line of latitude.
- sinLat := math.Sin(float64(lat))
- if math.Abs(sinLat) >= x.Z {
- // The great circle does not reach the given latitude.
- return false
- }
-
- cosTheta := sinLat / x.Z
- sinTheta := math.Sqrt(1 - cosTheta*cosTheta)
- theta := math.Atan2(sinTheta, cosTheta)
-
- // The candidate intersection points are located +/- theta in the x-y
- // plane. For an intersection to be valid, we need to check that the
- // intersection point is contained in the interior of the edge AB and
- // also that it is contained within the given longitude interval "lng".
-
- // Compute the range of theta values spanned by the edge AB.
- abTheta := s1.IntervalFromPointPair(
- math.Atan2(a.Dot(y.Vector), a.Dot(x)),
- math.Atan2(b.Dot(y.Vector), b.Dot(x)))
-
- if abTheta.Contains(theta) {
- // Check if the intersection point is also in the given lng interval.
- isect := x.Mul(cosTheta).Add(y.Mul(sinTheta))
- if lng.Contains(math.Atan2(isect.Y, isect.X)) {
- return true
- }
- }
-
- if abTheta.Contains(-theta) {
- // Check if the other intersection point is also in the given lng interval.
- isect := x.Mul(cosTheta).Sub(y.Mul(sinTheta))
- if lng.Contains(math.Atan2(isect.Y, isect.X)) {
- return true
- }
- }
- return false
-}
-
-// intersectsLngEdge reports whether the edge AB intersects the given edge of constant
-// longitude. Requires the points to have unit length.
-func intersectsLngEdge(a, b Point, lat r1.Interval, lng s1.Angle) bool {
- // The nice thing about edges of constant longitude is that
- // they are straight lines on the sphere (geodesics).
- return CrossingSign(a, b, PointFromLatLng(LatLng{s1.Angle(lat.Lo), lng}),
- PointFromLatLng(LatLng{s1.Angle(lat.Hi), lng})) == Cross
-}
-
-// IntersectsCell reports whether this rectangle intersects the given cell. This is an
-// exact test and may be fairly expensive.
-func (r Rect) IntersectsCell(c Cell) bool {
- // First we eliminate the cases where one region completely contains the
- // other. Once these are disposed of, then the regions will intersect
- // if and only if their boundaries intersect.
- if r.IsEmpty() {
- return false
- }
- if r.ContainsPoint(Point{c.id.rawPoint()}) {
- return true
- }
- if c.ContainsPoint(PointFromLatLng(r.Center())) {
- return true
- }
-
- // Quick rejection test (not required for correctness).
- if !r.Intersects(c.RectBound()) {
- return false
- }
-
- // Precompute the cell vertices as points and latitude-longitudes. We also
- // check whether the Cell contains any corner of the rectangle, or
- // vice-versa, since the edge-crossing tests only check the edge interiors.
- vertices := [4]Point{}
- latlngs := [4]LatLng{}
-
- for i := range vertices {
- vertices[i] = c.Vertex(i)
- latlngs[i] = LatLngFromPoint(vertices[i])
- if r.ContainsLatLng(latlngs[i]) {
- return true
- }
- if c.ContainsPoint(PointFromLatLng(r.Vertex(i))) {
- return true
- }
- }
-
- // Now check whether the boundaries intersect. Unfortunately, a
- // latitude-longitude rectangle does not have straight edges: two edges
- // are curved, and at least one of them is concave.
- for i := range vertices {
- edgeLng := s1.IntervalFromEndpoints(latlngs[i].Lng.Radians(), latlngs[(i+1)&3].Lng.Radians())
- if !r.Lng.Intersects(edgeLng) {
- continue
- }
-
- a := vertices[i]
- b := vertices[(i+1)&3]
- if edgeLng.Contains(r.Lng.Lo) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Lo)) {
- return true
- }
- if edgeLng.Contains(r.Lng.Hi) && intersectsLngEdge(a, b, r.Lat, s1.Angle(r.Lng.Hi)) {
- return true
- }
- if intersectsLatEdge(a, b, s1.Angle(r.Lat.Lo), r.Lng) {
- return true
- }
- if intersectsLatEdge(a, b, s1.Angle(r.Lat.Hi), r.Lng) {
- return true
- }
- }
- return false
-}
-
-// Encode encodes the Rect.
-func (r Rect) Encode(w io.Writer) error {
- e := &encoder{w: w}
- r.encode(e)
- return e.err
-}
-
-func (r Rect) encode(e *encoder) {
- e.writeInt8(encodingVersion)
- e.writeFloat64(r.Lat.Lo)
- e.writeFloat64(r.Lat.Hi)
- e.writeFloat64(r.Lng.Lo)
- e.writeFloat64(r.Lng.Hi)
-}
-
-// Decode decodes a rectangle.
-func (r *Rect) Decode(rd io.Reader) error {
- d := &decoder{r: asByteReader(rd)}
- r.decode(d)
- return d.err
-}
-
-func (r *Rect) decode(d *decoder) {
- if version := d.readUint8(); int(version) != int(encodingVersion) && d.err == nil {
- d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion)
- return
- }
- r.Lat.Lo = d.readFloat64()
- r.Lat.Hi = d.readFloat64()
- r.Lng.Lo = d.readFloat64()
- r.Lng.Hi = d.readFloat64()
- return
-}
-
-// DistanceToLatLng returns the minimum distance (measured along the surface of the sphere)
-// from a given point to the rectangle (both its boundary and its interior).
-// If r is empty, the result is meaningless.
-// The latlng must be valid.
-func (r Rect) DistanceToLatLng(ll LatLng) s1.Angle {
- if r.Lng.Contains(float64(ll.Lng)) {
- return maxAngle(0, ll.Lat-s1.Angle(r.Lat.Hi), s1.Angle(r.Lat.Lo)-ll.Lat)
- }
-
- i := s1.IntervalFromEndpoints(r.Lng.Hi, r.Lng.ComplementCenter())
- rectLng := r.Lng.Lo
- if i.Contains(float64(ll.Lng)) {
- rectLng = r.Lng.Hi
- }
-
- lo := LatLng{s1.Angle(r.Lat.Lo) * s1.Radian, s1.Angle(rectLng) * s1.Radian}
- hi := LatLng{s1.Angle(r.Lat.Hi) * s1.Radian, s1.Angle(rectLng) * s1.Radian}
- return DistanceFromSegment(PointFromLatLng(ll), PointFromLatLng(lo), PointFromLatLng(hi))
-}
-
-// DirectedHausdorffDistance returns the directed Hausdorff distance (measured along the
-// surface of the sphere) to the given Rect. The directed Hausdorff
-// distance from rectangle A to rectangle B is given by
-// h(A, B) = max_{p in A} min_{q in B} d(p, q).
-func (r Rect) DirectedHausdorffDistance(other Rect) s1.Angle {
- if r.IsEmpty() {
- return 0 * s1.Radian
- }
- if other.IsEmpty() {
- return math.Pi * s1.Radian
- }
-
- lng := r.Lng.DirectedHausdorffDistance(other.Lng)
- return directedHausdorffDistance(lng, r.Lat, other.Lat)
-}
-
-// HausdorffDistance returns the undirected Hausdorff distance (measured along the
-// surface of the sphere) to the given Rect.
-// The Hausdorff distance between rectangle A and rectangle B is given by
-// H(A, B) = max{h(A, B), h(B, A)}.
-func (r Rect) HausdorffDistance(other Rect) s1.Angle {
- return maxAngle(r.DirectedHausdorffDistance(other),
- other.DirectedHausdorffDistance(r))
-}
-
-// ApproxEqual reports whether the latitude and longitude intervals of the two rectangles
-// are the same up to a small tolerance.
-func (r Rect) ApproxEqual(other Rect) bool {
- return r.Lat.ApproxEqual(other.Lat) && r.Lng.ApproxEqual(other.Lng)
-}
-
-// directedHausdorffDistance returns the directed Hausdorff distance
-// from one longitudinal edge spanning latitude range 'a' to the other
-// longitudinal edge spanning latitude range 'b', with their longitudinal
-// difference given by 'lngDiff'.
-func directedHausdorffDistance(lngDiff s1.Angle, a, b r1.Interval) s1.Angle {
- // By symmetry, we can assume a's longitude is 0 and b's longitude is
- // lngDiff. Call b's two endpoints bLo and bHi. Let H be the hemisphere
- // containing a and delimited by the longitude line of b. The Voronoi diagram
- // of b on H has three edges (portions of great circles) all orthogonal to b
- // and meeting at bLo cross bHi.
- // E1: (bLo, bLo cross bHi)
- // E2: (bHi, bLo cross bHi)
- // E3: (-bMid, bLo cross bHi), where bMid is the midpoint of b
- //
- // They subdivide H into three Voronoi regions. Depending on how longitude 0
- // (which contains edge a) intersects these regions, we distinguish two cases:
- // Case 1: it intersects three regions. This occurs when lngDiff <= π/2.
- // Case 2: it intersects only two regions. This occurs when lngDiff > π/2.
- //
- // In the first case, the directed Hausdorff distance to edge b can only be
- // realized by the following points on a:
- // A1: two endpoints of a.
- // A2: intersection of a with the equator, if b also intersects the equator.
- //
- // In the second case, the directed Hausdorff distance to edge b can only be
- // realized by the following points on a:
- // B1: two endpoints of a.
- // B2: intersection of a with E3
- // B3: farthest point from bLo to the interior of D, and farthest point from
- // bHi to the interior of U, if any, where D (resp. U) is the portion
- // of edge a below (resp. above) the intersection point from B2.
-
- if lngDiff < 0 {
- panic("impossible: negative lngDiff")
- }
- if lngDiff > math.Pi {
- panic("impossible: lngDiff > Pi")
- }
-
- if lngDiff == 0 {
- return s1.Angle(a.DirectedHausdorffDistance(b))
- }
-
- // Assumed longitude of b.
- bLng := lngDiff
- // Two endpoints of b.
- bLo := PointFromLatLng(LatLng{s1.Angle(b.Lo), bLng})
- bHi := PointFromLatLng(LatLng{s1.Angle(b.Hi), bLng})
-
- // Cases A1 and B1.
- aLo := PointFromLatLng(LatLng{s1.Angle(a.Lo), 0})
- aHi := PointFromLatLng(LatLng{s1.Angle(a.Hi), 0})
- maxDistance := maxAngle(
- DistanceFromSegment(aLo, bLo, bHi),
- DistanceFromSegment(aHi, bLo, bHi))
-
- if lngDiff <= math.Pi/2 {
- // Case A2.
- if a.Contains(0) && b.Contains(0) {
- maxDistance = maxAngle(maxDistance, lngDiff)
- }
- return maxDistance
- }
-
- // Case B2.
- p := bisectorIntersection(b, bLng)
- pLat := LatLngFromPoint(p).Lat
- if a.Contains(float64(pLat)) {
- maxDistance = maxAngle(maxDistance, p.Angle(bLo.Vector))
- }
-
- // Case B3.
- if pLat > s1.Angle(a.Lo) {
- intDist, ok := interiorMaxDistance(r1.Interval{a.Lo, math.Min(float64(pLat), a.Hi)}, bLo)
- if ok {
- maxDistance = maxAngle(maxDistance, intDist)
- }
- }
- if pLat < s1.Angle(a.Hi) {
- intDist, ok := interiorMaxDistance(r1.Interval{math.Max(float64(pLat), a.Lo), a.Hi}, bHi)
- if ok {
- maxDistance = maxAngle(maxDistance, intDist)
- }
- }
-
- return maxDistance
-}
-
-// interiorMaxDistance returns the max distance from a point b to the segment spanning latitude range
-// aLat on longitude 0 if the max occurs in the interior of aLat. Otherwise, returns (0, false).
-func interiorMaxDistance(aLat r1.Interval, b Point) (a s1.Angle, ok bool) {
- // Longitude 0 is in the y=0 plane. b.X >= 0 implies that the maximum
- // does not occur in the interior of aLat.
- if aLat.IsEmpty() || b.X >= 0 {
- return 0, false
- }
-
- // Project b to the y=0 plane. The antipodal of the normalized projection is
- // the point at which the maxium distance from b occurs, if it is contained
- // in aLat.
- intersectionPoint := PointFromCoords(-b.X, 0, -b.Z)
- if !aLat.InteriorContains(float64(LatLngFromPoint(intersectionPoint).Lat)) {
- return 0, false
- }
- return b.Angle(intersectionPoint.Vector), true
-}
-
-// bisectorIntersection return the intersection of longitude 0 with the bisector of an edge
-// on longitude 'lng' and spanning latitude range 'lat'.
-func bisectorIntersection(lat r1.Interval, lng s1.Angle) Point {
- lng = s1.Angle(math.Abs(float64(lng)))
- latCenter := s1.Angle(lat.Center())
-
- // A vector orthogonal to the bisector of the given longitudinal edge.
- orthoBisector := LatLng{latCenter - math.Pi/2, lng}
- if latCenter < 0 {
- orthoBisector = LatLng{-latCenter - math.Pi/2, lng - math.Pi}
- }
-
- // A vector orthogonal to longitude 0.
- orthoLng := Point{r3.Vector{0, -1, 0}}
-
- return orthoLng.PointCross(PointFromLatLng(orthoBisector))
-}
-
-// Centroid returns the true centroid of the given Rect multiplied by its
-// surface area. The result is not unit length, so you may want to normalize it.
-// Note that in general the centroid is *not* at the center of the rectangle, and
-// in fact it may not even be contained by the rectangle. (It is the "center of
-// mass" of the rectangle viewed as subset of the unit sphere, i.e. it is the
-// point in space about which this curved shape would rotate.)
-//
-// The reason for multiplying the result by the rectangle area is to make it
-// easier to compute the centroid of more complicated shapes. The centroid
-// of a union of disjoint regions can be computed simply by adding their
-// Centroid results.
-func (r Rect) Centroid() Point {
- // When a sphere is divided into slices of constant thickness by a set
- // of parallel planes, all slices have the same surface area. This
- // implies that the z-component of the centroid is simply the midpoint
- // of the z-interval spanned by the Rect.
- //
- // Similarly, it is easy to see that the (x,y) of the centroid lies in
- // the plane through the midpoint of the rectangle's longitude interval.
- // We only need to determine the distance "d" of this point from the
- // z-axis.
- //
- // Let's restrict our attention to a particular z-value. In this
- // z-plane, the Rect is a circular arc. The centroid of this arc
- // lies on a radial line through the midpoint of the arc, and at a
- // distance from the z-axis of
- //
- // r * (sin(alpha) / alpha)
- //
- // where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half
- // of the arc length (i.e., the arc covers longitudes [-alpha, alpha]).
- //
- // To find the centroid distance from the z-axis for the entire
- // rectangle, we just need to integrate over the z-interval. This gives
- //
- // d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1)
- //
- // where [z1, z2] is the range of z-values covered by the rectangle.
- // This simplifies to
- //
- // d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1)
- //
- // where [theta1, theta2] is the latitude interval, z1=sin(theta1),
- // z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2).
- //
- // Finally, we want to return not the centroid itself, but the centroid
- // scaled by the area of the rectangle. The area of the rectangle is
- //
- // A = 2 * alpha * (z2 - z1)
- //
- // which fortunately appears in the denominator of "d".
-
- if r.IsEmpty() {
- return Point{}
- }
-
- z1 := math.Sin(r.Lat.Lo)
- z2 := math.Sin(r.Lat.Hi)
- r1 := math.Cos(r.Lat.Lo)
- r2 := math.Cos(r.Lat.Hi)
-
- alpha := 0.5 * r.Lng.Length()
- r0 := math.Sin(alpha) * (r2*z2 - r1*z1 + r.Lat.Length())
- lng := r.Lng.Center()
- z := alpha * (z2 + z1) * (z2 - z1) // scaled by the area
-
- return Point{r3.Vector{r0 * math.Cos(lng), r0 * math.Sin(lng), z}}
-}
-
-// BUG: The major differences from the C++ version are:
-// - Get*Distance, Vertex, InteriorContains(LatLng|Rect|Point)
diff --git a/vendor/github.com/golang/geo/s2/rect_bounder.go b/vendor/github.com/golang/geo/s2/rect_bounder.go
deleted file mode 100644
index 419dea0c1..000000000
--- a/vendor/github.com/golang/geo/s2/rect_bounder.go
+++ /dev/null
@@ -1,352 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r3"
- "github.com/golang/geo/s1"
-)
-
-// RectBounder is used to compute a bounding rectangle that contains all edges
-// defined by a vertex chain (v0, v1, v2, ...). All vertices must be unit length.
-// Note that the bounding rectangle of an edge can be larger than the bounding
-// rectangle of its endpoints, e.g. consider an edge that passes through the North Pole.
-//
-// The bounds are calculated conservatively to account for numerical errors
-// when points are converted to LatLngs. More precisely, this function
-// guarantees the following:
-// Let L be a closed edge chain (Loop) such that the interior of the loop does
-// not contain either pole. Now if P is any point such that L.ContainsPoint(P),
-// then RectBound(L).ContainsPoint(LatLngFromPoint(P)).
-type RectBounder struct {
- // The previous vertex in the chain.
- a Point
- // The previous vertex latitude longitude.
- aLL LatLng
- bound Rect
-}
-
-// NewRectBounder returns a new instance of a RectBounder.
-func NewRectBounder() *RectBounder {
- return &RectBounder{
- bound: EmptyRect(),
- }
-}
-
-// maxErrorForTests returns the maximum error in RectBound provided that the
-// result does not include either pole. It is only used for testing purposes
-func (r *RectBounder) maxErrorForTests() LatLng {
- // The maximum error in the latitude calculation is
- // 3.84 * dblEpsilon for the PointCross calculation
- // 0.96 * dblEpsilon for the Latitude calculation
- // 5 * dblEpsilon added by AddPoint/RectBound to compensate for error
- // -----------------
- // 9.80 * dblEpsilon maximum error in result
- //
- // The maximum error in the longitude calculation is dblEpsilon. RectBound
- // does not do any expansion because this isn't necessary in order to
- // bound the *rounded* longitudes of contained points.
- return LatLng{10 * dblEpsilon * s1.Radian, 1 * dblEpsilon * s1.Radian}
-}
-
-// AddPoint adds the given point to the chain. The Point must be unit length.
-func (r *RectBounder) AddPoint(b Point) {
- bLL := LatLngFromPoint(b)
-
- if r.bound.IsEmpty() {
- r.a = b
- r.aLL = bLL
- r.bound = r.bound.AddPoint(bLL)
- return
- }
-
- // First compute the cross product N = A x B robustly. This is the normal
- // to the great circle through A and B. We don't use RobustSign
- // since that method returns an arbitrary vector orthogonal to A if the two
- // vectors are proportional, and we want the zero vector in that case.
