diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/stuv.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/stuv.go | 427 |
1 files changed, 427 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/stuv.go b/vendor/github.com/golang/geo/s2/stuv.go new file mode 100644 index 000000000..7663bb398 --- /dev/null +++ b/vendor/github.com/golang/geo/s2/stuv.go @@ -0,0 +1,427 @@ +// Copyright 2014 Google Inc. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package s2 + +import ( + "math" + + "github.com/golang/geo/r3" +) + +// +// This file contains documentation of the various coordinate systems used +// throughout the library. Most importantly, S2 defines a framework for +// decomposing the unit sphere into a hierarchy of "cells". Each cell is a +// quadrilateral bounded by four geodesics. The top level of the hierarchy is +// obtained by projecting the six faces of a cube onto the unit sphere, and +// lower levels are obtained by subdividing each cell into four children +// recursively. Cells are numbered such that sequentially increasing cells +// follow a continuous space-filling curve over the entire sphere. The +// transformation is designed to make the cells at each level fairly uniform +// in size. +// +////////////////////////// S2 Cell Decomposition ///////////////////////// +// +// The following methods define the cube-to-sphere projection used by +// the Cell decomposition. +// +// In the process of converting a latitude-longitude pair to a 64-bit cell +// id, the following coordinate systems are used: +// +// (id) +// An CellID is a 64-bit encoding of a face and a Hilbert curve position +// on that face. The Hilbert curve position implicitly encodes both the +// position of a cell and its subdivision level (see s2cellid.go). +// +// (face, i, j) +// Leaf-cell coordinates. "i" and "j" are integers in the range +// [0,(2**30)-1] that identify a particular leaf cell on the given face. +// The (i, j) coordinate system is right-handed on each face, and the +// faces are oriented such that Hilbert curves connect continuously from +// one face to the next. +// +// (face, s, t) +// Cell-space coordinates. "s" and "t" are real numbers in the range +// [0,1] that identify a point on the given face. For example, the point +// (s, t) = (0.5, 0.5) corresponds to the center of the top-level face +// cell. This point is also a vertex of exactly four cells at each +// subdivision level greater than zero. +// +// (face, si, ti) +// Discrete cell-space coordinates. These are obtained by multiplying +// "s" and "t" by 2**31 and rounding to the nearest unsigned integer. +// Discrete coordinates lie in the range [0,2**31]. This coordinate +// system can represent the edge and center positions of all cells with +// no loss of precision (including non-leaf cells). In binary, each +// coordinate of a level-k cell center ends with a 1 followed by +// (30 - k) 0s. The coordinates of its edges end with (at least) +// (31 - k) 0s. +// +// (face, u, v) +// Cube-space coordinates in the range [-1,1]. To make the cells at each +// level more uniform in size after they are projected onto the sphere, +// we apply a nonlinear transformation of the form u=f(s), v=f(t). +// The (u, v) coordinates after this transformation give the actual +// coordinates on the cube face (modulo some 90 degree rotations) before +// it is projected onto the unit sphere. +// +// (face, u, v, w) +// Per-face coordinate frame. This is an extension of the (face, u, v) +// cube-space coordinates that adds a third axis "w" in the direction of +// the face normal. It is always a right-handed 3D coordinate system. +// Cube-space coordinates can be converted to this frame by setting w=1, +// while (u,v,w) coordinates can be projected onto the cube face by +// dividing by w, i.e. (face, u/w, v/w). +// +// (x, y, z) +// Direction vector (Point). Direction vectors are not necessarily unit +// length, and are often chosen to be points on the biunit cube +// [-1,+1]x[-1,+1]x[-1,+1]. They can be be normalized to obtain the +// corresponding point on the unit sphere. +// +// (lat, lng) +// Latitude and longitude (LatLng). Latitudes must be between -90 and +// 90 degrees inclusive, and longitudes must be between -180 and 180 +// degrees inclusive. +// +// Note that the (i, j), (s, t), (si, ti), and (u, v) coordinate systems are +// right-handed on all six faces. +// +// +// There are a number of different projections from cell-space (s,t) to +// cube-space (u,v): linear, quadratic, and tangent. They have the following +// tradeoffs: +// +// Linear - This is the fastest transformation, but also produces the least +// uniform cell sizes. Cell areas vary by a factor of about 5.2, with the +// largest cells at the center of each face and the smallest cells in +// the corners. +// +// Tangent - Transforming the coordinates via Atan makes the cell sizes +// more uniform. The areas vary by a