summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/wedge_relations.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/wedge_relations.go')
-rw-r--r--vendor/github.com/golang/geo/s2/wedge_relations.go97
1 files changed, 0 insertions, 97 deletions
diff --git a/vendor/github.com/golang/geo/s2/wedge_relations.go b/vendor/github.com/golang/geo/s2/wedge_relations.go
deleted file mode 100644
index d637bb68c..000000000
--- a/vendor/github.com/golang/geo/s2/wedge_relations.go
+++ /dev/null
@@ -1,97 +0,0 @@
-// Copyright 2017 Google Inc. All rights reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-package s2
-
-// WedgeRel enumerates the possible relation between two wedges A and B.
-type WedgeRel int
-
-// Define the different possible relationships between two wedges.
-//
-// Given an edge chain (x0, x1, x2), the wedge at x1 is the region to the
-// left of the edges. More precisely, it is the set of all rays from x1x0
-// (inclusive) to x1x2 (exclusive) in the *clockwise* direction.
-const (
- WedgeEquals WedgeRel = iota // A and B are equal.
- WedgeProperlyContains // A is a strict superset of B.
- WedgeIsProperlyContained // A is a strict subset of B.
- WedgeProperlyOverlaps // A-B, B-A, and A intersect B are non-empty.
- WedgeIsDisjoint // A and B are disjoint.
-)
-
-// WedgeRelation reports the relation between two non-empty wedges
-// A=(a0, ab1, a2) and B=(b0, ab1, b2).
-func WedgeRelation(a0, ab1, a2, b0, b2 Point) WedgeRel {
- // There are 6 possible edge orderings at a shared vertex (all
- // of these orderings are circular, i.e. abcd == bcda):
- //
- // (1) a2 b2 b0 a0: A contains B
- // (2) a2 a0 b0 b2: B contains A
- // (3) a2 a0 b2 b0: A and B are disjoint
- // (4) a2 b0 a0 b2: A and B intersect in one wedge
- // (5) a2 b2 a0 b0: A and B intersect in one wedge
- // (6) a2 b0 b2 a0: A and B intersect in two wedges
- //
- // We do not distinguish between 4, 5, and 6.
- // We pay extra attention when some of the edges overlap. When edges
- // overlap, several of these orderings can be satisfied, and we take
- // the most specific.
- if a0 == b0 && a2 == b2 {
- return WedgeEquals
- }
-
- // Cases 1, 2, 5, and 6
- if OrderedCCW(a0, a2, b2, ab1) {
- // The cases with this vertex ordering are 1, 5, and 6,
- if OrderedCCW(b2, b0, a0, ab1) {
- return WedgeProperlyContains
- }
-
- // We are in case 5 or 6, or case 2 if a2 == b2.
- if a2 == b2 {
- return WedgeIsProperlyContained
- }
- return WedgeProperlyOverlaps
-
- }
- // We are in case 2, 3, or 4.
- if OrderedCCW(a0, b0, b2, ab1) {
- return WedgeIsProperlyContained
- }
-
- if OrderedCCW(a0, b0, a2, ab1) {
- return WedgeIsDisjoint
- }
- return WedgeProperlyOverlaps
-}
-
-// WedgeContains reports whether non-empty wedge A=(a0, ab1, a2) contains B=(b0, ab1, b2).
-// Equivalent to WedgeRelation == WedgeProperlyContains || WedgeEquals.
-func WedgeContains(a0, ab1, a2, b0, b2 Point) bool {
- // For A to contain B (where each loop interior is defined to be its left
- // side), the CCW edge order around ab1 must be a2 b2 b0 a0. We split
- // this test into two parts that test three vertices each.
- return OrderedCCW(a2, b2, b0, ab1) && OrderedCCW(b0, a0, a2, ab1)
-}
-
-// WedgeIntersects reports whether non-empty wedge A=(a0, ab1, a2) intersects B=(b0, ab1, b2).
-// Equivalent but faster than WedgeRelation != WedgeIsDisjoint
-func WedgeIntersects(a0, ab1, a2, b0, b2 Point) bool {
- // For A not to intersect B (where each loop interior is defined to be
- // its left side), the CCW edge order around ab1 must be a0 b2 b0 a2.
- // Note that it's important to write these conditions as negatives
- // (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct
- // results when two vertices are the same.
- return !(OrderedCCW(a0, b2, b0, ab1) && OrderedCCW(b0, a2, a0, ab1))
-}