- n := r.a.Sub(b.Vector).Cross(r.a.Add(b.Vector)) // N = 2 * (A x B)
-
- // The relative error in N gets large as its norm gets very small (i.e.,
- // when the two points are nearly identical or antipodal). We handle this
- // by choosing a maximum allowable error, and if the error is greater than
- // this we fall back to a different technique. Since it turns out that
- // the other sources of error in converting the normal to a maximum
- // latitude add up to at most 1.16 * dblEpsilon, and it is desirable to
- // have the total error be a multiple of dblEpsilon, we have chosen to
- // limit the maximum error in the normal to be 3.84 * dblEpsilon.
- // It is possible to show that the error is less than this when
- //
- // n.Norm() >= 8 * sqrt(3) / (3.84 - 0.5 - sqrt(3)) * dblEpsilon
- // = 1.91346e-15 (about 8.618 * dblEpsilon)
- nNorm := n.Norm()
- if nNorm < 1.91346e-15 {
- // A and B are either nearly identical or nearly antipodal (to within
- // 4.309 * dblEpsilon, or about 6 nanometers on the earth's surface).
- if r.a.Dot(b.Vector) < 0 {
- // The two points are nearly antipodal. The easiest solution is to
- // assume that the edge between A and B could go in any direction
- // around the sphere.
- r.bound = FullRect()
- } else {
- // The two points are nearly identical (to within 4.309 * dblEpsilon).
- // In this case we can just use the bounding rectangle of the points,
- // since after the expansion done by GetBound this Rect is
- // guaranteed to include the (lat,lng) values of all points along AB.
- r.bound = r.bound.Union(RectFromLatLng(r.aLL).AddPoint(bLL))
- }
- r.a = b
- r.aLL = bLL
- return
- }
-
- // Compute the longitude range spanned by AB.
- lngAB := s1.EmptyInterval().AddPoint(r.aLL.Lng.Radians()).AddPoint(bLL.Lng.Radians())
- if lngAB.Length() >= math.Pi-2*dblEpsilon {
- // The points lie on nearly opposite lines of longitude to within the
- // maximum error of the calculation. The easiest solution is to assume
- // that AB could go on either side of the pole.
- lngAB = s1.FullInterval()
- }
-
- // Next we compute the latitude range spanned by the edge AB. We start
- // with the range spanning the two endpoints of the edge:
- latAB := r1.IntervalFromPoint(r.aLL.Lat.Radians()).AddPoint(bLL.Lat.Radians())
-
- // This is the desired range unless the edge AB crosses the plane
- // through N and the Z-axis (which is where the great circle through A
- // and B attains its minimum and maximum latitudes). To test whether AB
- // crosses this plane, we compute a vector M perpendicular to this
- // plane and then project A and B onto it.
- m := n.Cross(r3.Vector{0, 0, 1})
- mA := m.Dot(r.a.Vector)
- mB := m.Dot(b.Vector)
-
- // We want to test the signs of "mA" and "mB", so we need to bound
- // the error in these calculations. It is possible to show that the
- // total error is bounded by
- //
- // (1 + sqrt(3)) * dblEpsilon * nNorm + 8 * sqrt(3) * (dblEpsilon**2)
- // = 6.06638e-16 * nNorm + 6.83174e-31
-
- mError := 6.06638e-16*nNorm + 6.83174e-31
- if mA*mB < 0 || math.Abs(mA) <= mError || math.Abs(mB) <= mError {
- // Minimum/maximum latitude *may* occur in the edge interior.
- //
- // The maximum latitude is 90 degrees minus the latitude of N. We
- // compute this directly using atan2 in order to get maximum accuracy
- // near the poles.
- //
- // Our goal is compute a bound that contains the computed latitudes of
- // all S2Points P that pass the point-in-polygon containment test.
- // There are three sources of error we need to consider:
- // - the directional error in N (at most 3.84 * dblEpsilon)
- // - converting N to a maximum latitude
- // - computing the latitude of the test point P
- // The latter two sources of error are at most 0.955 * dblEpsilon
- // individually, but it is possible to show by a more complex analysis
- // that together they can add up to at most 1.16 * dblEpsilon, for a
- // total error of 5 * dblEpsilon.
- //
- // We add 3 * dblEpsilon to the bound here, and GetBound() will pad
- // the bound by another 2 * dblEpsilon.
- maxLat := math.Min(
- math.Atan2(math.Sqrt(n.X*n.X+n.Y*n.Y), math.Abs(n.Z))+3*dblEpsilon,
- math.Pi/2)
-
- // In order to get tight bounds when the two points are close together,
- // we also bound the min/max latitude relative to the latitudes of the
- // endpoints A and B. First we compute the distance between A and B,
- // and then we compute the maximum change in latitude between any two
- // points along the great circle that are separated by this distance.
- // This gives us a latitude change "budget". Some of this budget must
- // be spent getting from A to B; the remainder bounds the round-trip
- // distance (in latitude) from A or B to the min or max latitude
- // attained along the edge AB.
- latBudget := 2 * math.Asin(0.5*(r.a.Sub(b.Vector)).Norm()*math.Sin(maxLat))
- maxDelta := 0.5*(latBudget-latAB.Length()) + dblEpsilon
-
- // Test whether AB passes through the point of maximum latitude or
- // minimum latitude. If the dot product(s) are small enough then the
- // result may be ambiguous.
- if mA <= mError && mB >= -mError {
- latAB.Hi = math.Min(maxLat, latAB.Hi+maxDelta)
- }
- if mB <= mError && mA >= -mError {
- latAB.Lo = math.Max(-maxLat, latAB.Lo-maxDelta)
- }
- }
- r.a = b
- r.aLL = bLL
- r.bound = r.bound.Union(Rect{latAB, lngAB})
-}
-
-// RectBound returns the bounding rectangle of the edge chain that connects the
-// vertices defined so far. This bound satisfies the guarantee made
-// above, i.e. if the edge chain defines a Loop, then the bound contains
-// the LatLng coordinates of all Points contained by the loop.
-func (r *RectBounder) RectBound() Rect {
- return r.bound.expanded(LatLng{s1.Angle(2 * dblEpsilon), 0}).PolarClosure()
-}
-
-// ExpandForSubregions expands a bounding Rect so that it is guaranteed to
-// contain the bounds of any subregion whose bounds are computed using
-// ComputeRectBound. For example, consider a loop L that defines a square.
-// GetBound ensures that if a point P is contained by this square, then
-// LatLngFromPoint(P) is contained by the bound. But now consider a diamond
-// shaped loop S contained by L. It is possible that GetBound returns a
-// *larger* bound for S than it does for L, due to rounding errors. This
-// method expands the bound for L so that it is guaranteed to contain the
-// bounds of any subregion S.
-//
-// More precisely, if L is a loop that does not contain either pole, and S
-// is a loop such that L.Contains(S), then
-//
-// ExpandForSubregions(L.RectBound).Contains(S.RectBound).
-//
-func ExpandForSubregions(bound Rect) Rect {
- // Empty bounds don't need expansion.
- if bound.IsEmpty() {
- return bound
- }
-
- // First we need to check whether the bound B contains any nearly-antipodal
- // points (to within 4.309 * dblEpsilon). If so then we need to return
- // FullRect, since the subregion might have an edge between two
- // such points, and AddPoint returns Full for such edges. Note that
- // this can happen even if B is not Full for example, consider a loop
- // that defines a 10km strip straddling the equator extending from
- // longitudes -100 to +100 degrees.
- //
- // It is easy to check whether B contains any antipodal points, but checking
- // for nearly-antipodal points is trickier. Essentially we consider the
- // original bound B and its reflection through the origin B', and then test
- // whether the minimum distance between B and B' is less than 4.309 * dblEpsilon.
-
- // lngGap is a lower bound on the longitudinal distance between B and its
- // reflection B'. (2.5 * dblEpsilon is the maximum combined error of the
- // endpoint longitude calculations and the Length call.)
- lngGap := math.Max(0, math.Pi-bound.Lng.Length()-2.5*dblEpsilon)
-
- // minAbsLat is the minimum distance from B to the equator (if zero or
- // negative, then B straddles the equator).
- minAbsLat := math.Max(bound.Lat.Lo, -bound.Lat.Hi)
-
- // latGapSouth and latGapNorth measure the minimum distance from B to the
- // south and north poles respectively.
- latGapSouth := math.Pi/2 + bound.Lat.Lo
- latGapNorth := math.Pi/2 - bound.Lat.Hi
-
- if minAbsLat >= 0 {
- // The bound B does not straddle the equator. In this case the minimum
- // distance is between one endpoint of the latitude edge in B closest to
- // the equator and the other endpoint of that edge in B'. The latitude
- // distance between these two points is 2*minAbsLat, and the longitude
- // distance is lngGap. We could compute the distance exactly using the
- // Haversine formula, but then we would need to bound the errors in that
- // calculation. Since we only need accuracy when the distance is very
- // small (close to 4.309 * dblEpsilon), we substitute the Euclidean
- // distance instead. This gives us a right triangle XYZ with two edges of
- // length x = 2*minAbsLat and y ~= lngGap. The desired distance is the
- // length of the third edge z, and we have
- //
- // z ~= sqrt(x^2 + y^2) >= (x + y) / sqrt(2)
- //
- // Therefore the region may contain nearly antipodal points only if
- //
- // 2*minAbsLat + lngGap < sqrt(2) * 4.309 * dblEpsilon
- // ~= 1.354e-15
- //
- // Note that because the given bound B is conservative, minAbsLat and
- // lngGap are both lower bounds on their true values so we do not need
- // to make any adjustments for their errors.
- if 2*minAbsLat+lngGap < 1.354e-15 {
- return FullRect()
- }
- } else if lngGap >= math.Pi/2 {
- // B spans at most Pi/2 in longitude. The minimum distance is always
- // between one corner of B and the diagonally opposite corner of B'. We
- // use the same distance approximation that we used above; in this case
- // we have an obtuse triangle XYZ with two edges of length x = latGapSouth
- // and y = latGapNorth, and angle Z >= Pi/2 between them. We then have
- //
- // z >= sqrt(x^2 + y^2) >= (x + y) / sqrt(2)
- //
- // Unlike the case above, latGapSouth and latGapNorth are not lower bounds
- // (because of the extra addition operation, and because math.Pi/2 is not
- // exactly equal to Pi/2); they can exceed their true values by up to
- // 0.75 * dblEpsilon. Putting this all together, the region may contain
- // nearly antipodal points only if
- //
- // latGapSouth + latGapNorth < (sqrt(2) * 4.309 + 1.5) * dblEpsilon
- // ~= 1.687e-15
- if latGapSouth+latGapNorth < 1.687e-15 {
- return FullRect()
- }
- } else {
- // Otherwise we know that (1) the bound straddles the equator and (2) its
- // width in longitude is at least Pi/2. In this case the minimum
- // distance can occur either between a corner of B and the diagonally
- // opposite corner of B' (as in the case above), or between a corner of B
- // and the opposite longitudinal edge reflected in B'. It is sufficient
- // to only consider the corner-edge case, since this distance is also a
- // lower bound on the corner-corner distance when that case applies.
-
- // Consider the spherical triangle XYZ where X is a corner of B with
- // minimum absolute latitude, Y is the closest pole to X, and Z is the
- // point closest to X on the opposite longitudinal edge of B'. This is a
- // right triangle (Z = Pi/2), and from the spherical law of sines we have
- //
- // sin(z) / sin(Z) = sin(y) / sin(Y)
- // sin(maxLatGap) / 1 = sin(dMin) / sin(lngGap)
- // sin(dMin) = sin(maxLatGap) * sin(lngGap)
- //
- // where "maxLatGap" = max(latGapSouth, latGapNorth) and "dMin" is the
- // desired minimum distance. Now using the facts that sin(t) >= (2/Pi)*t
- // for 0 <= t <= Pi/2, that we only need an accurate approximation when
- // at least one of "maxLatGap" or lngGap is extremely small (in which
- // case sin(t) ~= t), and recalling that "maxLatGap" has an error of up
- // to 0.75 * dblEpsilon, we want to test whether
- //
- // maxLatGap * lngGap < (4.309 + 0.75) * (Pi/2) * dblEpsilon
- // ~= 1.765e-15
- if math.Max(latGapSouth, latGapNorth)*lngGap < 1.765e-15 {
- return FullRect()
- }
- }
- // Next we need to check whether the subregion might contain any edges that
- // span (math.Pi - 2 * dblEpsilon) radians or more in longitude, since AddPoint
- // sets the longitude bound to Full in that case. This corresponds to
- // testing whether (lngGap <= 0) in lngExpansion below.
-
- // Otherwise, the maximum latitude error in AddPoint is 4.8 * dblEpsilon.
- // In the worst case, the errors when computing the latitude bound for a
- // subregion could go in the opposite direction as the errors when computing
- // the bound for the original region, so we need to double this value.
- // (More analysis shows that it's okay to round down to a multiple of
- // dblEpsilon.)
- //
- // For longitude, we rely on the fact that atan2 is correctly rounded and
- // therefore no additional bounds expansion is necessary.
-
- latExpansion := 9 * dblEpsilon
- lngExpansion := 0.0
- if lngGap <= 0 {
- lngExpansion = math.Pi
- }
- return bound.expanded(LatLng{s1.Angle(latExpansion), s1.Angle(lngExpansion)}).PolarClosure()
-}
diff --git a/vendor/github.com/golang/geo/s2/region.go b/vendor/github.com/golang/geo/s2/region.go
deleted file mode 100644
index 9ea3de1ca..000000000
--- a/vendor/github.com/golang/geo/s2/region.go
+++ /dev/null
@@ -1,71 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// A Region represents a two-dimensional region on the unit sphere.
-//
-// The purpose of this interface is to allow complex regions to be
-// approximated as simpler regions. The interface is restricted to methods
-// that are useful for computing approximations.
-type Region interface {
- // CapBound returns a bounding spherical cap. This is not guaranteed to be exact.
- CapBound() Cap
-
- // RectBound returns a bounding latitude-longitude rectangle that contains
- // the region. The bounds are not guaranteed to be tight.
- RectBound() Rect
-
- // ContainsCell reports whether the region completely contains the given region.
- // It returns false if containment could not be determined.
- ContainsCell(c Cell) bool
-
- // IntersectsCell reports whether the region intersects the given cell or
- // if intersection could not be determined. It returns false if the region
- // does not intersect.
- IntersectsCell(c Cell) bool
-
- // ContainsPoint reports whether the region contains the given point or not.
- // The point should be unit length, although some implementations may relax
- // this restriction.
- ContainsPoint(p Point) bool
-
- // CellUnionBound returns a small collection of CellIDs whose union covers
- // the region. The cells are not sorted, may have redundancies (such as cells
- // that contain other cells), and may cover much more area than necessary.
- //
- // This method is not intended for direct use by client code. Clients
- // should typically use Covering, which has options to control the size and
- // accuracy of the covering. Alternatively, if you want a fast covering and
- // don't care about accuracy, consider calling FastCovering (which returns a
- // cleaned-up version of the covering computed by this method).
- //
- // CellUnionBound implementations should attempt to return a small
- // covering (ideally 4 cells or fewer) that covers the region and can be
- // computed quickly. The result is used by RegionCoverer as a starting
- // point for further refinement.
- CellUnionBound() []CellID
-}
-
-// Enforce Region interface satisfaction.
-var (
- _ Region = Cap{}
- _ Region = Cell{}
- _ Region = (*CellUnion)(nil)
- _ Region = (*Loop)(nil)
- _ Region = Point{}
- _ Region = (*Polygon)(nil)
- _ Region = (*Polyline)(nil)
- _ Region = Rect{}
-)
diff --git a/vendor/github.com/golang/geo/s2/regioncoverer.go b/vendor/github.com/golang/geo/s2/regioncoverer.go
deleted file mode 100644
index 476e58559..000000000
--- a/vendor/github.com/golang/geo/s2/regioncoverer.go
+++ /dev/null
@@ -1,477 +0,0 @@
-// Copyright 2015 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "container/heap"
-)
-
-// RegionCoverer allows arbitrary regions to be approximated as unions of cells (CellUnion).
-// This is useful for implementing various sorts of search and precomputation operations.
-//
-// Typical usage:
-//
-// rc := &s2.RegionCoverer{MaxLevel: 30, MaxCells: 5}
-// r := s2.Region(CapFromCenterArea(center, area))
-// covering := rc.Covering(r)
-//
-// This yields a CellUnion of at most 5 cells that is guaranteed to cover the
-// given region (a disc-shaped region on the sphere).
-//
-// For covering, only cells where (level - MinLevel) is a multiple of LevelMod will be used.
-// This effectively allows the branching factor of the S2 CellID hierarchy to be increased.
-// Currently the only parameter values allowed are 1, 2, or 3, corresponding to
-// branching factors of 4, 16, and 64 respectively.
-//
-// Note the following:
-//
-// - MinLevel takes priority over MaxCells, i.e. cells below the given level will
-// never be used even if this causes a large number of cells to be returned.
-//
-// - For any setting of MaxCells, up to 6 cells may be returned if that
-// is the minimum number of cells required (e.g. if the region intersects
-// all six face cells). Up to 3 cells may be returned even for very tiny
-// convex regions if they happen to be located at the intersection of
-// three cube faces.
-//
-// - For any setting of MaxCells, an arbitrary number of cells may be
-// returned if MinLevel is too high for the region being approximated.
-//
-// - If MaxCells is less than 4, the area of the covering may be
-// arbitrarily large compared to the area of the original region even if
-// the region is convex (e.g. a Cap or Rect).
-//
-// The approximation algorithm is not optimal but does a pretty good job in
-// practice. The output does not always use the maximum number of cells
-// allowed, both because this would not always yield a better approximation,
-// and because MaxCells is a limit on how much work is done exploring the
-// possible covering as well as a limit on the final output size.
-//
-// Because it is an approximation algorithm, one should not rely on the
-// stability of the output. In particular, the output of the covering algorithm
-// may change across different versions of the library.
-//
-// One can also generate interior coverings, which are sets of cells which
-// are entirely contained within a region. Interior coverings can be
-// empty, even for non-empty regions, if there are no cells that satisfy
-// the provided constraints and are contained by the region. Note that for
-// performance reasons, it is wise to specify a MaxLevel when computing
-// interior coverings - otherwise for regions with small or zero area, the
-// algorithm may spend a lot of time subdividing cells all the way to leaf
-// level to try to find contained cells.
-type RegionCoverer struct {
- MinLevel int // the minimum cell level to be used.
- MaxLevel int // the maximum cell level to be used.
- LevelMod int // the LevelMod to be used.
- MaxCells int // the maximum desired number of cells in the approximation.
-}
-
-type coverer struct {
- minLevel int // the minimum cell level to be used.
- maxLevel int // the maximum cell level to be used.
- levelMod int // the LevelMod to be used.
- maxCells int // the maximum desired number of cells in the approximation.
- region Region
- result CellUnion
- pq priorityQueue
- interiorCovering bool
-}
-
-type candidate struct {
- cell Cell
- terminal bool // Cell should not be expanded further.