maximum ratio of 1.4 as opposed to a +// maximum ratio of 5.2. However, each call to Atan is about as expensive +// as all of the other calculations combined when converting from points to +// cell ids, i.e. it reduces performance by a factor of 3. +// +// Quadratic - This is an approximation of the tangent projection that +// is much faster and produces cells that are almost as uniform in size. +// It is about 3 times faster than the tangent projection for converting +// cell ids to points or vice versa. Cell areas vary by a maximum ratio of +// about 2.1. +// +// Here is a table comparing the cell uniformity using each projection. Area +// Ratio is the maximum ratio over all subdivision levels of the largest cell +// area to the smallest cell area at that level, Edge Ratio is the maximum +// ratio of the longest edge of any cell to the shortest edge of any cell at +// the same level, and Diag Ratio is the ratio of the longest diagonal of +// any cell to the shortest diagonal of any cell at the same level. +// +// Area Edge Diag +// Ratio Ratio Ratio +// ----------------------------------- +// Linear: 5.200 2.117 2.959 +// Tangent: 1.414 1.414 1.704 +// Quadratic: 2.082 1.802 1.932 +// +// The worst-case cell aspect ratios are about the same with all three +// projections. The maximum ratio of the longest edge to the shortest edge +// within the same cell is about 1.4 and the maximum ratio of the diagonals +// within the same cell is about 1.7. +// +// For Go we have chosen to use only the Quadratic approach. Other language +// implementations may offer other choices. + +const ( + // maxSiTi is the maximum value of an si- or ti-coordinate. + // It is one shift more than maxSize. The range of valid (si,ti) + // values is [0..maxSiTi]. + maxSiTi = maxSize << 1 +) + +// siTiToST converts an si- or ti-value to the corresponding s- or t-value. +// Value is capped at 1.0 because there is no DCHECK in Go. +func siTiToST(si uint32) float64 { + if si > maxSiTi { + return 1.0 + } + return float64(si) / float64(maxSiTi) +} + +// stToSiTi converts the s- or t-value to the nearest si- or ti-coordinate. +// The result may be outside the range of valid (si,ti)-values. Value of +// 0.49999999999999994 (math.NextAfter(0.5, -1)), will be incorrectly rounded up. +func stToSiTi(s float64) uint32 { + if s < 0 { + return uint32(s*maxSiTi - 0.5) + } + return uint32(s*maxSiTi + 0.5) +} + +// stToUV converts an s or t value to the corresponding u or v value. +// This is a non-linear transformation from [-1,1] to [-1,1] that +// attempts to make the cell sizes more uniform. +// This uses what the C++ version calls 'the quadratic transform'. +func stToUV(s float64) float64 { + if s >= 0.5 { + return (1 / 3.) * (4*s*s - 1) + } + return (1 / 3.) * (1 - 4*(1-s)*(1-s)) +} + +// uvToST is the inverse of the stToUV transformation. Note that it +// is not always true that uvToST(stToUV(x)) == x due to numerical +// errors. +func uvToST(u float64) float64 { + if u >= 0 { + return 0.5 * math.Sqrt(1+3*u) + } + return 1 - 0.5*math.Sqrt(1-3*u) +} + +// face returns face ID from 0 to 5 containing the r. For points on the +// boundary between faces, the result is arbitrary but deterministic. +func face(r r3.Vector) int { + f := r.LargestComponent() + switch { + case f == r3.XAxis && r.X < 0: + f += 3 + case f == r3.YAxis && r.Y < 0: + f += 3 + case f == r3.ZAxis && r.Z < 0: + f += 3 + } + return int(f) +} + +// validFaceXYZToUV given a valid face for the given point r (meaning that +// dot product of r with the face normal is positive), returns +// the corresponding u and v values, which may lie outside the range [-1,1]. +func validFaceXYZToUV(face int, r r3.Vector) (float64, float64) { + switch face { + case 0: + return r.Y / r.X, r.Z / r.X + case 1: + return -r.X / r.Y, r.Z / r.Y + case 2: + return -r.X / r.Z, -r.Y / r.Z + case 3: + return r.Z / r.X, r.Y / r.X + case 4: + return r.Z / r.Y, -r.X / r.Y + } + return -r.Y / r.Z, -r.X / r.Z +} + +// xyzToFaceUV converts a direction vector (not necessarily unit length) to +// (face, u, v) coordinates. +func xyzToFaceUV(r r3.Vector) (f int, u, v float64) { + f = face(r) + u, v = validFaceXYZToUV(f, r) + return f, u, v +} + +// faceUVToXYZ turns face and UV coordinates into an unnormalized 3 vector. +func faceUVToXYZ(face int, u, v float64) r3.Vector { + switch face { + case 0: + return r3.Vector{1, u, v} + case 1: + return r3.Vector{-u, 1, v} + case 2: + return r3.Vector{-u, -v, 1} + case 3: + return r3.Vector{-1, -v, -u} + case 4: + return r3.Vector{v, -1, -u} + default: + return r3.Vector{v, u, -1} + } +} + +// faceXYZToUV returns the u and v values (which may lie outside the range +// [-1, 1]) if the dot product of the point p with the given face normal is positive. +func faceXYZToUV(face int, p Point) (u, v float64, ok bool) { + switch face { + case 0: + if p.X <= 0 { + return 0, 0, false + } + case 1: + if p.Y <= 0 { + return 0, 