summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/stuv.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/stuv.go')
-rw-r--r--vendor/github.com/golang/geo/s2/stuv.go427
1 files changed, 427 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/stuv.go b/vendor/github.com/golang/geo/s2/stuv.go
new file mode 100644
index 000000000..7663bb398
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/stuv.go
@@ -0,0 +1,427 @@
+// Copyright 2014 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "math"
+
+ "github.com/golang/geo/r3"
+)
+
+//
+// This file contains documentation of the various coordinate systems used
+// throughout the library. Most importantly, S2 defines a framework for
+// decomposing the unit sphere into a hierarchy of "cells". Each cell is a
+// quadrilateral bounded by four geodesics. The top level of the hierarchy is
+// obtained by projecting the six faces of a cube onto the unit sphere, and
+// lower levels are obtained by subdividing each cell into four children
+// recursively. Cells are numbered such that sequentially increasing cells
+// follow a continuous space-filling curve over the entire sphere. The
+// transformation is designed to make the cells at each level fairly uniform
+// in size.
+//
+////////////////////////// S2 Cell Decomposition /////////////////////////
+//
+// The following methods define the cube-to-sphere projection used by
+// the Cell decomposition.
+//
+// In the process of converting a latitude-longitude pair to a 64-bit cell
+// id, the following coordinate systems are used:
+//
+// (id)
+// An CellID is a 64-bit encoding of a face and a Hilbert curve position
+// on that face. The Hilbert curve position implicitly encodes both the
+// position of a cell and its subdivision level (see s2cellid.go).
+//
+// (face, i, j)
+// Leaf-cell coordinates. "i" and "j" are integers in the range
+// [0,(2**30)-1] that identify a particular leaf cell on the given face.
+// The (i, j) coordinate system is right-handed on each face, and the
+// faces are oriented such that Hilbert curves connect continuously from
+// one face to the next.
+//
+// (face, s, t)
+// Cell-space coordinates. "s" and "t" are real numbers in the range
+// [0,1] that identify a point on the given face. For example, the point
+// (s, t) = (0.5, 0.5) corresponds to the center of the top-level face
+// cell. This point is also a vertex of exactly four cells at each
+// subdivision level greater than zero.
+//
+// (face, si, ti)
+// Discrete cell-space coordinates. These are obtained by multiplying
+// "s" and "t" by 2**31 and rounding to the nearest unsigned integer.
+// Discrete coordinates lie in the range [0,2**31]. This coordinate
+// system can represent the edge and center positions of all cells with
+// no loss of precision (including non-leaf cells). In binary, each
+// coordinate of a level-k cell center ends with a 1 followed by
+// (30 - k) 0s. The coordinates of its edges end with (at least)
+// (31 - k) 0s.
+//
+// (face, u, v)
+// Cube-space coordinates in the range [-1,1]. To make the cells at each
+// level more uniform in size after they are projected onto the sphere,
+// we apply a nonlinear transformation of the form u=f(s), v=f(t).
+// The (u, v) coordinates after this transformation give the actual
+// coordinates on the cube face (modulo some 90 degree rotations) before
+// it is projected onto the unit sphere.
+//
+// (face, u, v, w)
+// Per-face coordinate frame. This is an extension of the (face, u, v)
+// cube-space coordinates that adds a third axis "w" in the direction of
+// the face normal. It is always a right-handed 3D coordinate system.
+// Cube-space coordinates can be converted to this frame by setting w=1,
+// while (u,v,w) coordinates can be projected onto the cube face by
+// dividing by w, i.e. (face, u/w, v/w).
+//
+// (x, y, z)
+// Direction vector (Point). Direction vectors are not necessarily unit
+// length, and are often chosen to be points on the biunit cube
+// [-1,+1]x[-1,+1]x[-1,+1]. They can be be normalized to obtain the
+// corresponding point on the unit sphere.
+//
+// (lat, lng)
+// Latitude and longitude (LatLng). Latitudes must be between -90 and
+// 90 degrees inclusive, and longitudes must be between -180 and 180
+// degrees inclusive.
+//
+// Note that the (i, j), (s, t), (si, ti), and (u, v) coordinate systems are
+// right-handed on all six faces.
+//
+//
+// There are a number of different projections from cell-space (s,t) to
+// cube-space (u,v): linear, quadratic, and tangent. They have the following
+// tradeoffs:
+//
+// Linear - This is the fastest transformation, but also produces the least
+// uniform cell sizes. Cell areas vary by a factor of about 5.2, with the
+// largest cells at the center of each face and the smallest cells in
+// the corners.
+//
+// Tangent - Transforming the coordinates via Atan makes the cell sizes
+// more uniform. The areas vary by a maximum ratio of 1.4 as opposed to a
+// maximum ratio of 5.2. However, each call to Atan is about as expensive
+// as all of the other calculations combined when converting from points to
+// cell ids, i.e. it reduces performance by a factor of 3.
+//
+// Quadratic - This is an approximation of the tangent projection that
+// is much faster and produces cells that are almost as uniform in size.
+// It is about 3 times faster than the tangent projection for converting
+// cell ids to points or vice versa. Cell areas vary by a maximum ratio of
+// about 2.1.
+//
+// Here is a table comparing the cell uniformity using each projection. Area
+// Ratio is the maximum ratio over all subdivision levels of the largest cell
+// area to the smallest cell area at that level, Edge Ratio is the maximum
+// ratio of the longest edge of any cell to the shortest edge of any cell at
+// the same level, and Diag Ratio is the ratio of the longest diagonal of
+// any cell to the shortest diagonal of any cell at the same level.