- numChildren int // Number of children that intersect the region.
- children []*candidate // Actual size may be 0, 4, 16, or 64 elements.
- priority int // Priority of the candidate.
-}
-
-type priorityQueue []*candidate
-
-func (pq priorityQueue) Len() int {
- return len(pq)
-}
-
-func (pq priorityQueue) Less(i, j int) bool {
- // We want Pop to give us the highest, not lowest, priority so we use greater than here.
- return pq[i].priority > pq[j].priority
-}
-
-func (pq priorityQueue) Swap(i, j int) {
- pq[i], pq[j] = pq[j], pq[i]
-}
-
-func (pq *priorityQueue) Push(x interface{}) {
- item := x.(*candidate)
- *pq = append(*pq, item)
-}
-
-func (pq *priorityQueue) Pop() interface{} {
- item := (*pq)[len(*pq)-1]
- *pq = (*pq)[:len(*pq)-1]
- return item
-}
-
-func (pq *priorityQueue) Reset() {
- *pq = (*pq)[:0]
-}
-
-// newCandidate returns a new candidate with no children if the cell intersects the given region.
-// The candidate is marked as terminal if it should not be expanded further.
-func (c *coverer) newCandidate(cell Cell) *candidate {
- if !c.region.IntersectsCell(cell) {
- return nil
- }
- cand := &candidate{cell: cell}
- level := int(cell.level)
- if level >= c.minLevel {
- if c.interiorCovering {
- if c.region.ContainsCell(cell) {
- cand.terminal = true
- } else if level+c.levelMod > c.maxLevel {
- return nil
- }
- } else if level+c.levelMod > c.maxLevel || c.region.ContainsCell(cell) {
- cand.terminal = true
- }
- }
- return cand
-}
-
-// expandChildren populates the children of the candidate by expanding the given number of
-// levels from the given cell. Returns the number of children that were marked "terminal".
-func (c *coverer) expandChildren(cand *candidate, cell Cell, numLevels int) int {
- numLevels--
- var numTerminals int
- last := cell.id.ChildEnd()
- for ci := cell.id.ChildBegin(); ci != last; ci = ci.Next() {
- childCell := CellFromCellID(ci)
- if numLevels > 0 {
- if c.region.IntersectsCell(childCell) {
- numTerminals += c.expandChildren(cand, childCell, numLevels)
- }
- continue
- }
- if child := c.newCandidate(childCell); child != nil {
- cand.children = append(cand.children, child)
- cand.numChildren++
- if child.terminal {
- numTerminals++
- }
- }
- }
- return numTerminals
-}
-
-// addCandidate adds the given candidate to the result if it is marked as "terminal",
-// otherwise expands its children and inserts it into the priority queue.
-// Passing an argument of nil does nothing.
-func (c *coverer) addCandidate(cand *candidate) {
- if cand == nil {
- return
- }
-
- if cand.terminal {
- c.result = append(c.result, cand.cell.id)
- return
- }
-
- // Expand one level at a time until we hit minLevel to ensure that we don't skip over it.
- numLevels := c.levelMod
- level := int(cand.cell.level)
- if level < c.minLevel {
- numLevels = 1
- }
-
- numTerminals := c.expandChildren(cand, cand.cell, numLevels)
- maxChildrenShift := uint(2 * c.levelMod)
- if cand.numChildren == 0 {
- return
- } else if !c.interiorCovering && numTerminals == 1<<maxChildrenShift && level >= c.minLevel {
- // Optimization: add the parent cell rather than all of its children.
- // We can't do this for interior coverings, since the children just
- // intersect the region, but may not be contained by it - we need to
- // subdivide them further.
- cand.terminal = true
- c.addCandidate(cand)
- } else {
- // We negate the priority so that smaller absolute priorities are returned
- // first. The heuristic is designed to refine the largest cells first,
- // since those are where we have the largest potential gain. Among cells
- // of the same size, we prefer the cells with the fewest children.
- // Finally, among cells with equal numbers of children we prefer those
- // with the smallest number of children that cannot be refined further.
- cand.priority = -(((level<<maxChildrenShift)+cand.numChildren)<<maxChildrenShift + numTerminals)
- heap.Push(&c.pq, cand)
- }
-}
-
-// adjustLevel returns the reduced "level" so that it satisfies levelMod. Levels smaller than minLevel
-// are not affected (since cells at these levels are eventually expanded).
-func (c *coverer) adjustLevel(level int) int {
- if c.levelMod > 1 && level > c.minLevel {
- level -= (level - c.minLevel) % c.levelMod
- }
- return level
-}
-
-// adjustCellLevels ensures that all cells with level > minLevel also satisfy levelMod,
-// by replacing them with an ancestor if necessary. Cell levels smaller
-// than minLevel are not modified (see AdjustLevel). The output is
-// then normalized to ensure that no redundant cells are present.
-func (c *coverer) adjustCellLevels(cells *CellUnion) {
- if c.levelMod == 1 {
- return
- }
-
- var out int
- for _, ci := range *cells {
- level := ci.Level()
- newLevel := c.adjustLevel(level)
- if newLevel != level {
- ci = ci.Parent(newLevel)
- }
- if out > 0 && (*cells)[out-1].Contains(ci) {
- continue
- }
- for out > 0 && ci.Contains((*cells)[out-1]) {
- out--
- }
- (*cells)[out] = ci
- out++
- }
- *cells = (*cells)[:out]
-}
-
-// initialCandidates computes a set of initial candidates that cover the given region.
-func (c *coverer) initialCandidates() {
- // Optimization: start with a small (usually 4 cell) covering of the region's bounding cap.
- temp := &RegionCoverer{MaxLevel: c.maxLevel, LevelMod: 1, MaxCells: minInt(4, c.maxCells)}
-
- cells := temp.FastCovering(c.region)
- c.adjustCellLevels(&cells)
- for _, ci := range cells {
- c.addCandidate(c.newCandidate(CellFromCellID(ci)))
- }
-}
-
-// coveringInternal generates a covering and stores it in result.
-// Strategy: Start with the 6 faces of the cube. Discard any
-// that do not intersect the shape. Then repeatedly choose the
-// largest cell that intersects the shape and subdivide it.
-//
-// result contains the cells that will be part of the output, while pq
-// contains cells that we may still subdivide further. Cells that are
-// entirely contained within the region are immediately added to the output,
-// while cells that do not intersect the region are immediately discarded.
-// Therefore pq only contains cells that partially intersect the region.
-// Candidates are prioritized first according to cell size (larger cells
-// first), then by the number of intersecting children they have (fewest
-// children first), and then by the number of fully contained children
-// (fewest children first).
-func (c *coverer) coveringInternal(region Region) {
- c.region = region
-
- c.initialCandidates()
- for c.pq.Len() > 0 && (!c.interiorCovering || len(c.result) < c.maxCells) {
- cand := heap.Pop(&c.pq).(*candidate)
-
- // For interior covering we keep subdividing no matter how many children
- // candidate has. If we reach MaxCells before expanding all children,
- // we will just use some of them.
- // For exterior covering we cannot do this, because result has to cover the
- // whole region, so all children have to be used.
- // candidate.numChildren == 1 case takes care of the situation when we
- // already have more than MaxCells in result (minLevel is too high).
- // Subdividing of the candidate with one child does no harm in this case.
- if c.interiorCovering || int(cand.cell.level) < c.minLevel || cand.numChildren == 1 || len(c.result)+c.pq.Len()+cand.numChildren <= c.maxCells {
- for _, child := range cand.children {
- if !c.interiorCovering || len(c.result) < c.maxCells {
- c.addCandidate(child)
- }
- }
- } else {
- cand.terminal = true
- c.addCandidate(cand)
- }
- }
- c.pq.Reset()
- c.region = nil
-}
-
-// newCoverer returns an instance of coverer.
-func (rc *RegionCoverer) newCoverer() *coverer {
- return &coverer{
- minLevel: maxInt(0, minInt(maxLevel, rc.MinLevel)),
- maxLevel: maxInt(0, minInt(maxLevel, rc.MaxLevel)),
- levelMod: maxInt(1, minInt(3, rc.LevelMod)),
- maxCells: rc.MaxCells,
- }
-}
-
-// Covering returns a CellUnion that covers the given region and satisfies the various restrictions.
-func (rc *RegionCoverer) Covering(region Region) CellUnion {
- covering := rc.CellUnion(region)
- covering.Denormalize(maxInt(0, minInt(maxLevel, rc.MinLevel)), maxInt(1, minInt(3, rc.LevelMod)))
- return covering
-}
-
-// InteriorCovering returns a CellUnion that is contained within the given region and satisfies the various restrictions.
-func (rc *RegionCoverer) InteriorCovering(region Region) CellUnion {
- intCovering := rc.InteriorCellUnion(region)
- intCovering.Denormalize(maxInt(0, minInt(maxLevel, rc.MinLevel)), maxInt(1, minInt(3, rc.LevelMod)))
- return intCovering
-}
-
-// CellUnion returns a normalized CellUnion that covers the given region and
-// satisfies the restrictions except for minLevel and levelMod. These criteria
-// cannot be satisfied using a cell union because cell unions are
-// automatically normalized by replacing four child cells with their parent
-// whenever possible. (Note that the list of cell ids passed to the CellUnion
-// constructor does in fact satisfy all the given restrictions.)
-func (rc *RegionCoverer) CellUnion(region Region) CellUnion {
- c := rc.newCoverer()
- c.coveringInternal(region)
- cu := c.result
- cu.Normalize()
- return cu
-}
-
-// InteriorCellUnion returns a normalized CellUnion that is contained within the given region and
-// satisfies the restrictions except for minLevel and levelMod. These criteria
-// cannot be satisfied using a cell union because cell unions are
-// automatically normalized by replacing four child cells with their parent
-// whenever possible. (Note that the list of cell ids passed to the CellUnion
-// constructor does in fact satisfy all the given restrictions.)
-func (rc *RegionCoverer) InteriorCellUnion(region Region) CellUnion {
- c := rc.newCoverer()
- c.interiorCovering = true
- c.coveringInternal(region)
- cu := c.result
- cu.Normalize()
- return cu
-}
-
-// FastCovering returns a CellUnion that covers the given region similar to Covering,
-// except that this method is much faster and the coverings are not as tight.
-// All of the usual parameters are respected (MaxCells, MinLevel, MaxLevel, and LevelMod),
-// except that the implementation makes no attempt to take advantage of large values of
-// MaxCells. (A small number of cells will always be returned.)
-//
-// This function is useful as a starting point for algorithms that
-// recursively subdivide cells.
-func (rc *RegionCoverer) FastCovering(region Region) CellUnion {
- c := rc.newCoverer()
- cu := CellUnion(region.CellUnionBound())
- c.normalizeCovering(&cu)
- return cu
-}
-
-// normalizeCovering normalizes the "covering" so that it conforms to the current covering
-// parameters (MaxCells, minLevel, maxLevel, and levelMod).
-// This method makes no attempt to be optimal. In particular, if
-// minLevel > 0 or levelMod > 1 then it may return more than the
-// desired number of cells even when this isn't necessary.
-//
-// Note that when the covering parameters have their default values, almost
-// all of the code in this function is skipped.
-func (c *coverer) normalizeCovering(covering *CellUnion) {
- // If any cells are too small, or don't satisfy levelMod, then replace them with ancestors.
- if c.maxLevel < maxLevel || c.levelMod > 1 {
- for i, ci := range *covering {
- level := ci.Level()
- newLevel := c.adjustLevel(minInt(level, c.maxLevel))
- if newLevel != level {
- (*covering)[i] = ci.Parent(newLevel)
- }
- }
- }
- // Sort the cells and simplify them.
- covering.Normalize()
-
- // If there are still too many cells, then repeatedly replace two adjacent
- // cells in CellID order by their lowest common ancestor.
- for len(*covering) > c.maxCells {
- bestIndex := -1
- bestLevel := -1
- for i := 0; i+1 < len(*covering); i++ {
- level, ok := (*covering)[i].CommonAncestorLevel((*covering)[i+1])
- if !ok {
- continue
- }
- level = c.adjustLevel(level)
- if level > bestLevel {
- bestLevel = level
- bestIndex = i
- }
- }
-
- if bestLevel < c.minLevel {
- break
- }
- (*covering)[bestIndex] = (*covering)[bestIndex].Parent(bestLevel)
- covering.Normalize()
- }
- // Make sure that the covering satisfies minLevel and levelMod,
- // possibly at the expense of satisfying MaxCells.
- if c.minLevel > 0 || c.levelMod > 1 {
- covering.Denormalize(c.minLevel, c.levelMod)
- }
-}
-
-// SimpleRegionCovering returns a set of cells at the given level that cover
-// the connected region and a starting point on the boundary or inside the
-// region. The cells are returned in arbitrary order.
-//
-// Note that this method is not faster than the regular Covering
-// method for most region types, such as Cap or Polygon, and in fact it
-// can be much slower when the output consists of a large number of cells.
-// Currently it can be faster at generating coverings of long narrow regions
-// such as polylines, but this may change in the future.
-func SimpleRegionCovering(region Region, start Point, level int) []CellID {
- return FloodFillRegionCovering(region, cellIDFromPoint(start).Parent(level))
-}
-
-// FloodFillRegionCovering returns all edge-connected cells at the same level as
-// the given CellID that intersect the given region, in arbitrary order.
-func FloodFillRegionCovering(region Region, start CellID) []CellID {
- var output []CellID
- all := map[CellID]bool{
- start: true,
- }
- frontier := []CellID{start}
- for len(frontier) > 0 {
- id := frontier[len(frontier)-1]
- frontier = frontier[:len(frontier)-1]
- if !region.IntersectsCell(CellFromCellID(id)) {
- continue
- }
- output = append(output, id)
- for _, nbr := range id.EdgeNeighbors() {
- if !all[nbr] {
- all[nbr] = true
- frontier = append(frontier, nbr)
- }
- }
- }
-
- return output
-}
-
-// TODO(roberts): The differences from the C++ version
-// finish up FastCovering to match C++
-// IsCanonical
-// CanonicalizeCovering
-// containsAllChildren
-// replaceCellsWithAncestor
diff --git a/vendor/github.com/golang/geo/s2/shape.go b/vendor/github.com/golang/geo/s2/shape.go
deleted file mode 100644
index 2cbf170c3..000000000
--- a/vendor/github.com/golang/geo/s2/shape.go
+++ /dev/null
@@ -1,263 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "sort"
-)
-
-// Edge represents a geodesic edge consisting of two vertices. Zero-length edges are
-// allowed, and can be used to represent points.
-type Edge struct {
- V0, V1 Point
-}
-
-// Cmp compares the two edges using the underlying Points Cmp method and returns
-//
-// -1 if e < other
-// 0 if e == other
-// +1 if e > other
-//
-// The two edges are compared by first vertex, and then by the second vertex.
-func (e Edge) Cmp(other Edge) int {
- if v0cmp := e.V0.Cmp(other.V0.Vector); v0cmp != 0 {
- return v0cmp
- }
- return e.V1.Cmp(other.V1.Vector)
-}
-
-// sortEdges sorts the slice of Edges in place.
-func sortEdges(e []Edge) {
- sort.Sort(edges(e))
-}
-
-// edges implements the Sort interface for slices of Edge.
-type edges []Edge
-
-func (e edges) Len() int { return len(e) }
-func (e edges) Swap(i, j int) { e[i], e[j] = e[j], e[i] }
-func (e edges) Less(i, j int) bool { return e[i].Cmp(e[j]) == -1 }
-
-// ShapeEdgeID is a unique identifier for an Edge within an ShapeIndex,
-// consisting of a (shapeID, edgeID) pair.
-type ShapeEdgeID struct {
- ShapeID int32
- EdgeID int32
-}
-
-// Cmp compares the two ShapeEdgeIDs and returns
-//
-// -1 if s < other
-// 0 if s == other
-// +1 if s > other
-//
-// The two are compared first by shape id and then by edge id.
-func (s ShapeEdgeID) Cmp(other ShapeEdgeID) int {
- switch {
- case s.ShapeID < other.ShapeID:
- return -1
- case s.ShapeID > other.ShapeID:
- return 1
- }
- switch {
- case s.EdgeID < other.EdgeID:
- return -1
- case s.EdgeID > other.EdgeID:
- return 1
- }
- return 0
-}
-
-// ShapeEdge represents a ShapeEdgeID with the two endpoints of that Edge.
-type ShapeEdge struct {
- ID ShapeEdgeID
- Edge Edge
-}
-
-// Chain represents a range of edge IDs corresponding to a chain of connected
-// edges, specified as a (start, length) pair. The chain is defined to consist of
-// edge IDs {start, start + 1, ..., start + length - 1}.
-type Chain struct {
- Start, Length int
-}
-
-// ChainPosition represents the position of an edge within a given edge chain,
-// specified as a (chainID, offset) pair. Chains are numbered sequentially
-// starting from zero, and offsets are measured from the start of each chain.
-type ChainPosition struct {
- ChainID, Offset int
-}
-
-// A ReferencePoint consists of a point and a boolean indicating whether the point
-// is contained by a particular shape.
-type ReferencePoint struct {
- Point Point
- Contained bool
-}
-
-// OriginReferencePoint returns a ReferencePoint with the given value for
-// contained and the origin point. It should be used when all points or no
-// points are contained.
-func OriginReferencePoint(contained bool) ReferencePoint {
- return ReferencePoint{Point: OriginPoint(), Contained: contained}
-}
-
-// typeTag is a 32-bit tag that can be used to identify the type of an encoded
-// Shape. All encodable types have a non-zero type tag. The tag associated with
-type typeTag uint32
-
-const (
- // Indicates that a given Shape type cannot be encoded.
- typeTagNone typeTag = 0
- typeTagPolygon typeTag = 1
- typeTagPolyline typeTag = 2
- typeTagPointVector typeTag = 3
- typeTagLaxPolyline typeTag = 4
- typeTagLaxPolygon typeTag = 5
-
- // The minimum allowable tag for future user-defined Shape types.
- typeTagMinUser typeTag = 8192
-)
-
-// Shape represents polygonal geometry in a flexible way. It is organized as a
-// collection of edges that optionally defines an interior. All geometry
-// represented by a given Shape must have the same dimension, which means that
-// an Shape can represent either a set of points, a set of polylines, or a set
-// of polygons.
-//
-// Shape is defined as an interface in order to give clients control over the
-// underlying data representation. Sometimes an Shape does not have any data of
-// its own, but instead wraps some other type.
-//
-// Shape operations are typically defined on a ShapeIndex rather than
-// individual shapes. An ShapeIndex is simply a collection of Shapes,
-// possibly of different dimensions (e.g. 10 points and 3 polygons), organized
-// into a data structure for efficient edge access.
-//
-// The edges of a Shape are indexed by a contiguous range of edge IDs
-// starting at 0. The edges are further subdivided into chains, where each
-// chain consists of a sequence of edges connected end-to-end (a polyline).