0, false + } + case 2: + if p.Z <= 0 { + return 0, 0, false + } + case 3: + if p.X >= 0 { + return 0, 0, false + } + case 4: + if p.Y >= 0 { + return 0, 0, false + } + default: + if p.Z >= 0 { + return 0, 0, false + } + } + + u, v = validFaceXYZToUV(face, p.Vector) + return u, v, true +} + +// faceXYZtoUVW transforms the given point P to the (u,v,w) coordinate frame of the given +// face where the w-axis represents the face normal. +func faceXYZtoUVW(face int, p Point) Point { + // The result coordinates are simply the dot products of P with the (u,v,w) + // axes for the given face (see faceUVWAxes). + switch face { + case 0: + return Point{r3.Vector{p.Y, p.Z, p.X}} + case 1: + return Point{r3.Vector{-p.X, p.Z, p.Y}} + case 2: + return Point{r3.Vector{-p.X, -p.Y, p.Z}} + case 3: + return Point{r3.Vector{-p.Z, -p.Y, -p.X}} + case 4: + return Point{r3.Vector{-p.Z, p.X, -p.Y}} + default: + return Point{r3.Vector{p.Y, p.X, -p.Z}} + } +} + +// faceSiTiToXYZ transforms the (si, ti) coordinates to a (not necessarily +// unit length) Point on the given face. +func faceSiTiToXYZ(face int, si, ti uint32) Point { + return Point{faceUVToXYZ(face, stToUV(siTiToST(si)), stToUV(siTiToST(ti)))} +} + +// xyzToFaceSiTi transforms the (not necessarily unit length) Point to +// (face, si, ti) coordinates and the level the Point is at. +func xyzToFaceSiTi(p Point) (face int, si, ti uint32, level int) { + face, u, v := xyzToFaceUV(p.Vector) + si = stToSiTi(uvToST(u)) + ti = stToSiTi(uvToST(v)) + + // If the levels corresponding to si,ti are not equal, then p is not a cell + // center. The si,ti values of 0 and maxSiTi need to be handled specially + // because they do not correspond to cell centers at any valid level; they + // are mapped to level -1 by the code at the end. + level = maxLevel - findLSBSetNonZero64(uint64(si|maxSiTi)) + if level < 0 || level != maxLevel-findLSBSetNonZero64(uint64(ti|maxSiTi)) { + return face, si, ti, -1 + } + + // In infinite precision, this test could be changed to ST == SiTi. However, + // due to rounding errors, uvToST(xyzToFaceUV(faceUVToXYZ(stToUV(...)))) is + // not idempotent. On the other hand, the center is computed exactly the same + // way p was originally computed (if it is indeed the center of a Cell); + // the comparison can be exact. + if p.Vector == faceSiTiToXYZ(face, si, ti).Normalize() { + return face, si, ti, level + } + + return face, si, ti, -1 +} + +// uNorm returns the right-handed normal (not necessarily unit length) for an +// edge in the direction of the positive v-axis at the given u-value on +// the given face. (This vector is perpendicular to the plane through +// the sphere origin that contains the given edge.) +func uNorm(face int, u float64) r3.Vector { + switch face { + case 0: + return r3.Vector{u, -1, 0} + case 1: + return r3.Vector{1, u, 0} + case 2: + return r3.Vector{1, 0, u} + case 3: + return r3.Vector{-u, 0, 1} + case 4: + return r3.Vector{0, -u, 1} + default: + return r3.Vector{0, -1, -u} + } +} + +// vNorm returns the right-handed normal (not necessarily unit length) for an +// edge in the direction of the positive u-axis at the given v-value on +// the given face. +func vNorm(face int, v float64) r3.Vector { + switch face { + case 0: + return r3.Vector{-v, 0, 1} + case 1: + return r3.Vector{0, -v, 1} + case 2: + return r3.Vector{0, -1, -v} + case 3: + return r3.Vector{v, -1, 0} + case 4: + return r3.Vector{1, v, 0} + default: + return r3.Vector{1, 0, v} + } +} + +// faceUVWAxes are the U, V, and W axes for each face. +var faceUVWAxes = [6][3]Point{ + {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{1, 0, 0}}}, + {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{0, 1, 0}}}, + {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{0, 0, 1}}}, + {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{-1, 0, 0}}}, + {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, -1, 0}}}, + {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, 0, -1}}}, +} + +// faceUVWFaces are the precomputed neighbors of each face. +var faceUVWFaces = [6][3][2]int{ + {{4, 1}, {5, 2}, {3, 0}}, + {{0, 3}, {5, 2}, {4, 1}}, + {{0, 3}, {1, 4}, {5, 2}}, + {{2, 5}, {1, 4}, {0, 3}}, + {{2, 5}, {3, 0}, {1, 4}}, + {{4, 1}, {3, 0}, {2, 5}}, +} + +// uvwAxis returns the given axis of the given face. +func uvwAxis(face, axis int) Point { + return faceUVWAxes[face][axis] +} + +// uvwFaces returns the face in the (u,v,w) coordinate system on the given axis +// in the given direction. +func uvwFace(face, axis, direction int) int { + return faceUVWFaces[face][axis][direction] +} + +// uAxis returns the u-axis for the given face. +func uAxis(face int) Point { + return uvwAxis(face, 0) +} + +// vAxis returns the v-axis for the given face. +func vAxis(face int) Point { + return uvwAxis(face, 1) +} + +// Return the unit-length normal for the given face. +func unitNorm(face int) Point { + return uvwAxis(face, 2) +} |