-// For example, a Shape representing two polylines AB and CDE would have
-// three edges (AB, CD, DE) grouped into two chains: (AB) and (CD, DE).
-// Similarly, an Shape representing 5 points would have 5 chains consisting
-// of one edge each.
-//
-// Shape has methods that allow edges to be accessed either using the global
-// numbering (edge ID) or within a particular chain. The global numbering is
-// sufficient for most purposes, but the chain representation is useful for
-// certain algorithms such as intersection (see BooleanOperation).
-type Shape interface {
- // NumEdges returns the number of edges in this shape.
- NumEdges() int
-
- // Edge returns the edge for the given edge index.
- Edge(i int) Edge
-
- // ReferencePoint returns an arbitrary reference point for the shape. (The
- // containment boolean value must be false for shapes that do not have an interior.)
- //
- // This reference point may then be used to compute the containment of other
- // points by counting edge crossings.
- ReferencePoint() ReferencePoint
-
- // NumChains reports the number of contiguous edge chains in the shape.
- // For example, a shape whose edges are [AB, BC, CD, AE, EF] would consist
- // of two chains (AB,BC,CD and AE,EF). Every chain is assigned a chain Id
- // numbered sequentially starting from zero.
- //
- // Note that it is always acceptable to implement this method by returning
- // NumEdges, i.e. every chain consists of a single edge, but this may
- // reduce the efficiency of some algorithms.
- NumChains() int
-
- // Chain returns the range of edge IDs corresponding to the given edge chain.
- // Edge chains must form contiguous, non-overlapping ranges that cover
- // the entire range of edge IDs. This is spelled out more formally below:
- //
- // 0 <= i < NumChains()
- // Chain(i).length > 0, for all i
- // Chain(0).start == 0
- // Chain(i).start + Chain(i).length == Chain(i+1).start, for i < NumChains()-1
- // Chain(i).start + Chain(i).length == NumEdges(), for i == NumChains()-1
- Chain(chainID int) Chain
-
- // ChainEdgeReturns the edge at offset "offset" within edge chain "chainID".
- // Equivalent to "shape.Edge(shape.Chain(chainID).start + offset)"
- // but more efficient.
- ChainEdge(chainID, offset int) Edge
-
- // ChainPosition finds the chain containing the given edge, and returns the
- // position of that edge as a ChainPosition(chainID, offset) pair.
- //
- // shape.Chain(pos.chainID).start + pos.offset == edgeID
- // shape.Chain(pos.chainID+1).start > edgeID
- //
- // where pos == shape.ChainPosition(edgeID).
- ChainPosition(edgeID int) ChainPosition
-
- // Dimension returns the dimension of the geometry represented by this shape,
- // either 0, 1 or 2 for point, polyline and polygon geometry respectively.
- //
- // 0 - Point geometry. Each point is represented as a degenerate edge.
- //
- // 1 - Polyline geometry. Polyline edges may be degenerate. A shape may
- // represent any number of polylines. Polylines edges may intersect.
- //
- // 2 - Polygon geometry. Edges should be oriented such that the polygon
- // interior is always on the left. In theory the edges may be returned
- // in any order, but typically the edges are organized as a collection
- // of edge chains where each chain represents one polygon loop.
- // Polygons may have degeneracies (e.g., degenerate edges or sibling
- // pairs consisting of an edge and its corresponding reversed edge).
- // A polygon loop may also be full (containing all points on the
- // sphere); by convention this is represented as a chain with no edges.
- // (See laxPolygon for details.)
- //
- // This method allows degenerate geometry of different dimensions
- // to be distinguished, e.g. it allows a point to be distinguished from a
- // polyline or polygon that has been simplified to a single point.
- Dimension() int
-
- // IsEmpty reports whether the Shape contains no points. (Note that the full
- // polygon is represented as a chain with zero edges.)
- IsEmpty() bool
-
- // IsFull reports whether the Shape contains all points on the sphere.
- IsFull() bool
-
- // typeTag returns a value that can be used to identify the type of an
- // encoded Shape.
- typeTag() typeTag
-
- // We do not support implementations of this interface outside this package.
- privateInterface()
-}
-
-// defaultShapeIsEmpty reports whether this shape contains no points.
-func defaultShapeIsEmpty(s Shape) bool {
- return s.NumEdges() == 0 && (s.Dimension() != 2 || s.NumChains() == 0)
-}
-
-// defaultShapeIsFull reports whether this shape contains all points on the sphere.
-func defaultShapeIsFull(s Shape) bool {
- return s.NumEdges() == 0 && s.Dimension() == 2 && s.NumChains() > 0
-}
-
-// A minimal check for types that should satisfy the Shape interface.
-var (
- _ Shape = &Loop{}
- _ Shape = &Polygon{}
- _ Shape = &Polyline{}
-)
diff --git a/vendor/github.com/golang/geo/s2/shapeindex.go b/vendor/github.com/golang/geo/s2/shapeindex.go
deleted file mode 100644
index 8da299d06..000000000
--- a/vendor/github.com/golang/geo/s2/shapeindex.go
+++ /dev/null
@@ -1,1507 +0,0 @@
-// Copyright 2016 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
- "sort"
- "sync"
- "sync/atomic"
-
- "github.com/golang/geo/r1"
- "github.com/golang/geo/r2"
-)
-
-// CellRelation describes the possible relationships between a target cell
-// and the cells of the ShapeIndex. If the target is an index cell or is
-// contained by an index cell, it is Indexed. If the target is subdivided
-// into one or more index cells, it is Subdivided. Otherwise it is Disjoint.
-type CellRelation int
-
-// The possible CellRelations for a ShapeIndex.
-const (
- Indexed CellRelation = iota
- Subdivided
- Disjoint
-)
-
-const (
- // cellPadding defines the total error when clipping an edge which comes
- // from two sources:
- // (1) Clipping the original spherical edge to a cube face (the face edge).
- // The maximum error in this step is faceClipErrorUVCoord.
- // (2) Clipping the face edge to the u- or v-coordinate of a cell boundary.
- // The maximum error in this step is edgeClipErrorUVCoord.
- // Finally, since we encounter the same errors when clipping query edges, we
- // double the total error so that we only need to pad edges during indexing
- // and not at query time.
- cellPadding = 2.0 * (faceClipErrorUVCoord + edgeClipErrorUVCoord)
-
- // cellSizeToLongEdgeRatio defines the cell size relative to the length of an
- // edge at which it is first considered to be long. Long edges do not
- // contribute toward the decision to subdivide a cell further. For example,
- // a value of 2.0 means that the cell must be at least twice the size of the
- // edge in order for that edge to be counted. There are two reasons for not
- // counting long edges: (1) such edges typically need to be propagated to
- // several children, which increases time and memory costs without much benefit,
- // and (2) in pathological cases, many long edges close together could force
- // subdivision to continue all the way to the leaf cell level.
- cellSizeToLongEdgeRatio = 1.0
-)
-
-// clippedShape represents the part of a shape that intersects a Cell.
-// It consists of the set of edge IDs that intersect that cell and a boolean
-// indicating whether the center of the cell is inside the shape (for shapes
-// that have an interior).
-//
-// Note that the edges themselves are not clipped; we always use the original
-// edges for intersection tests so that the results will be the same as the
-// original shape.
-type clippedShape struct {
- // shapeID is the index of the shape this clipped shape is a part of.
- shapeID int32
-
- // containsCenter indicates if the center of the CellID this shape has been
- // clipped to falls inside this shape. This is false for shapes that do not
- // have an interior.
- containsCenter bool
-
- // edges is the ordered set of ShapeIndex original edge IDs. Edges
- // are stored in increasing order of edge ID.
- edges []int
-}
-
-// newClippedShape returns a new clipped shape for the given shapeID and number of expected edges.
-func newClippedShape(id int32, numEdges int) *clippedShape {
- return &clippedShape{
- shapeID: id,
- edges: make([]int, numEdges),
- }
-}
-
-// numEdges returns the number of edges that intersect the CellID of the Cell this was clipped to.
-func (c *clippedShape) numEdges() int {
- return len(c.edges)
-}
-
-// containsEdge reports if this clipped shape contains the given edge ID.
-func (c *clippedShape) containsEdge(id int) bool {
- // Linear search is fast because the number of edges per shape is typically
- // very small (less than 10).
- for _, e := range c.edges {
- if e == id {
- return true
- }
- }
- return false
-}
-
-// ShapeIndexCell stores the index contents for a particular CellID.
-type ShapeIndexCell struct {
- shapes []*clippedShape
-}
-
-// NewShapeIndexCell creates a new cell that is sized to hold the given number of shapes.
-func NewShapeIndexCell(numShapes int) *ShapeIndexCell {
- return &ShapeIndexCell{
- shapes: make([]*clippedShape, numShapes),
- }
-}
-
-// numEdges reports the total number of edges in all clipped shapes in this cell.
-func (s *ShapeIndexCell) numEdges() int {
- var e int
- for _, cs := range s.shapes {
- e += cs.numEdges()
- }
- return e
-}
-
-// add adds the given clipped shape to this index cell.
-func (s *ShapeIndexCell) add(c *clippedShape) {
- // C++ uses a set, so it's ordered and unique. We don't currently catch
- // the case when a duplicate value is added.
- s.shapes = append(s.shapes, c)
-}
-
-// findByShapeID returns the clipped shape that contains the given shapeID,
-// or nil if none of the clipped shapes contain it.
-func (s *ShapeIndexCell) findByShapeID(shapeID int32) *clippedShape {
- // Linear search is fine because the number of shapes per cell is typically
- // very small (most often 1), and is large only for pathological inputs
- // (e.g. very deeply nested loops).
- for _, clipped := range s.shapes {
- if clipped.shapeID == shapeID {
- return clipped
- }
- }
- return nil
-}
-
-// faceEdge and clippedEdge store temporary edge data while the index is being
-// updated.
-//
-// While it would be possible to combine all the edge information into one
-// structure, there are two good reasons for separating it:
-//
-// - Memory usage. Separating the two means that we only need to
-// store one copy of the per-face data no matter how many times an edge is
-// subdivided, and it also lets us delay computing bounding boxes until
-// they are needed for processing each face (when the dataset spans
-// multiple faces).
-//
-// - Performance. UpdateEdges is significantly faster on large polygons when
-// the data is separated, because it often only needs to access the data in
-// clippedEdge and this data is cached more successfully.
-
-// faceEdge represents an edge that has been projected onto a given face,
-type faceEdge struct {
- shapeID int32 // The ID of shape that this edge belongs to
- edgeID int // Edge ID within that shape
- maxLevel int // Not desirable to subdivide this edge beyond this level
- hasInterior bool // Belongs to a shape that has a dimension of 2
- a, b r2.Point // The edge endpoints, clipped to a given face
- edge Edge // The original edge.
-}
-
-// clippedEdge represents the portion of that edge that has been clipped to a given Cell.
-type clippedEdge struct {
- faceEdge *faceEdge // The original unclipped edge
- bound r2.Rect // Bounding box for the clipped portion
-}
-
-// ShapeIndexIteratorPos defines the set of possible iterator starting positions. By
-// default iterators are unpositioned, since this avoids an extra seek in this
-// situation where one of the seek methods (such as Locate) is immediately called.
-type ShapeIndexIteratorPos int
-
-const (
- // IteratorBegin specifies the iterator should be positioned at the beginning of the index.
- IteratorBegin ShapeIndexIteratorPos = iota
- // IteratorEnd specifies the iterator should be positioned at the end of the index.
- IteratorEnd
-)
-
-// ShapeIndexIterator is an iterator that provides low-level access to
-// the cells of the index. Cells are returned in increasing order of CellID.
-//
-// for it := index.Iterator(); !it.Done(); it.Next() {
-// fmt.Print(it.CellID())
-// }
-//
-type ShapeIndexIterator struct {
- index *ShapeIndex
- position int
- id CellID
- cell *ShapeIndexCell
-}
-
-// NewShapeIndexIterator creates a new iterator for the given index. If a starting
-// position is specified, the iterator is positioned at the given spot.
-func NewShapeIndexIterator(index *ShapeIndex, pos ...ShapeIndexIteratorPos) *ShapeIndexIterator {
- s := &ShapeIndexIterator{
- index: index,
- }
-
- if len(pos) > 0 {
- if len(pos) > 1 {
- panic("too many ShapeIndexIteratorPos arguments")
- }
- switch pos[0] {
- case IteratorBegin:
- s.Begin()
- case IteratorEnd:
- s.End()
- default:
- panic("unknown ShapeIndexIteratorPos value")
- }
- }
-
- return s
-}
-
-// CellID returns the CellID of the current index cell.
-// If s.Done() is true, a value larger than any valid CellID is returned.
-func (s *ShapeIndexIterator) CellID() CellID {
- return s.id
-}
-
-// IndexCell returns the current index cell.
-func (s *ShapeIndexIterator) IndexCell() *ShapeIndexCell {
- // TODO(roberts): C++ has this call a virtual method to allow subclasses
- // of ShapeIndexIterator to do other work before returning the cell. Do
- // we need such a thing?
- return s.cell
-}
-
-// Center returns the Point at the center of the current position of the iterator.
-func (s *ShapeIndexIterator) Center() Point {
- return s.CellID().Point()
-}
-
-// Begin positions the iterator at the beginning of the index.
-func (s *ShapeIndexIterator) Begin() {
- if !s.index.IsFresh() {
- s.index.maybeApplyUpdates()
- }
- s.position = 0
- s.refresh()
-}
-
-// Next positions the iterator at the next index cell.
-func (s *ShapeIndexIterator) Next() {
- s.position++
- s.refresh()
-}
-
-// Prev advances the iterator to the previous cell in the index and returns true to
-// indicate it was not yet at the beginning of the index. If the iterator is at the
-// first cell the call does nothing and returns false.
-func (s *ShapeIndexIterator) Prev() bool {
- if s.position <= 0 {
- return false
- }
-
- s.position--
- s.refresh()
- return true
-}
-
-// End positions the iterator at the end of the index.
-func (s *ShapeIndexIterator) End() {
- s.position = len(s.index.cells)
- s.refresh()
-}
-
-// Done reports if the iterator is positioned at or after the last index cell.
-func (s *ShapeIndexIterator) Done() bool {
- return s.id == SentinelCellID
-}
-
-// refresh updates the stored internal iterator values.
-func (s *ShapeIndexIterator) refresh() {
- if s.position < len(s.index.cells) {
- s.id = s.index.cells[s.position]
- s.cell = s.index.cellMap[s.CellID()]
- } else {
- s.id = SentinelCellID
- s.cell = nil
- }
-}
-
-// seek positions the iterator at the first cell whose ID >= target, or at the
-// end of the index if no such cell exists.
-func (s *ShapeIndexIterator) seek(target CellID) {
- s.position = sort.Search(len(s.index.cells), func(i int) bool {
- return s.index.cells[i] >= target
- })
- s.refresh()
-}
-
-// LocatePoint positions the iterator at the cell that contains the given Point.
-// If no such cell exists, the iterator position is unspecified, and false is returned.
-// The cell at the matched position is guaranteed to contain all edges that might
-// intersect the line segment between target and the cell's center.
-func (s *ShapeIndexIterator) LocatePoint(p Point) bool {
- // Let I = cellMap.LowerBound(T), where T is the leaf cell containing
- // point P. Then if T is contained by an index cell, then the
- // containing cell is either I or I'. We test for containment by comparing
- // the ranges of leaf cells spanned by T, I, and I'.
- target := cellIDFromPoint(p)
- s.seek(target)
- if !s.Done() && s.CellID().RangeMin() <= target {
- return true
- }
-
- if s.Prev() && s.CellID().RangeMax() >= target {
- return true
- }
- return false
-}
-
-// LocateCellID attempts to position the iterator at the first matching index cell
-// in the index that has some relation to the given CellID. Let T be the target CellID.
-// If T is contained by (or equal to) some index cell I, then the iterator is positioned
-// at I and returns Indexed. Otherwise if T contains one or more (smaller) index cells,
-// then the iterator is positioned at the first such cell I and return Subdivided.
-// Otherwise Disjoint is returned and the iterator position is undefined.
-func (s *ShapeIndexIterator) LocateCellID(target CellID) CellRelation {
- // Let T be the target, let I = cellMap.LowerBound(T.RangeMin()), and
- // let I' be the predecessor of I. If T contains any index cells, then T
- // contains I. Similarly, if T is contained by an index cell, then the
- // containing cell is either I or I'. We test for containment by comparing
- // the ranges of leaf cells spanned by T, I, and I'.
- s.seek(target.RangeMin())
- if !s.Done() {
- if s.CellID() >= target && s.CellID().RangeMin() <= target {
- return Indexed
- }
- if s.CellID() <= target.RangeMax() {
- return Subdivided
- }
- }
- if s.Prev() && s.CellID().RangeMax() >= target {
- return Indexed
- }
- return Disjoint
-}
-
-// tracker keeps track of which shapes in a given set contain a particular point
-// (the focus). It provides an efficient way to move the focus from one point
-// to another and incrementally update the set of shapes which contain it. We use
-// this to compute which shapes contain the center of every CellID in the index,
-// by advancing the focus from one cell center to the next.
-//
-// Initially the focus is at the start of the CellID space-filling curve. We then
-// visit all the cells that are being added to the ShapeIndex in increasing order
-// of CellID. For each cell, we draw two edges: one from the entry vertex to the
-// center, and another from the center to the exit vertex (where entry and exit
-// refer to the points where the space-filling curve enters and exits the cell).
-// By counting edge crossings we can incrementally compute which shapes contain
-// the cell center. Note that the same set of shapes will always contain the exit
-// point of one cell and the entry point of the next cell in the index, because
-// either (a) these two points are actually the same, or (b) the intervening
-// cells in CellID order are all empty, and therefore there are no edge crossings
-// if we follow this path from one cell to the other.
-//
-// In C++, this is S2ShapeIndex::InteriorTracker.
-type tracker struct {
- isActive bool
- a Point
- b Point
- nextCellID CellID
- crosser *EdgeCrosser
- shapeIDs []int32
-
- // Shape ids saved by saveAndClearStateBefore. The state is never saved
- // recursively so we don't need to worry about maintaining a stack.
- savedIDs []int32
-}
-
-// newTracker returns a new tracker with the appropriate defaults.
-func newTracker() *tracker {
- // As shapes are added, we compute which ones contain the start of the
- // CellID space-filling curve by drawing an edge from OriginPoint to this
- // point and counting how many shape edges cross this edge.
- t := &tracker{
- isActive: false,
- b: trackerOrigin(),
- nextCellID: CellIDFromFace(0).ChildBeginAtLevel(maxLevel),
- }
- t.drawTo(Point{faceUVToXYZ(0, -1, -1).Normalize()}) // CellID curve start
-
- return t
-}
-
-// trackerOrigin returns the initial focus point when the tracker is created
-// (corresponding to the start of the CellID space-filling curve).
-func trackerOrigin() Point {
- // The start of the S2CellId space-filling curve.
- return Point{faceUVToXYZ(0, -1, -1).Normalize()}
-}
-
-// focus returns the current focus point of the tracker.
-func (t *tracker) focus() Point { return t.b }
-
-// addShape adds a shape whose interior should be tracked. containsOrigin indicates
-// whether the current focus point is inside the shape. Alternatively, if
-// the focus point is in the process of being moved (via moveTo/drawTo), you
-// can also specify containsOrigin at the old focus point and call testEdge
-// for every edge of the shape that might cross the current drawTo line.
-// This updates the state to correspond to the new focus point.
-//
-// This requires shape.HasInterior
-func (t *tracker) addShape(shapeID int32, containsFocus bool) {
- t.isActive = true
- if containsFocus {
- t.toggleShape(shapeID)
- }
-}
-
-// moveTo moves the focus of the tracker to the given point. This method should
-// only be used when it is known that there are no edge crossings between the old
-// and new focus locations; otherwise use drawTo.
-func (t *tracker) moveTo(b Point) { t.b = b }
-
-// drawTo moves the focus of the tracker to the given point. After this method is
-// called, testEdge should be called with all edges that may cross the line
-// segment between the old and new focus locations.
-func (t *tracker) drawTo(b Point) {
- t.a = t.b
- t.b = b
- // TODO: the edge crosser may need an in-place Init method if this gets expensive
- t.crosser = NewEdgeCrosser(t.a, t.b)
-}
-
-// testEdge checks if the given edge crosses the current edge, and if so, then
-// toggle the state of the given shapeID.
-// This requires shape to have an interior.
-func (t *tracker) testEdge(shapeID int32, edge Edge) {
- if t.crosser.EdgeOrVertexCrossing(edge.V0, edge.V1) {
- t.toggleShape(shapeID)
- }
-}
-
-// setNextCellID is used to indicate that the last argument to moveTo or drawTo
-// was the entry vertex of the given CellID, i.e. the tracker is positioned at the
-// start of this cell. By using this method together with atCellID, the caller
-// can avoid calling moveTo in cases where the exit vertex of the previous cell
-// is the same as the entry vertex of the current cell.
-func (t *tracker) setNextCellID(nextCellID CellID) {
- t.nextCellID = nextCellID.RangeMin()
-}
-
-// atCellID reports if the focus is already at the entry vertex of the given
-// CellID (provided that the caller calls setNextCellID as each cell is processed).
-func (t *tracker) atCellID(cellid CellID) bool {
- return cellid.RangeMin() == t.nextCellID
-}
-
-// toggleShape adds or removes the given shapeID from the set of IDs it is tracking.
-func (t *tracker) toggleShape(shapeID int32) {
- // Most shapeIDs slices are small, so special case the common steps.
-
- // If there is nothing here, add it.
- if len(t.shapeIDs) == 0 {
- t.shapeIDs = append(t.shapeIDs, shapeID)
- return
- }
-
- // If it's the first element, drop it from the slice.
- if t.shapeIDs[0] == shapeID {
- t.shapeIDs = t.shapeIDs[1:]
- return
- }
-
- for i, s := range t.shapeIDs {
- if s < shapeID {
- continue
- }
-
- // If it's in the set, cut it out.
- if s == shapeID {
- copy(t.shapeIDs[i:], t.shapeIDs[i+1:]) // overwrite the ith element
- t.shapeIDs = t.shapeIDs[:len(t.shapeIDs)-1]
- return
- }
-
- // We've got to a point in the slice where we should be inserted.
- // (the given shapeID is now less than the current positions id.)
- t.shapeIDs = append(t.shapeIDs[0:i],
- append([]int32{shapeID}, t.shapeIDs[i:len(t.shapeIDs)]...)...)
- return
- }
-
- // We got to the end and didn't find it, so add it to the list.
- t.shapeIDs = append(t.shapeIDs, shapeID)
-}
-
-// saveAndClearStateBefore makes an internal copy of the state for shape ids below
-// the given limit, and then clear the state for those shapes. This is used during
-// incremental updates to track the state of added and removed shapes separately.
-func (t *tracker) saveAndClearStateBefore(limitShapeID int32) {
- limit := t.lowerBound(limitShapeID)
- t.savedIDs = append([]int32(nil), t.shapeIDs[:limit]...)
- t.shapeIDs = t.shapeIDs[limit:]
-}
-
-// restoreStateBefore restores the state previously saved by saveAndClearStateBefore.
-// This only affects the state for shapeIDs below "limitShapeID".
-func (t *tracker) restoreStateBefore(limitShapeID int32) {
- limit := t.lowerBound(limitShapeID)
- t.shapeIDs = append(append([]int32(nil), t.savedIDs...), t.shapeIDs[limit:]...)
- t.savedIDs = nil
-}
-
-// lowerBound returns the shapeID of the first entry x where x >= shapeID.
-func (t *tracker) lowerBound(shapeID int32) int32 {
- panic("not implemented")
-}
-
-// removedShape represents a set of edges from the given shape that is queued for removal.
-type removedShape struct {
- shapeID int32
- hasInterior bool
- containsTrackerOrigin bool
- edges []Edge
-}
-
-// There are three basic states the index can be in.
-const (
- stale int32 = iota // There are pending updates.
- updating // Updates are currently being applied.
- fresh // There are no pending updates.
-)
-
-// ShapeIndex indexes a set of Shapes, where a Shape is some collection of edges
-// that optionally defines an interior. It can be used to represent a set of
-// points, a set of polylines, or a set of polygons. For Shapes that have
-// interiors, the index makes it very fast to determine which Shape(s) contain
-// a given point or region.
-//
-// The index can be updated incrementally by adding or removing shapes. It is
-// designed to handle up to hundreds of millions of edges. All data structures
-// are designed to be small, so the index is compact; generally it is smaller
-// than the underlying data being indexed. The index is also fast to construct.
-//
-// Polygon, Loop, and Polyline implement Shape which allows these objects to
-// be indexed easily. You can find useful query methods in CrossingEdgeQuery
-// and ClosestEdgeQuery (Not yet implemented in Go).
-//
-// Example showing how to build an index of Polylines:
-//
-// index := NewShapeIndex()
-// for _, polyline := range polylines {
-// index.Add(polyline);
-// }
-// // Now you can use a CrossingEdgeQuery or ClosestEdgeQuery here.
-//
-type ShapeIndex struct {
- // shapes is a map of shape ID to shape.
- shapes map[int32]Shape
-
- // The maximum number of edges per cell.
- // TODO(roberts): Update the comments when the usage of this is implemented.
- maxEdgesPerCell int
-
- // nextID tracks the next ID to hand out. IDs are not reused when shapes
- // are removed from the index.
- nextID int32
-
- // cellMap is a map from CellID to the set of clipped shapes that intersect that
- // cell. The cell IDs cover a set of non-overlapping regions on the sphere.
- // In C++, this is a BTree, so the cells are ordered naturally by the data structure.
- cellMap map[CellID]*ShapeIndexCell
- // Track the ordered list of cell IDs.
- cells []CellID
-
- // The current status of the index; accessed atomically.
- status int32
-
- // Additions and removals are queued and processed on the first subsequent
- // query. There are several reasons to do this:
- //
- // - It is significantly more efficient to process updates in batches if
- // the amount of entities added grows.
- // - Often the index will never be queried, in which case we can save both
- // the time and memory required to build it. Examples:
- // + Loops that are created simply to pass to an Polygon. (We don't
- // need the Loop index, because Polygon builds its own index.)
- // + Applications that load a database of geometry and then query only
- // a small fraction of it.
- //
- // The main drawback is that we need to go to some extra work to ensure that
- // some methods are still thread-safe. Note that the goal is *not* to
- // make this thread-safe in general, but simply to hide the fact that
- // we defer some of the indexing work until query time.
- //
- // This mutex protects all of following fields in the index.
- mu sync.RWMutex
-
- // pendingAdditionsPos is the index of the first entry that has not been processed
- // via applyUpdatesInternal.
- pendingAdditionsPos int32
-
- // The set of shapes that have been queued for removal but not processed yet by
- // applyUpdatesInternal.
- pendingRemovals []*removedShape
-}
-
-// NewShapeIndex creates a new ShapeIndex.
-func NewShapeIndex() *ShapeIndex {
- return &ShapeIndex{
- maxEdgesPerCell: 10,
- shapes: make(map[int32]Shape),
- cellMap: make(map[CellID]*ShapeIndexCell),
- cells: nil,
- status: fresh,
- }
-}
-
-// Iterator returns an iterator for this index.
-func (s *ShapeIndex) Iterator() *ShapeIndexIterator {
- s.maybeApplyUpdates()
- return NewShapeIndexIterator(s, IteratorBegin)
-}
-
-// Begin positions the iterator at the first cell in the index.
-func (s *ShapeIndex) Begin() *ShapeIndexIterator {
- s.maybeApplyUpdates()
- return NewShapeIndexIterator(s, IteratorBegin)
-}
-
-// End positions the iterator at the last cell in the index.
-func (s *ShapeIndex) End() *ShapeIndexIterator {
- // TODO(roberts): It's possible that updates could happen to the index between
- // the time this is called and the time the iterators position is used and this
- // will be invalid or not the end. For now, things will be undefined if this
- // happens. See about referencing the IsFresh to guard for this in the future.
- s.maybeApplyUpdates()
- return NewShapeIndexIterator(s, IteratorEnd)
-}
-
-// Len reports the number of Shapes in this index.
-func (s *ShapeIndex) Len() int {
- return len(s.shapes)
-}
-
-// Reset resets the index to its original state.
-func (s *ShapeIndex) Reset() {
- s.shapes = make(map[int32]Shape)
- s.nextID = 0
- s.cellMap = make(map[CellID]*ShapeIndexCell)
- s.cells = nil
- atomic.StoreInt32(&s.status, fresh)
-}
-
-// NumEdges returns the number of edges in this index.
-func (s *ShapeIndex) NumEdges() int {
- numEdges := 0
- for _, shape := range s.shapes {
- numEdges += shape.NumEdges()
- }
- return numEdges
-}
-
-// NumEdgesUpTo returns the number of edges in the given index, up to the given
-// limit. If the limit is encountered, the current running total is returned,
-// which may be more than the limit.
-func (s *ShapeIndex) NumEdgesUpTo(limit int) int {
- var numEdges int
- // We choose to iterate over the shapes in order to match the counting
- // up behavior in C++ and for test compatibility instead of using a
- // more idiomatic range over the shape map.
- for i := int32(0); i <= s.nextID; i++ {
- s := s.Shape(i)
- if s == nil {
- continue
- }
- numEdges += s.NumEdges()
- if numEdges >= limit {
- break
- }
- }
-
- return numEdges
-}
-
-// Shape returns the shape with the given ID, or nil if the shape has been removed from the index.
-func (s *ShapeIndex) Shape(id int32) Shape { return s.shapes[id] }
-
-// idForShape returns the id of the given shape in this index, or -1 if it is
-// not in the index.
-//
-// TODO(roberts): Need to figure out an appropriate way to expose this on a Shape.
-// C++ allows a given S2 type (Loop, Polygon, etc) to be part of multiple indexes.
-// By having each type extend S2Shape which has an id element, they all inherit their
-// own id field rather than having to track it themselves.
-func (s *ShapeIndex) idForShape(shape Shape) int32 {
- for k, v := range s.shapes {
- if v == shape {
- return k
- }
- }
- return -1
-}
-
-// Add adds the given shape to the index and returns the assigned ID..
-func (s *ShapeIndex) Add(shape Shape) int32 {
- s.shapes[s.nextID] = shape
- s.nextID++
- atomic.StoreInt32(&s.status, stale)
- return s.nextID - 1
-}
-
-// Remove removes the given shape from the index.
-func (s *ShapeIndex) Remove(shape Shape) {
- // The index updates itself lazily because it is much more efficient to
- // process additions and removals in batches.
- id := s.idForShape(shape)
-
- // If the shape wasn't found, it's already been removed or was not in the index.
- if s.shapes[id] == nil {
- return
- }
-
- // Remove the shape from the shapes map.
- delete(s.shapes, id)
-
- // We are removing a shape that has not yet been added to the index,
- // so there is nothing else to do.
- if id >= s.pendingAdditionsPos {
- return
- }
-
- numEdges := shape.NumEdges()
- removed := &removedShape{
- shapeID: id,
- hasInterior: shape.Dimension() == 2,
- containsTrackerOrigin: shape.ReferencePoint().Contained,
- edges: make([]Edge, numEdges),
- }
-
- for e := 0; e < numEdges; e++ {
- removed.edges[e] = shape.Edge(e)
- }
-
- s.pendingRemovals = append(s.pendingRemovals, removed)
- atomic.StoreInt32(&s.status, stale)
-}
-
-// IsFresh reports if there are no pending updates that need to be applied.
-// This can be useful to avoid building the index unnecessarily, or for
-// choosing between two different algorithms depending on whether the index
-// is available.
-//
-// The returned index status may be slightly out of date if the index was
-// built in a different thread. This is fine for the intended use (as an
-// efficiency hint), but it should not be used by internal methods.
-func (s *ShapeIndex) IsFresh() bool {
- return atomic.LoadInt32(&s.status) == fresh
-}
-
-// isFirstUpdate reports if this is the first update to the index.
-func (s *ShapeIndex) isFirstUpdate() bool {
- // Note that it is not sufficient to check whether cellMap is empty, since
- // entries are added to it during the update process.
- return s.pendingAdditionsPos == 0
-}
-
-// isShapeBeingRemoved reports if the shape with the given ID is currently slated for removal.
-func (s *ShapeIndex) isShapeBeingRemoved(shapeID int32) bool {
- // All shape ids being removed fall below the index position of shapes being added.
- return shapeID < s.pendingAdditionsPos
-}
-
-// maybeApplyUpdates checks if the index pieces have changed, and if so, applies pending updates.
-func (s *ShapeIndex) maybeApplyUpdates() {
- // TODO(roberts): To avoid acquiring and releasing the mutex on every
- // query, we should use atomic operations when testing whether the status
- // is fresh and when updating the status to be fresh. This guarantees
- // that any thread that sees a status of fresh will also see the
- // corresponding index updates.
- if atomic.LoadInt32(&s.status) != fresh {
- s.mu.Lock()
- s.applyUpdatesInternal()
- atomic.StoreInt32(&s.status, fresh)
- s.mu.Unlock()
- }
-}
-
-// applyUpdatesInternal does the actual work of updating the index by applying all
-// pending additions and removals. It does *not* update the indexes status.
-func (s *ShapeIndex) applyUpdatesInternal() {
- // TODO(roberts): Building the index can use up to 20x as much memory per
- // edge as the final index memory size. If this causes issues, add in
- // batched updating to limit the amount of items per batch to a
- // configurable memory footprint overhead.
- t := newTracker()
-
- // allEdges maps a Face to a collection of faceEdges.
- allEdges := make([][]faceEdge, 6)
-
- for _, p := range s.pendingRemovals {
- s.removeShapeInternal(p, allEdges, t)
- }
-
- for id := s.pendingAdditionsPos; id < int32(len(s.shapes)); id++ {
- s.addShapeInternal(id, allEdges, t)
- }
-
- for face := 0; face < 6; face++ {
- s.updateFaceEdges(face, allEdges[face], t)
- }
-
- s.pendingRemovals = s.pendingRemovals[:0]
- s.pendingAdditionsPos = int32(len(s.shapes))
- // It is the caller's responsibility to update the index status.
-}
-
-// addShapeInternal clips all edges of the given shape to the six cube faces,
-// adds the clipped edges to the set of allEdges, and starts tracking its
-// interior if necessary.
-func (s *ShapeIndex) addShapeInternal(shapeID int32, allEdges [][]faceEdge, t *tracker) {
- shape, ok := s.shapes[shapeID]
- if !ok {
- // This shape has already been removed.
- return
- }
-
- faceEdge := faceEdge{
- shapeID: shapeID,
- hasInterior: shape.Dimension() == 2,
- }
-
- if faceEdge.hasInterior {
- t.addShape(shapeID, containsBruteForce(shape, t.focus()))
- }
-
- numEdges := shape.NumEdges()
- for e := 0; e < numEdges; e++ {
- edge := shape.Edge(e)
-
- faceEdge.edgeID = e
- faceEdge.edge = edge
- faceEdge.maxLevel = maxLevelForEdge(edge)
- s.addFaceEdge(faceEdge, allEdges)
- }
-}
-
-// addFaceEdge adds the given faceEdge into the collection of all edges.
-func (s *ShapeIndex) addFaceEdge(fe faceEdge, allEdges [][]faceEdge) {
- aFace := face(fe.edge.V0.Vector)
- // See if both endpoints are on the same face, and are far enough from
- // the edge of the face that they don't intersect any (padded) adjacent face.
- if aFace == face(fe.edge.V1.Vector) {
- x, y := validFaceXYZToUV(aFace, fe.edge.V0.Vector)
- fe.a = r2.Point{x, y}
- x, y = validFaceXYZToUV(aFace, fe.edge.V1.Vector)
- fe.b = r2.Point{x, y}
-
- maxUV := 1 - cellPadding
- if math.Abs(fe.a.X) <= maxUV && math.Abs(fe.a.Y) <= maxUV &&
- math.Abs(fe.b.X) <= maxUV && math.Abs(fe.b.Y) <= maxUV {
- allEdges[aFace] = append(allEdges[aFace], fe)
- return
- }
- }
-
- // Otherwise, we simply clip the edge to all six faces.
- for face := 0; face < 6; face++ {
- if aClip, bClip, intersects := ClipToPaddedFace(fe.edge.V0, fe.edge.V1, face, cellPadding); intersects {
- fe.a = aClip
- fe.b = bClip
- allEdges[face] = append(allEdges[face], fe)
- }
- }
-}
-
-// updateFaceEdges adds or removes the various edges from the index.
-// An edge is added if shapes[id] is not nil, and removed otherwise.
-func (s *ShapeIndex) updateFaceEdges(face int, faceEdges []faceEdge, t *tracker) {
- numEdges := len(faceEdges)
- if numEdges == 0 && len(t.shapeIDs) == 0 {
- return
- }
-
- // Create the initial clippedEdge for each faceEdge. Additional clipped
- // edges are created when edges are split between child cells. We create
- // two arrays, one containing the edge data and another containing pointers
- // to those edges, so that during the recursion we only need to copy
- // pointers in order to propagate an edge to the correct child.
- clippedEdges := make([]*clippedEdge, numEdges)
- bound := r2.EmptyRect()
- for e := 0; e < numEdges; e++ {
- clipped := &clippedEdge{
- faceEdge: &faceEdges[e],
- }
- clipped.bound = r2.RectFromPoints(faceEdges[e].a, faceEdges[e].b)
- clippedEdges[e] = clipped
- bound = bound.AddRect(clipped.bound)
- }
-
- // Construct the initial face cell containing all the edges, and then update
- // all the edges in the index recursively.
- faceID := CellIDFromFace(face)
- pcell := PaddedCellFromCellID(faceID, cellPadding)
-
- disjointFromIndex := s.isFirstUpdate()
- if numEdges > 0 {
- shrunkID := s.shrinkToFit(pcell, bound)
- if shrunkID != pcell.id {
- // All the edges are contained by some descendant of the face cell. We
- // can save a lot of work by starting directly with that cell, but if we
- // are in the interior of at least one shape then we need to create
- // index entries for the cells we are skipping over.
- s.skipCellRange(faceID.RangeMin(), shrunkID.RangeMin(), t, disjointFromIndex)
- pcell = PaddedCellFromCellID(shrunkID, cellPadding)
- s.updateEdges(pcell, clippedEdges, t, disjointFromIndex)
- s.skipCellRange(shrunkID.RangeMax().Next(), faceID.RangeMax().Next(), t, disjointFromIndex)
- return
- }
- }
-
- // Otherwise (no edges, or no shrinking is possible), subdivide normally.
- s.updateEdges(pcell, clippedEdges, t, disjointFromIndex)
-}
-
-// shrinkToFit shrinks the PaddedCell to fit within the given bounds.
-func (s *ShapeIndex) shrinkToFit(pcell *PaddedCell, bound r2.Rect) CellID {
- shrunkID := pcell.ShrinkToFit(bound)
-
- if !s.isFirstUpdate() && shrunkID != pcell.CellID() {
- // Don't shrink any smaller than the existing index cells, since we need
- // to combine the new edges with those cells.
- iter := s.Iterator()
- if iter.LocateCellID(shrunkID) == Indexed {
- shrunkID = iter.CellID()
- }
- }
- return shrunkID
-}
-
-// skipCellRange skips over the cells in the given range, creating index cells if we are
-// currently in the interior of at least one shape.
-func (s *ShapeIndex) skipCellRange(begin, end CellID, t *tracker, disjointFromIndex bool) {
- // If we aren't in the interior of a shape, then skipping over cells is easy.
- if len(t.shapeIDs) == 0 {
- return
- }
-
- // Otherwise generate the list of cell ids that we need to visit, and create
- // an index entry for each one.
- skipped := CellUnionFromRange(begin, end)
- for _, cell := range skipped {
- var clippedEdges []*clippedEdge
- s.updateEdges(PaddedCellFromCellID(cell, cellPadding), clippedEdges, t, disjointFromIndex)
- }
-}
-
-// updateEdges adds or removes the given edges whose bounding boxes intersect a
-// given cell. disjointFromIndex is an optimization hint indicating that cellMap
-// does not contain any entries that overlap the given cell.
-func (s *ShapeIndex) updateEdges(pcell *PaddedCell, edges []*clippedEdge, t *tracker, disjointFromIndex bool) {
- // This function is recursive with a maximum recursion depth of 30 (maxLevel).
-
- // Incremental updates are handled as follows. All edges being added or
- // removed are combined together in edges, and all shapes with interiors
- // are tracked using tracker. We subdivide recursively as usual until we
- // encounter an existing index cell. At this point we absorb the index
- // cell as follows:
- //
- // - Edges and shapes that are being removed are deleted from edges and
- // tracker.
- // - All remaining edges and shapes from the index cell are added to
- // edges and tracker.
- // - Continue subdividing recursively, creating new index cells as needed.
- // - When the recursion gets back to the cell that was absorbed, we
- // restore edges and tracker to their previous state.
- //
- // Note that the only reason that we include removed shapes in the recursive
- // subdivision process is so that we can find all of the index cells that
- // contain those shapes efficiently, without maintaining an explicit list of
- // index cells for each shape (which would be expensive in terms of memory).
- indexCellAbsorbed := false
- if !disjointFromIndex {
- // There may be existing index cells contained inside pcell. If we
- // encounter such a cell, we need to combine the edges being updated with
- // the existing cell contents by absorbing the cell.
- iter := s.Iterator()
- r := iter.LocateCellID(pcell.id)
- if r == Disjoint {
- disjointFromIndex = true
- } else if r == Indexed {
- // Absorb the index cell by transferring its contents to edges and
- // deleting it. We also start tracking the interior of any new shapes.
- s.absorbIndexCell(pcell, iter, edges, t)
- indexCellAbsorbed = true
- disjointFromIndex = true
- } else {
- // DCHECK_EQ(SUBDIVIDED, r)
- }
- }
-
- // If there are existing index cells below us, then we need to keep
- // subdividing so that we can merge with those cells. Otherwise,
- // makeIndexCell checks if the number of edges is small enough, and creates
- // an index cell if possible (returning true when it does so).
- if !disjointFromIndex || !s.makeIndexCell(pcell, edges, t) {
- // TODO(roberts): If it turns out to have memory problems when there
- // are 10M+ edges in the index, look into pre-allocating space so we
- // are not always appending.
- childEdges := [2][2][]*clippedEdge{} // [i][j]
-
- // Compute the middle of the padded cell, defined as the rectangle in
- // (u,v)-space that belongs to all four (padded) children. By comparing
- // against the four boundaries of middle we can determine which children
- // each edge needs to be propagated to.
- middle := pcell.Middle()
-
- // Build up a vector edges to be passed to each child cell. The (i,j)
- // directions are left (i=0), right (i=1), lower (j=0), and upper (j=1).
- // Note that the vast majority of edges are propagated to a single child.
- for _, edge := range edges {
- if edge.bound.X.Hi <= middle.X.Lo {
- // Edge is entirely contained in the two left children.
- a, b := s.clipVAxis(edge, middle.Y)
- if a != nil {
- childEdges[0][0] = append(childEdges[0][0], a)
- }
- if b != nil {
- childEdges[0][1] = append(childEdges[0][1], b)
- }
- } else if edge.bound.X.Lo >= middle.X.Hi {
- // Edge is entirely contained in the two right children.
- a, b := s.clipVAxis(edge, middle.Y)
- if a != nil {
- childEdges[1][0] = append(childEdges[1][0], a)
- }
- if b != nil {
- childEdges[1][1] = append(childEdges[1][1], b)
- }
- } else if edge.bound.Y.Hi <= middle.Y.Lo {
- // Edge is entirely contained in the two lower children.
- if a := s.clipUBound(edge, 1, middle.X.Hi); a != nil {
- childEdges[0][0] = append(childEdges[0][0], a)
- }
- if b := s.clipUBound(edge, 0, middle.X.Lo); b != nil {
- childEdges[1][0] = append(childEdges[1][0], b)
- }
- } else if edge.bound.Y.Lo >= middle.Y.Hi {
- // Edge is entirely contained in the two upper children.
- if a := s.clipUBound(edge, 1, middle.X.Hi); a != nil {
- childEdges[0][1] = append(childEdges[0][1], a)
- }
- if b := s.clipUBound(edge, 0, middle.X.Lo); b != nil {
- childEdges[1][1] = append(childEdges[1][1], b)
- }
- } else {
- // The edge bound spans all four children. The edge
- // itself intersects either three or four padded children.
- left := s.clipUBound(edge, 1, middle.X.Hi)
- a, b := s.clipVAxis(left, middle.Y)
- if a != nil {
- childEdges[0][0] = append(childEdges[0][0], a)
- }
- if b != nil {
- childEdges[0][1] = append(childEdges[0][1], b)
- }
- right := s.clipUBound(edge, 0, middle.X.Lo)
- a, b = s.clipVAxis(right, middle.Y)
- if a != nil {
- childEdges[1][0] = append(childEdges[1][0], a)
- }
- if b != nil {
- childEdges[1][1] = append(childEdges[1][1], b)
- }
- }
- }
-
- // Now recursively update the edges in each child. We call the children in
- // increasing order of CellID so that when the index is first constructed,
- // all insertions into cellMap are at the end (which is much faster).
- for pos := 0; pos < 4; pos++ {
- i, j := pcell.ChildIJ(pos)
- if len(childEdges[i][j]) > 0 || len(t.shapeIDs) > 0 {
- s.updateEdges(PaddedCellFromParentIJ(pcell, i, j), childEdges[i][j],
- t, disjointFromIndex)
- }
- }
- }
-
- if indexCellAbsorbed {
- // Restore the state for any edges being removed that we are tracking.
- t.restoreStateBefore(s.pendingAdditionsPos)
- }
-}
-
-// makeIndexCell builds an indexCell from the given padded cell and set of edges and adds
-// it to the index. If the cell or edges are empty, no cell is added.
-func (s *ShapeIndex) makeIndexCell(p *PaddedCell, edges []*clippedEdge, t *tracker) bool {
- // If the cell is empty, no index cell is needed. (In most cases this
- // situation is detected before we get to this point, but this can happen
- // when all shapes in a cell are removed.)
- if len(edges) == 0 && len(t.shapeIDs) == 0 {
- return true
- }
-
- // Count the number of edges that have not reached their maximum level yet.
- // Return false if there are too many such edges.
- count := 0
- for _, ce := range edges {
- if p.Level() < ce.faceEdge.maxLevel {
- count++
- }
-
- if count > s.maxEdgesPerCell {
- return false
- }
- }
-
- // Possible optimization: Continue subdividing as long as exactly one child
- // of the padded cell intersects the given edges. This can be done by finding
- // the bounding box of all the edges and calling ShrinkToFit:
- //
- // cellID = p.ShrinkToFit(RectBound(edges));
- //
- // Currently this is not beneficial; it slows down construction by 4-25%
- // (mainly computing the union of the bounding rectangles) and also slows
- // down queries (since more recursive clipping is required to get down to
- // the level of a spatial index cell). But it may be worth trying again
- // once containsCenter is computed and all algorithms are modified to
- // take advantage of it.
-
- // We update the InteriorTracker as follows. For every Cell in the index
- // we construct two edges: one edge from entry vertex of the cell to its
- // center, and one from the cell center to its exit vertex. Here entry
- // and exit refer the CellID ordering, i.e. the order in which points
- // are encountered along the 2 space-filling curve. The exit vertex then
- // becomes the entry vertex for the next cell in the index, unless there are
- // one or more empty intervening cells, in which case the InteriorTracker
- // state is unchanged because the intervening cells have no edges.
-
- // Shift the InteriorTracker focus point to the center of the current cell.
- if t.isActive && len(edges) != 0 {
- if !t.atCellID(p.id) {
- t.moveTo(p.EntryVertex())
- }
- t.drawTo(p.Center())
- s.testAllEdges(edges, t)
- }
-
- // Allocate and fill a new index cell. To get the total number of shapes we
- // need to merge the shapes associated with the intersecting edges together
- // with the shapes that happen to contain the cell center.
- cshapeIDs := t.shapeIDs
- numShapes := s.countShapes(edges, cshapeIDs)
- cell := NewShapeIndexCell(numShapes)
-
- // To fill the index cell we merge the two sources of shapes: edge shapes
- // (those that have at least one edge that intersects this cell), and
- // containing shapes (those that contain the cell center). We keep track
- // of the index of the next intersecting edge and the next containing shape
- // as we go along. Both sets of shape ids are already sorted.
- eNext := 0
- cNextIdx := 0
- for i := 0; i < numShapes; i++ {
- var clipped *clippedShape
- // advance to next value base + i
- eshapeID := int32(s.Len())
- cshapeID := eshapeID // Sentinels
-
- if eNext != len(edges) {
- eshapeID = edges[eNext].faceEdge.shapeID
- }
- if cNextIdx < len(cshapeIDs) {
- cshapeID = cshapeIDs[cNextIdx]
- }
- eBegin := eNext
- if cshapeID < eshapeID {
- // The entire cell is in the shape interior.
- clipped = newClippedShape(cshapeID, 0)
- clipped.containsCenter = true
- cNextIdx++
- } else {
- // Count the number of edges for this shape and allocate space for them.
- for eNext < len(edges) && edges[eNext].faceEdge.shapeID == eshapeID {
- eNext++
- }
- clipped = newClippedShape(eshapeID, eNext-eBegin)
- for e := eBegin; e < eNext; e++ {
- clipped.edges[e-eBegin] = edges[e].faceEdge.edgeID
- }
- if cshapeID == eshapeID {
- clipped.containsCenter = true
- cNextIdx++
- }
- }
- cell.shapes[i] = clipped
- }
-
- // Add this cell to the map.
- s.cellMap[p.id] = cell
- s.cells = append(s.cells, p.id)
-
- // Shift the tracker focus point to the exit vertex of this cell.
- if t.isActive && len(edges) != 0 {
- t.drawTo(p.ExitVertex())
- s.testAllEdges(edges, t)
- t.setNextCellID(p.id.Next())
- }
- return true
-}
-
-// updateBound updates the specified endpoint of the given clipped edge and returns the
-// resulting clipped edge.
-func (s *ShapeIndex) updateBound(edge *clippedEdge, uEnd int, u float64, vEnd int, v float64) *clippedEdge {
- c := &clippedEdge{faceEdge: edge.faceEdge}
- if uEnd == 0 {
- c.bound.X.Lo = u
- c.bound.X.Hi = edge.bound.X.Hi
- } else {
- c.bound.X.Lo = edge.bound.X.Lo
- c.bound.X.Hi = u
- }
-
- if vEnd == 0 {
- c.bound.Y.Lo = v
- c.bound.Y.Hi = edge.bound.Y.Hi
- } else {
- c.bound.Y.Lo = edge.bound.Y.Lo
- c.bound.Y.Hi = v
- }
-
- return c
-}
-
-// clipUBound clips the given endpoint (lo=0, hi=1) of the u-axis so that
-// it does not extend past the given value of the given edge.
-func (s *ShapeIndex) clipUBound(edge *clippedEdge, uEnd int, u float64) *clippedEdge {
- // First check whether the edge actually requires any clipping. (Sometimes
- // this method is called when clipping is not necessary, e.g. when one edge
- // endpoint is in the overlap area between two padded child cells.)
- if uEnd == 0 {
- if edge.bound.X.Lo >= u {
- return edge
- }
- } else {
- if edge.bound.X.Hi <= u {
- return edge
- }
- }
- // We interpolate the new v-value from the endpoints of the original edge.
- // This has two advantages: (1) we don't need to store the clipped endpoints
- // at all, just their bounding box; and (2) it avoids the accumulation of
- // roundoff errors due to repeated interpolations. The result needs to be
- // clamped to ensure that it is in the appropriate range.
- e := edge.faceEdge
- v := edge.bound.Y.ClampPoint(interpolateFloat64(u, e.a.X, e.b.X, e.a.Y, e.b.Y))
-
- // Determine which endpoint of the v-axis bound to update. If the edge
- // slope is positive we update the same endpoint, otherwise we update the
- // opposite endpoint.
- var vEnd int
- positiveSlope := (e.a.X > e.b.X) == (e.a.Y > e.b.Y)
- if (uEnd == 1) == positiveSlope {
- vEnd = 1
- }
- return s.updateBound(edge, uEnd, u, vEnd, v)
-}
-
-// clipVBound clips the given endpoint (lo=0, hi=1) of the v-axis so that
-// it does not extend past the given value of the given edge.
-func (s *ShapeIndex) clipVBound(edge *clippedEdge, vEnd int, v float64) *clippedEdge {
- if vEnd == 0 {
- if edge.bound.Y.Lo >= v {
- return edge
- }
- } else {
- if edge.bound.Y.Hi <= v {
- return edge
- }
- }
-
- // We interpolate the new v-value from the endpoints of the original edge.
- // This has two advantages: (1) we don't need to store the clipped endpoints
- // at all, just their bounding box; and (2) it avoids the accumulation of
- // roundoff errors due to repeated interpolations. The result needs to be
- // clamped to ensure that it is in the appropriate range.
- e := edge.faceEdge
- u := edge.bound.X.ClampPoint(interpolateFloat64(v, e.a.Y, e.b.Y, e.a.X, e.b.X))
-
- // Determine which endpoint of the v-axis bound to update. If the edge
- // slope is positive we update the same endpoint, otherwise we update the
- // opposite endpoint.
- var uEnd int
- positiveSlope := (e.a.X > e.b.X) == (e.a.Y > e.b.Y)
- if (vEnd == 1) == positiveSlope {
- uEnd = 1
- }
- return s.updateBound(edge, uEnd, u, vEnd, v)
-}
-
-// cliupVAxis returns the given edge clipped to within the boundaries of the middle
-// interval along the v-axis, and adds the result to its children.
-func (s *ShapeIndex) clipVAxis(edge *clippedEdge, middle r1.Interval) (a, b *clippedEdge) {
- if edge.bound.Y.Hi <= middle.Lo {
- // Edge is entirely contained in the lower child.
- return edge, nil
- } else if edge.bound.Y.Lo >= middle.Hi {
- // Edge is entirely contained in the upper child.
- return nil, edge
- }
- // The edge bound spans both children.
- return s.clipVBound(edge, 1, middle.Hi), s.clipVBound(edge, 0, middle.Lo)
-}
-
-// absorbIndexCell absorbs an index cell by transferring its contents to edges
-// and/or "tracker", and then delete this cell from the index. If edges includes
-// any edges that are being removed, this method also updates their
-// InteriorTracker state to correspond to the exit vertex of this cell.
-func (s *ShapeIndex) absorbIndexCell(p *PaddedCell, iter *ShapeIndexIterator, edges []*clippedEdge, t *tracker) {
- // When we absorb a cell, we erase all the edges that are being removed.
- // However when we are finished with this cell, we want to restore the state
- // of those edges (since that is how we find all the index cells that need
- // to be updated). The edges themselves are restored automatically when
- // UpdateEdges returns from its recursive call, but the InteriorTracker
- // state needs to be restored explicitly.
- //
- // Here we first update the InteriorTracker state for removed edges to
- // correspond to the exit vertex of this cell, and then save the
- // InteriorTracker state. This state will be restored by UpdateEdges when
- // it is finished processing the contents of this cell.
- if t.isActive && len(edges) != 0 && s.isShapeBeingRemoved(edges[0].faceEdge.shapeID) {
- // We probably need to update the tracker. ("Probably" because
- // it's possible that all shapes being removed do not have interiors.)
- if !t.atCellID(p.id) {
- t.moveTo(p.EntryVertex())
- }
- t.drawTo(p.ExitVertex())
- t.setNextCellID(p.id.Next())
- for _, edge := range edges {
- fe := edge.faceEdge
- if !s.isShapeBeingRemoved(fe.shapeID) {
- break // All shapes being removed come first.
- }
- if fe.hasInterior {
- t.testEdge(fe.shapeID, fe.edge)
- }
- }
- }
-
- // Save the state of the edges being removed, so that it can be restored
- // when we are finished processing this cell and its children. We don't
- // need to save the state of the edges being added because they aren't being
- // removed from "edges" and will therefore be updated normally as we visit
- // this cell and its children.
- t.saveAndClearStateBefore(s.pendingAdditionsPos)
-
- // Create a faceEdge for each edge in this cell that isn't being removed.
- var faceEdges []*faceEdge
- trackerMoved := false
-
- cell := iter.IndexCell()
- for _, clipped := range cell.shapes {
- shapeID := clipped.shapeID
- shape := s.Shape(shapeID)
- if shape == nil {
- continue // This shape is being removed.
- }
-
- numClipped := clipped.numEdges()
-
- // If this shape has an interior, start tracking whether we are inside the
- // shape. updateEdges wants to know whether the entry vertex of this
- // cell is inside the shape, but we only know whether the center of the
- // cell is inside the shape, so we need to test all the edges against the
- // line segment from the cell center to the entry vertex.
- edge := &faceEdge{
- shapeID: shapeID,
- hasInterior: shape.Dimension() == 2,
- }
-
- if edge.hasInterior {
- t.addShape(shapeID, clipped.containsCenter)
- // There might not be any edges in this entire cell (i.e., it might be
- // in the interior of all shapes), so we delay updating the tracker
- // until we see the first edge.
- if !trackerMoved && numClipped > 0 {
- t.moveTo(p.Center())
- t.drawTo(p.EntryVertex())
- t.setNextCellID(p.id)
- trackerMoved = true
- }
- }
- for i := 0; i < numClipped; i++ {
- edgeID := clipped.edges[i]
- edge.edgeID = edgeID
- edge.edge = shape.Edge(edgeID)
- edge.maxLevel = maxLevelForEdge(edge.edge)
- if edge.hasInterior {
- t.testEdge(shapeID, edge.edge)
- }
- var ok bool
- edge.a, edge.b, ok = ClipToPaddedFace(edge.edge.V0, edge.edge.V1, p.id.Face(), cellPadding)
- if !ok {
- panic("invariant failure in ShapeIndex")
- }
- faceEdges = append(faceEdges, edge)
- }
- }
- // Now create a clippedEdge for each faceEdge, and put them in "new_edges".
- var newEdges []*clippedEdge
- for _, faceEdge := range faceEdges {
- clipped := &clippedEdge{
- faceEdge: faceEdge,
- bound: clippedEdgeBound(faceEdge.a, faceEdge.b, p.bound),
- }
- newEdges = append(newEdges, clipped)
- }
-
- // Discard any edges from "edges" that are being removed, and append the
- // remainder to "newEdges" (This keeps the edges sorted by shape id.)
- for i, clipped := range edges {
- if !s.isShapeBeingRemoved(clipped.faceEdge.shapeID) {
- newEdges = append(newEdges, edges[i:]...)
- break
- }
- }
-
- // Update the edge list and delete this cell from the index.
- edges, newEdges = newEdges, edges
- delete(s.cellMap, p.id)
- // TODO(roberts): delete from s.Cells
-}
-
-// testAllEdges calls the trackers testEdge on all edges from shapes that have interiors.
-func (s *ShapeIndex) testAllEdges(edges []*clippedEdge, t *tracker) {
- for _, edge := range edges {
- if edge.faceEdge.hasInterior {
- t.testEdge(edge.faceEdge.shapeID, edge.faceEdge.edge)
- }
- }
-}
-
-// countShapes reports the number of distinct shapes that are either associated with the
-// given edges, or that are currently stored in the InteriorTracker.
-func (s *ShapeIndex) countShapes(edges []*clippedEdge, shapeIDs []int32) int {
- count := 0
- lastShapeID := int32(-1)
-
- // next clipped shape id in the shapeIDs list.
- clippedNext := int32(0)
- // index of the current element in the shapeIDs list.
- shapeIDidx := 0
- for _, edge := range edges {
- if edge.faceEdge.shapeID == lastShapeID {
- continue
- }
-
- count++
- lastShapeID = edge.faceEdge.shapeID
-
- // Skip over any containing shapes up to and including this one,
- // updating count as appropriate.
- for ; shapeIDidx < len(shapeIDs); shapeIDidx++ {
- clippedNext = shapeIDs[shapeIDidx]
- if clippedNext > lastShapeID {
- break
- }
- if clippedNext < lastShapeID {
- count++
- }
- }
- }
-
- // Count any remaining containing shapes.
- count += len(shapeIDs) - shapeIDidx
- return count
-}
-
-// maxLevelForEdge reports the maximum level for a given edge.
-func maxLevelForEdge(edge Edge) int {
- // Compute the maximum cell size for which this edge is considered long.
- // The calculation does not need to be perfectly accurate, so we use Norm
- // rather than Angle for speed.
- cellSize := edge.V0.Sub(edge.V1.Vector).Norm() * cellSizeToLongEdgeRatio
- // Now return the first level encountered during subdivision where the
- // average cell size is at most cellSize.
- return AvgEdgeMetric.MinLevel(cellSize)
-}
-
-// removeShapeInternal does the actual work for removing a given shape from the index.
-func (s *ShapeIndex) removeShapeInternal(removed *removedShape, allEdges [][]faceEdge, t *tracker) {
- // TODO(roberts): finish the implementation of this.
-}
diff --git a/vendor/github.com/golang/geo/s2/shapeutil.go b/vendor/github.com/golang/geo/s2/shapeutil.go
deleted file mode 100644
index 64245dfa1..000000000
--- a/vendor/github.com/golang/geo/s2/shapeutil.go
+++ /dev/null
@@ -1,228 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// CrossingType defines different ways of reporting edge intersections.
-type CrossingType int
-
-const (
- // CrossingTypeInterior reports intersections that occur at a point
- // interior to both edges (i.e., not at a vertex).
- CrossingTypeInterior CrossingType = iota
-
- // CrossingTypeAll reports all intersections, even those where two edges
- // intersect only because they share a common vertex.
- CrossingTypeAll
-
- // CrossingTypeNonAdjacent reports all intersections except for pairs of
- // the form (AB, BC) where both edges are from the same ShapeIndex.
- CrossingTypeNonAdjacent
-)
-
-// rangeIterator is a wrapper over ShapeIndexIterator with extra methods
-// that are useful for merging the contents of two or more ShapeIndexes.
-type rangeIterator struct {
- it *ShapeIndexIterator
- // The min and max leaf cell ids covered by the current cell. If done() is
- // true, these methods return a value larger than any valid cell id.
- rangeMin CellID
- rangeMax CellID
-}
-
-// newRangeIterator creates a new rangeIterator positioned at the first cell of the given index.
-func newRangeIterator(index *ShapeIndex) *rangeIterator {
- r := &rangeIterator{
- it: index.Iterator(),
- }
- r.refresh()
- return r
-}
-
-func (r *rangeIterator) cellID() CellID { return r.it.CellID() }
-func (r *rangeIterator) indexCell() *ShapeIndexCell { return r.it.IndexCell() }
-func (r *rangeIterator) next() { r.it.Next(); r.refresh() }
-func (r *rangeIterator) done() bool { return r.it.Done() }
-
-// seekTo positions the iterator at the first cell that overlaps or follows
-// the current range minimum of the target iterator, i.e. such that its
-// rangeMax >= target.rangeMin.
-func (r *rangeIterator) seekTo(target *rangeIterator) {
- r.it.seek(target.rangeMin)
- // If the current cell does not overlap target, it is possible that the
- // previous cell is the one we are looking for. This can only happen when
- // the previous cell contains target but has a smaller CellID.
- if r.it.Done() || r.it.CellID().RangeMin() > target.rangeMax {
- if r.it.Prev() && r.it.CellID().RangeMax() < target.cellID() {
- r.it.Next()
- }
- }
- r.refresh()
-}
-
-// seekBeyond positions the iterator at the first cell that follows the current
-// range minimum of the target iterator. i.e. the first cell such that its
-// rangeMin > target.rangeMax.
-func (r *rangeIterator) seekBeyond(target *rangeIterator) {
- r.it.seek(target.rangeMax.Next())
- if !r.it.Done() && r.it.CellID().RangeMin() <= target.rangeMax {
- r.it.Next()
- }
- r.refresh()
-}
-
-// refresh updates the iterators min and max values.
-func (r *rangeIterator) refresh() {
- r.rangeMin = r.cellID().RangeMin()
- r.rangeMax = r.cellID().RangeMax()
-}
-
-// referencePointForShape is a helper function for implementing various Shapes
-// ReferencePoint functions.
-//
-// Given a shape consisting of closed polygonal loops, the interior of the
-// shape is defined as the region to the left of all edges (which must be
-// oriented consistently). This function then chooses an arbitrary point and
-// returns true if that point is contained by the shape.
-//
-// Unlike Loop and Polygon, this method allows duplicate vertices and
-// edges, which requires some extra care with definitions. The rule that we
-// apply is that an edge and its reverse edge cancel each other: the result
-// is the same as if that edge pair were not present. Therefore shapes that
-// consist only of degenerate loop(s) are either empty or full; by convention,
-// the shape is considered full if and only if it contains an empty loop (see
-// laxPolygon for details).
-//
-// Determining whether a loop on the sphere contains a point is harder than
-// the corresponding problem in 2D plane geometry. It cannot be implemented
-// just by counting edge crossings because there is no such thing as a point
-// at infinity that is guaranteed to be outside the loop.
-//
-// This function requires that the given Shape have an interior.
-func referencePointForShape(shape Shape) ReferencePoint {
- if shape.NumEdges() == 0 {
- // A shape with no edges is defined to be full if and only if it
- // contains at least one chain.
- return OriginReferencePoint(shape.NumChains() > 0)
- }
- // Define a "matched" edge as one that can be paired with a corresponding
- // reversed edge. Define a vertex as "balanced" if all of its edges are
- // matched. In order to determine containment, we must find an unbalanced
- // vertex. Often every vertex is unbalanced, so we start by trying an
- // arbitrary vertex.
- edge := shape.Edge(0)
-
- if ref, ok := referencePointAtVertex(shape, edge.V0); ok {
- return ref
- }
-
- // That didn't work, so now we do some extra work to find an unbalanced
- // vertex (if any). Essentially we gather a list of edges and a list of
- // reversed edges, and then sort them. The first edge that appears in one
- // list but not the other is guaranteed to be unmatched.
- n := shape.NumEdges()
- var edges = make([]Edge, n)
- var revEdges = make([]Edge, n)
- for i := 0; i < n; i++ {
- edge := shape.Edge(i)
- edges[i] = edge
- revEdges[i] = Edge{V0: edge.V1, V1: edge.V0}
- }
-
- sortEdges(edges)
- sortEdges(revEdges)
-
- for i := 0; i < n; i++ {
- if edges[i].Cmp(revEdges[i]) == -1 { // edges[i] is unmatched
- if ref, ok := referencePointAtVertex(shape, edges[i].V0); ok {
- return ref
- }
- }
- if revEdges[i].Cmp(edges[i]) == -1 { // revEdges[i] is unmatched
- if ref, ok := referencePointAtVertex(shape, revEdges[i].V0); ok {
- return ref
- }
- }
- }
-
- // All vertices are balanced, so this polygon is either empty or full except
- // for degeneracies. By convention it is defined to be full if it contains
- // any chain with no edges.
- for i := 0; i < shape.NumChains(); i++ {
- if shape.Chain(i).Length == 0 {
- return OriginReferencePoint(true)
- }
- }
-
- return OriginReferencePoint(false)
-}
-
-// referencePointAtVertex reports whether the given vertex is unbalanced, and
-// returns a ReferencePoint indicating if the point is contained.
-// Otherwise returns false.
-func referencePointAtVertex(shape Shape, vTest Point) (ReferencePoint, bool) {
- var ref ReferencePoint
-
- // Let P be an unbalanced vertex. Vertex P is defined to be inside the
- // region if the region contains a particular direction vector starting from
- // P, namely the direction p.Ortho(). This can be calculated using
- // ContainsVertexQuery.
-
- containsQuery := NewContainsVertexQuery(vTest)
- n := shape.NumEdges()
- for e := 0; e < n; e++ {
- edge := shape.Edge(e)
- if edge.V0 == vTest {
- containsQuery.AddEdge(edge.V1, 1)
- }
- if edge.V1 == vTest {
- containsQuery.AddEdge(edge.V0, -1)
- }
- }
- containsSign := containsQuery.ContainsVertex()
- if containsSign == 0 {
- return ref, false // There are no unmatched edges incident to this vertex.
- }
- ref.Point = vTest
- ref.Contained = containsSign > 0
-
- return ref, true
-}
-
-// containsBruteForce reports whether the given shape contains the given point.
-// Most clients should not use this method, since its running time is linear in
-// the number of shape edges. Instead clients should create a ShapeIndex and use
-// ContainsPointQuery, since this strategy is much more efficient when many
-// points need to be tested.
-//
-// Polygon boundaries are treated as being semi-open (see ContainsPointQuery
-// and VertexModel for other options).
-func containsBruteForce(shape Shape, point Point) bool {
- if shape.Dimension() != 2 {
- return false
- }
-
- refPoint := shape.ReferencePoint()
- if refPoint.Point == point {
- return refPoint.Contained
- }
-
- crosser := NewEdgeCrosser(refPoint.Point, point)
- inside := refPoint.Contained
- for e := 0; e < shape.NumEdges(); e++ {
- edge := shape.Edge(e)
- inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1)
- }
- return inside
-}
diff --git a/vendor/github.com/golang/geo/s2/shapeutil_edge_iterator.go b/vendor/github.com/golang/geo/s2/shapeutil_edge_iterator.go
deleted file mode 100644
index 2a0d82361..000000000
--- a/vendor/github.com/golang/geo/s2/shapeutil_edge_iterator.go
+++ /dev/null
@@ -1,72 +0,0 @@
-// Copyright 2020 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// EdgeIterator is an iterator that advances through all edges in an ShapeIndex.
-// This is different to the ShapeIndexIterator, which advances through the cells in the
-// ShapeIndex.
-type EdgeIterator struct {
- index *ShapeIndex
- shapeID int32
- numEdges int32
- edgeID int32
-}
-
-// NewEdgeIterator creates a new edge iterator for the given index.
-func NewEdgeIterator(index *ShapeIndex) *EdgeIterator {
- e := &EdgeIterator{
- index: index,
- shapeID: -1,
- edgeID: -1,
- }
-
- e.Next()
- return e
-}
-
-// ShapeID returns the current shape ID.
-func (e *EdgeIterator) ShapeID() int32 { return e.shapeID }
-
-// EdgeID returns the current edge ID.
-func (e *EdgeIterator) EdgeID() int32 { return e.edgeID }
-
-// ShapeEdgeID returns the current (shapeID, edgeID).
-func (e *EdgeIterator) ShapeEdgeID() ShapeEdgeID { return ShapeEdgeID{e.shapeID, e.edgeID} }
-
-// Edge returns the current edge.
-func (e *EdgeIterator) Edge() Edge {
- return e.index.Shape(e.shapeID).Edge(int(e.edgeID))
-}
-
-// Done reports if the iterator is positioned at or after the last index edge.
-func (e *EdgeIterator) Done() bool { return e.shapeID >= int32(len(e.index.shapes)) }
-
-// Next positions the iterator at the next index edge.
-func (e *EdgeIterator) Next() {
- e.edgeID++
- for ; e.edgeID >= e.numEdges; e.edgeID++ {
- e.shapeID++
- if e.shapeID >= int32(len(e.index.shapes)) {
- break
- }
- shape := e.index.Shape(e.shapeID)
- if shape == nil {
- e.numEdges = 0
- } else {
- e.numEdges = int32(shape.NumEdges())
- }
- e.edgeID = -1
- }
-}
diff --git a/vendor/github.com/golang/geo/s2/stuv.go b/vendor/github.com/golang/geo/s2/stuv.go
deleted file mode 100644
index 7663bb398..000000000
--- a/vendor/github.com/golang/geo/s2/stuv.go
+++ /dev/null
@@ -1,427 +0,0 @@
-// Copyright 2014 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import (
- "math"
-
- "github.com/golang/geo/r3"
-)
-
-//
-// This file contains documentation of the various coordinate systems used
-// throughout the library. Most importantly, S2 defines a framework for
-// decomposing the unit sphere into a hierarchy of "cells". Each cell is a
-// quadrilateral bounded by four geodesics. The top level of the hierarchy is
-// obtained by projecting the six faces of a cube onto the unit sphere, and
-// lower levels are obtained by subdividing each cell into four children
-// recursively. Cells are numbered such that sequentially increasing cells
-// follow a continuous space-filling curve over the entire sphere. The
-// transformation is designed to make the cells at each level fairly uniform
-// in size.
-//
-////////////////////////// S2 Cell Decomposition /////////////////////////
-//
-// The following methods define the cube-to-sphere projection used by
-// the Cell decomposition.
-//
-// In the process of converting a latitude-longitude pair to a 64-bit cell
-// id, the following coordinate systems are used:
-//
-// (id)
-// An CellID is a 64-bit encoding of a face and a Hilbert curve position
-// on that face. The Hilbert curve position implicitly encodes both the
-// position of a cell and its subdivision level (see s2cellid.go).
-//
-// (face, i, j)
-// Leaf-cell coordinates. "i" and "j" are integers in the range
-// [0,(2**30)-1] that identify a particular leaf cell on the given face.
-// The (i, j) coordinate system is right-handed on each face, and the
-// faces are oriented such that Hilbert curves connect continuously from
-// one face to the next.
-//
-// (face, s, t)
-// Cell-space coordinates. "s" and "t" are real numbers in the range
-// [0,1] that identify a point on the given face. For example, the point
-// (s, t) = (0.5, 0.5) corresponds to the center of the top-level face
-// cell. This point is also a vertex of exactly four cells at each
-// subdivision level greater than zero.
-//
-// (face, si, ti)
-// Discrete cell-space coordinates. These are obtained by multiplying
-// "s" and "t" by 2**31 and rounding to the nearest unsigned integer.
-// Discrete coordinates lie in the range [0,2**31]. This coordinate
-// system can represent the edge and center positions of all cells with
-// no loss of precision (including non-leaf cells). In binary, each
-// coordinate of a level-k cell center ends with a 1 followed by
-// (30 - k) 0s. The coordinates of its edges end with (at least)
-// (31 - k) 0s.
-//
-// (face, u, v)
-// Cube-space coordinates in the range [-1,1]. To make the cells at each
-// level more uniform in size after they are projected onto the sphere,
-// we apply a nonlinear transformation of the form u=f(s), v=f(t).
-// The (u, v) coordinates after this transformation give the actual
-// coordinates on the cube face (modulo some 90 degree rotations) before
-// it is projected onto the unit sphere.
-//
-// (face, u, v, w)
-// Per-face coordinate frame. This is an extension of the (face, u, v)
-// cube-space coordinates that adds a third axis "w" in the direction of
-// the face normal. It is always a right-handed 3D coordinate system.
-// Cube-space coordinates can be converted to this frame by setting w=1,
-// while (u,v,w) coordinates can be projected onto the cube face by
-// dividing by w, i.e. (face, u/w, v/w).
-//
-// (x, y, z)
-// Direction vector (Point). Direction vectors are not necessarily unit
-// length, and are often chosen to be points on the biunit cube
-// [-1,+1]x[-1,+1]x[-1,+1]. They can be be normalized to obtain the
-// corresponding point on the unit sphere.
-//
-// (lat, lng)
-// Latitude and longitude (LatLng). Latitudes must be between -90 and
-// 90 degrees inclusive, and longitudes must be between -180 and 180
-// degrees inclusive.
-//
-// Note that the (i, j), (s, t), (si, ti), and (u, v) coordinate systems are
-// right-handed on all six faces.
-//
-//
-// There are a number of different projections from cell-space (s,t) to
-// cube-space (u,v): linear, quadratic, and tangent. They have the following
-// tradeoffs:
-//
-// Linear - This is the fastest transformation, but also produces the least
-// uniform cell sizes. Cell areas vary by a factor of about 5.2, with the
-// largest cells at the center of each face and the smallest cells in
-// the corners.
-//
-// Tangent - Transforming the coordinates via Atan makes the cell sizes
-// more uniform. The areas vary by a maximum ratio of 1.4 as opposed to a
-// maximum ratio of 5.2. However, each call to Atan is about as expensive
-// as all of the other calculations combined when converting from points to
-// cell ids, i.e. it reduces performance by a factor of 3.
-//
-// Quadratic - This is an approximation of the tangent projection that
-// is much faster and produces cells that are almost as uniform in size.
-// It is about 3 times faster than the tangent projection for converting
-// cell ids to points or vice versa. Cell areas vary by a maximum ratio of
-// about 2.1.
-//
-// Here is a table comparing the cell uniformity using each projection. Area
-// Ratio is the maximum ratio over all subdivision levels of the largest cell
-// area to the smallest cell area at that level, Edge Ratio is the maximum
-// ratio of the longest edge of any cell to the shortest edge of any cell at
-// the same level, and Diag Ratio is the ratio of the longest diagonal of
-// any cell to the shortest diagonal of any cell at the same level.
-//
-// Area Edge Diag
-// Ratio Ratio Ratio
-// -----------------------------------
-// Linear: 5.200 2.117 2.959
-// Tangent: 1.414 1.414 1.704
-// Quadratic: 2.082 1.802 1.932
-//
-// The worst-case cell aspect ratios are about the same with all three
-// projections. The maximum ratio of the longest edge to the shortest edge
-// within the same cell is about 1.4 and the maximum ratio of the diagonals
-// within the same cell is about 1.7.
-//
-// For Go we have chosen to use only the Quadratic approach. Other language
-// implementations may offer other choices.
-
-const (
- // maxSiTi is the maximum value of an si- or ti-coordinate.
- // It is one shift more than maxSize. The range of valid (si,ti)
- // values is [0..maxSiTi].
- maxSiTi = maxSize << 1
-)
-
-// siTiToST converts an si- or ti-value to the corresponding s- or t-value.
-// Value is capped at 1.0 because there is no DCHECK in Go.
-func siTiToST(si uint32) float64 {
- if si > maxSiTi {
- return 1.0
- }
- return float64(si) / float64(maxSiTi)
-}
-
-// stToSiTi converts the s- or t-value to the nearest si- or ti-coordinate.
-// The result may be outside the range of valid (si,ti)-values. Value of
-// 0.49999999999999994 (math.NextAfter(0.5, -1)), will be incorrectly rounded up.
-func stToSiTi(s float64) uint32 {
- if s < 0 {
- return uint32(s*maxSiTi - 0.5)
- }
- return uint32(s*maxSiTi + 0.5)
-}
-
-// stToUV converts an s or t value to the corresponding u or v value.
-// This is a non-linear transformation from [-1,1] to [-1,1] that
-// attempts to make the cell sizes more uniform.
-// This uses what the C++ version calls 'the quadratic transform'.
-func stToUV(s float64) float64 {
- if s >= 0.5 {
- return (1 / 3.) * (4*s*s - 1)
- }
- return (1 / 3.) * (1 - 4*(1-s)*(1-s))
-}
-
-// uvToST is the inverse of the stToUV transformation. Note that it
-// is not always true that uvToST(stToUV(x)) == x due to numerical
-// errors.
-func uvToST(u float64) float64 {
- if u >= 0 {
- return 0.5 * math.Sqrt(1+3*u)
- }
- return 1 - 0.5*math.Sqrt(1-3*u)
-}
-
-// face returns face ID from 0 to 5 containing the r. For points on the
-// boundary between faces, the result is arbitrary but deterministic.
-func face(r r3.Vector) int {
- f := r.LargestComponent()
- switch {
- case f == r3.XAxis && r.X < 0:
- f += 3
- case f == r3.YAxis && r.Y < 0:
- f += 3
- case f == r3.ZAxis && r.Z < 0:
- f += 3
- }
- return int(f)
-}
-
-// validFaceXYZToUV given a valid face for the given point r (meaning that
-// dot product of r with the face normal is positive), returns
-// the corresponding u and v values, which may lie outside the range [-1,1].
-func validFaceXYZToUV(face int, r r3.Vector) (float64, float64) {
- switch face {
- case 0:
- return r.Y / r.X, r.Z / r.X
- case 1:
- return -r.X / r.Y, r.Z / r.Y
- case 2:
- return -r.X / r.Z, -r.Y / r.Z
- case 3:
- return r.Z / r.X, r.Y / r.X
- case 4:
- return r.Z / r.Y, -r.X / r.Y
- }
- return -r.Y / r.Z, -r.X / r.Z
-}
-
-// xyzToFaceUV converts a direction vector (not necessarily unit length) to
-// (face, u, v) coordinates.
-func xyzToFaceUV(r r3.Vector) (f int, u, v float64) {
- f = face(r)
- u, v = validFaceXYZToUV(f, r)
- return f, u, v
-}
-
-// faceUVToXYZ turns face and UV coordinates into an unnormalized 3 vector.
-func faceUVToXYZ(face int, u, v float64) r3.Vector {
- switch face {
- case 0:
- return r3.Vector{1, u, v}
- case 1:
- return r3.Vector{-u, 1, v}
- case 2:
- return r3.Vector{-u, -v, 1}
- case 3:
- return r3.Vector{-1, -v, -u}
- case 4:
- return r3.Vector{v, -1, -u}
- default:
- return r3.Vector{v, u, -1}
- }
-}
-
-// faceXYZToUV returns the u and v values (which may lie outside the range
-// [-1, 1]) if the dot product of the point p with the given face normal is positive.
-func faceXYZToUV(face int, p Point) (u, v float64, ok bool) {
- switch face {
- case 0:
- if p.X <= 0 {
- return 0, 0, false
- }
- case 1:
- if p.Y <= 0 {
- return 0, 0, false
- }
- case 2:
- if p.Z <= 0 {
- return 0, 0, false
- }
- case 3:
- if p.X >= 0 {
- return 0, 0, false
- }
- case 4:
- if p.Y >= 0 {
- return 0, 0, false
- }
- default:
- if p.Z >= 0 {
- return 0, 0, false
- }
- }
-
- u, v = validFaceXYZToUV(face, p.Vector)
- return u, v, true
-}
-
-// faceXYZtoUVW transforms the given point P to the (u,v,w) coordinate frame of the given
-// face where the w-axis represents the face normal.
-func faceXYZtoUVW(face int, p Point) Point {
- // The result coordinates are simply the dot products of P with the (u,v,w)
- // axes for the given face (see faceUVWAxes).
- switch face {
- case 0:
- return Point{r3.Vector{p.Y, p.Z, p.X}}
- case 1:
- return Point{r3.Vector{-p.X, p.Z, p.Y}}
- case 2:
- return Point{r3.Vector{-p.X, -p.Y, p.Z}}
- case 3:
- return Point{r3.Vector{-p.Z, -p.Y, -p.X}}
- case 4:
- return Point{r3.Vector{-p.Z, p.X, -p.Y}}
- default:
- return Point{r3.Vector{p.Y, p.X, -p.Z}}
- }
-}
-
-// faceSiTiToXYZ transforms the (si, ti) coordinates to a (not necessarily
-// unit length) Point on the given face.
-func faceSiTiToXYZ(face int, si, ti uint32) Point {
- return Point{faceUVToXYZ(face, stToUV(siTiToST(si)), stToUV(siTiToST(ti)))}
-}
-
-// xyzToFaceSiTi transforms the (not necessarily unit length) Point to
-// (face, si, ti) coordinates and the level the Point is at.
-func xyzToFaceSiTi(p Point) (face int, si, ti uint32, level int) {
- face, u, v := xyzToFaceUV(p.Vector)
- si = stToSiTi(uvToST(u))
- ti = stToSiTi(uvToST(v))
-
- // If the levels corresponding to si,ti are not equal, then p is not a cell
- // center. The si,ti values of 0 and maxSiTi need to be handled specially
- // because they do not correspond to cell centers at any valid level; they
- // are mapped to level -1 by the code at the end.
- level = maxLevel - findLSBSetNonZero64(uint64(si|maxSiTi))
- if level < 0 || level != maxLevel-findLSBSetNonZero64(uint64(ti|maxSiTi)) {
- return face, si, ti, -1
- }
-
- // In infinite precision, this test could be changed to ST == SiTi. However,
- // due to rounding errors, uvToST(xyzToFaceUV(faceUVToXYZ(stToUV(...)))) is
- // not idempotent. On the other hand, the center is computed exactly the same
- // way p was originally computed (if it is indeed the center of a Cell);
- // the comparison can be exact.
- if p.Vector == faceSiTiToXYZ(face, si, ti).Normalize() {
- return face, si, ti, level
- }
-
- return face, si, ti, -1
-}
-
-// uNorm returns the right-handed normal (not necessarily unit length) for an
-// edge in the direction of the positive v-axis at the given u-value on
-// the given face. (This vector is perpendicular to the plane through
-// the sphere origin that contains the given edge.)
-func uNorm(face int, u float64) r3.Vector {
- switch face {
- case 0:
- return r3.Vector{u, -1, 0}
- case 1:
- return r3.Vector{1, u, 0}
- case 2:
- return r3.Vector{1, 0, u}
- case 3:
- return r3.Vector{-u, 0, 1}
- case 4:
- return r3.Vector{0, -u, 1}
- default:
- return r3.Vector{0, -1, -u}
- }
-}
-
-// vNorm returns the right-handed normal (not necessarily unit length) for an
-// edge in the direction of the positive u-axis at the given v-value on
-// the given face.
-func vNorm(face int, v float64) r3.Vector {
- switch face {
- case 0:
- return r3.Vector{-v, 0, 1}
- case 1:
- return r3.Vector{0, -v, 1}
- case 2:
- return r3.Vector{0, -1, -v}
- case 3:
- return r3.Vector{v, -1, 0}
- case 4:
- return r3.Vector{1, v, 0}
- default:
- return r3.Vector{1, 0, v}
- }
-}
-
-// faceUVWAxes are the U, V, and W axes for each face.
-var faceUVWAxes = [6][3]Point{
- {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{1, 0, 0}}},
- {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{0, 1, 0}}},
- {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{0, 0, 1}}},
- {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{-1, 0, 0}}},
- {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, -1, 0}}},
- {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, 0, -1}}},
-}
-
-// faceUVWFaces are the precomputed neighbors of each face.
-var faceUVWFaces = [6][3][2]int{
- {{4, 1}, {5, 2}, {3, 0}},
- {{0, 3}, {5, 2}, {4, 1}},
- {{0, 3}, {1, 4}, {5, 2}},
- {{2, 5}, {1, 4}, {0, 3}},
- {{2, 5}, {3, 0}, {1, 4}},
- {{4, 1}, {3, 0}, {2, 5}},
-}
-
-// uvwAxis returns the given axis of the given face.
-func uvwAxis(face, axis int) Point {
- return faceUVWAxes[face][axis]
-}
-
-// uvwFaces returns the face in the (u,v,w) coordinate system on the given axis
-// in the given direction.
-func uvwFace(face, axis, direction int) int {
- return faceUVWFaces[face][axis][direction]
-}
-
-// uAxis returns the u-axis for the given face.
-func uAxis(face int) Point {
- return uvwAxis(face, 0)
-}
-
-// vAxis returns the v-axis for the given face.
-func vAxis(face int) Point {
- return uvwAxis(face, 1)
-}
-
-// Return the unit-length normal for the given face.
-func unitNorm(face int) Point {
- return uvwAxis(face, 2)
-}
diff --git a/vendor/github.com/golang/geo/s2/util.go b/vendor/github.com/golang/geo/s2/util.go
deleted file mode 100644
index 7cab746d8..000000000
--- a/vendor/github.com/golang/geo/s2/util.go
+++ /dev/null
@@ -1,125 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-import "github.com/golang/geo/s1"
-
-// roundAngle returns the value rounded to nearest as an int32.
-// This does not match C++ exactly for the case of x.5.
-func roundAngle(val s1.Angle) int32 {
- if val < 0 {
- return int32(val - 0.5)
- }
- return int32(val + 0.5)
-}
-
-// minAngle returns the smallest of the given values.
-func minAngle(x s1.Angle, others ...s1.Angle) s1.Angle {
- min := x
- for _, y := range others {
- if y < min {
- min = y
- }
- }
- return min
-}
-
-// maxAngle returns the largest of the given values.
-func maxAngle(x s1.Angle, others ...s1.Angle) s1.Angle {
- max := x
- for _, y := range others {
- if y > max {
- max = y
- }
- }
- return max
-}
-
-// minChordAngle returns the smallest of the given values.
-func minChordAngle(x s1.ChordAngle, others ...s1.ChordAngle) s1.ChordAngle {
- min := x
- for _, y := range others {
- if y < min {
- min = y
- }
- }
- return min
-}
-
-// maxChordAngle returns the largest of the given values.
-func maxChordAngle(x s1.ChordAngle, others ...s1.ChordAngle) s1.ChordAngle {
- max := x
- for _, y := range others {
- if y > max {
- max = y
- }
- }
- return max
-}
-
-// minFloat64 returns the smallest of the given values.
-func minFloat64(x float64, others ...float64) float64 {
- min := x
- for _, y := range others {
- if y < min {
- min = y
- }
- }
- return min
-}
-
-// maxFloat64 returns the largest of the given values.
-func maxFloat64(x float64, others ...float64) float64 {
- max := x
- for _, y := range others {
- if y > max {
- max = y
- }
- }
- return max
-}
-
-// minInt returns the smallest of the given values.
-func minInt(x int, others ...int) int {
- min := x
- for _, y := range others {
- if y < min {
- min = y
- }
- }
- return min
-}
-
-// maxInt returns the largest of the given values.
-func maxInt(x int, others ...int) int {
- max := x
- for _, y := range others {
- if y > max {
- max = y
- }
- }
- return max
-}
-
-// clampInt returns the number closest to x within the range min..max.
-func clampInt(x, min, max int) int {
- if x < min {
- return min
- }
- if x > max {
- return max
- }
- return x
-}
diff --git a/vendor/github.com/golang/geo/s2/wedge_relations.go b/vendor/github.com/golang/geo/s2/wedge_relations.go
deleted file mode 100644
index d637bb68c..000000000
--- a/vendor/github.com/golang/geo/s2/wedge_relations.go
+++ /dev/null
@@ -1,97 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// WedgeRel enumerates the possible relation between two wedges A and B.
-type WedgeRel int
-
-// Define the different possible relationships between two wedges.
-//
-// Given an edge chain (x0, x1, x2), the wedge at x1 is the region to the
-// left of the edges. More precisely, it is the set of all rays from x1x0
-// (inclusive) to x1x2 (exclusive) in the *clockwise* direction.
-const (
- WedgeEquals WedgeRel = iota // A and B are equal.
- WedgeProperlyContains // A is a strict superset of B.
- WedgeIsProperlyContained // A is a strict subset of B.
- WedgeProperlyOverlaps // A-B, B-A, and A intersect B are non-empty.
- WedgeIsDisjoint // A and B are disjoint.
-)
-
-// WedgeRelation reports the relation between two non-empty wedges
-// A=(a0, ab1, a2) and B=(b0, ab1, b2).
-func WedgeRelation(a0, ab1, a2, b0, b2 Point) WedgeRel {
- // There are 6 possible edge orderings at a shared vertex (all
- // of these orderings are circular, i.e. abcd == bcda):
- //
- // (1) a2 b2 b0 a0: A contains B
- // (2) a2 a0 b0 b2: B contains A
- // (3) a2 a0 b2 b0: A and B are disjoint
- // (4) a2 b0 a0 b2: A and B intersect in one wedge
- // (5) a2 b2 a0 b0: A and B intersect in one wedge
- // (6) a2 b0 b2 a0: A and B intersect in two wedges
- //
- // We do not distinguish between 4, 5, and 6.
- // We pay extra attention when some of the edges overlap. When edges
- // overlap, several of these orderings can be satisfied, and we take
- // the most specific.
- if a0 == b0 && a2 == b2 {
- return WedgeEquals
- }
-
- // Cases 1, 2, 5, and 6
- if OrderedCCW(a0, a2, b2, ab1) {
- // The cases with this vertex ordering are 1, 5, and 6,
- if OrderedCCW(b2, b0, a0, ab1) {
- return WedgeProperlyContains
- }
-
- // We are in case 5 or 6, or case 2 if a2 == b2.
- if a2 == b2 {
- return WedgeIsProperlyContained
- }
- return WedgeProperlyOverlaps
-
- }
- // We are in case 2, 3, or 4.
- if OrderedCCW(a0, b0, b2, ab1) {
- return WedgeIsProperlyContained
- }
-
- if OrderedCCW(a0, b0, a2, ab1) {
- return WedgeIsDisjoint
- }
- return WedgeProperlyOverlaps
-}
-
-// WedgeContains reports whether non-empty wedge A=(a0, ab1, a2) contains B=(b0, ab1, b2).
-// Equivalent to WedgeRelation == WedgeProperlyContains || WedgeEquals.
-func WedgeContains(a0, ab1, a2, b0, b2 Point) bool {
- // For A to contain B (where each loop interior is defined to be its left
- // side), the CCW edge order around ab1 must be a2 b2 b0 a0. We split
- // this test into two parts that test three vertices each.
- return OrderedCCW(a2, b2, b0, ab1) && OrderedCCW(b0, a0, a2, ab1)
-}
-
-// WedgeIntersects reports whether non-empty wedge A=(a0, ab1, a2) intersects B=(b0, ab1, b2).
-// Equivalent but faster than WedgeRelation != WedgeIsDisjoint
-func WedgeIntersects(a0, ab1, a2, b0, b2 Point) bool {
- // For A not to intersect B (where each loop interior is defined to be
- // its left side), the CCW edge order around ab1 must be a0 b2 b0 a2.
- // Note that it's important to write these conditions as negatives
- // (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct
- // results when two vertices are the same.
- return !(OrderedCCW(a0, b2, b0, ab1) && OrderedCCW(b0, a2, a0, ab1))
-}