+//
+// Area Edge Diag
+// Ratio Ratio Ratio
+// -----------------------------------
+// Linear: 5.200 2.117 2.959
+// Tangent: 1.414 1.414 1.704
+// Quadratic: 2.082 1.802 1.932
+//
+// The worst-case cell aspect ratios are about the same with all three
+// projections. The maximum ratio of the longest edge to the shortest edge
+// within the same cell is about 1.4 and the maximum ratio of the diagonals
+// within the same cell is about 1.7.
+//
+// For Go we have chosen to use only the Quadratic approach. Other language
+// implementations may offer other choices.
+
+const (
+ // maxSiTi is the maximum value of an si- or ti-coordinate.
+ // It is one shift more than maxSize. The range of valid (si,ti)
+ // values is [0..maxSiTi].
+ maxSiTi = maxSize << 1
+)
+
+// siTiToST converts an si- or ti-value to the corresponding s- or t-value.
+// Value is capped at 1.0 because there is no DCHECK in Go.
+func siTiToST(si uint32) float64 {
+ if si > maxSiTi {
+ return 1.0
+ }
+ return float64(si) / float64(maxSiTi)
+}
+
+// stToSiTi converts the s- or t-value to the nearest si- or ti-coordinate.
+// The result may be outside the range of valid (si,ti)-values. Value of
+// 0.49999999999999994 (math.NextAfter(0.5, -1)), will be incorrectly rounded up.
+func stToSiTi(s float64) uint32 {
+ if s < 0 {
+ return uint32(s*maxSiTi - 0.5)
+ }
+ return uint32(s*maxSiTi + 0.5)
+}
+
+// stToUV converts an s or t value to the corresponding u or v value.
+// This is a non-linear transformation from [-1,1] to [-1,1] that
+// attempts to make the cell sizes more uniform.
+// This uses what the C++ version calls 'the quadratic transform'.
+func stToUV(s float64) float64 {
+ if s >= 0.5 {
+ return (1 / 3.) * (4*s*s - 1)
+ }
+ return (1 / 3.) * (1 - 4*(1-s)*(1-s))
+}
+
+// uvToST is the inverse of the stToUV transformation. Note that it
+// is not always true that uvToST(stToUV(x)) == x due to numerical
+// errors.
+func uvToST(u float64) float64 {
+ if u >= 0 {
+ return 0.5 * math.Sqrt(1+3*u)
+ }
+ return 1 - 0.5*math.Sqrt(1-3*u)
+}
+
+// face returns face ID from 0 to 5 containing the r. For points on the
+// boundary between faces, the result is arbitrary but deterministic.
+func face(r r3.Vector) int {
+ f := r.LargestComponent()
+ switch {
+ case f == r3.XAxis && r.X < 0:
+ f += 3
+ case f == r3.YAxis && r.Y < 0:
+ f += 3
+ case f == r3.ZAxis && r.Z < 0:
+ f += 3
+ }
+ return int(f)
+}
+
+// validFaceXYZToUV given a valid face for the given point r (meaning that
+// dot product of r with the face normal is positive), returns
+// the corresponding u and v values, which may lie outside the range [-1,1].
+func validFaceXYZToUV(face int, r r3.Vector) (float64, float64) {
+ switch face {
+ case 0:
+ return r.Y / r.X, r.Z / r.X
+ case 1:
+ return -r.X / r.Y, r.Z / r.Y
+ case 2:
+ return -r.X / r.Z, -r.Y / r.Z
+ case 3:
+ return r.Z / r.X, r.Y / r.X
+ case 4:
+ return r.Z / r.Y, -r.X / r.Y
+ }
+ return -r.Y / r.Z, -r.X / r.Z
+}
+
+// xyzToFaceUV converts a direction vector (not necessarily unit length) to
+// (face, u, v) coordinates.
+func xyzToFaceUV(r r3.Vector) (f int, u, v float64) {
+ f = face(r)
+ u, v = validFaceXYZToUV(f, r)
+ return f, u, v
+}
+
+// faceUVToXYZ turns face and UV coordinates into an unnormalized 3 vector.
+func faceUVToXYZ(face int, u, v float64) r3.Vector {
+ switch face {
+ case 0:
+ return r3.Vector{1, u, v}
+ case 1:
+ return r3.Vector{-u, 1, v}
+ case 2:
+ return r3.Vector{-u, -v, 1}
+ case 3:
+ return r3.Vector{-1, -v, -u}
+ case 4:
+ return r3.Vector{v, -1, -u}
+ default:
+ return r3.Vector{v, u, -1}
+ }
+}
+
+// faceXYZToUV returns the u and v values (which may lie outside the range
+// [-1, 1]) if the dot product of the point p with the given face normal is positive.
+func faceXYZToUV(face int, p Point) (u, v float64, ok bool) {
+ switch face {
+ case 0:
+ if p.X <= 0 {
+ return 0, 0, false
+ }
+ case 1:
+ if p.Y <= 0 {
+ return 0, 0, false
+ }
+ case 2:
+ if p.Z <= 0 {
+ return 0, 0, false
+ }
+ case 3:
+ if p.X >= 0 {
+ return 0, 0, false
+ }
+ case 4:
+ if p.Y >= 0 {
+ return 0, 0, false
+ }
+ default:
+ if p.Z >= 0 {
+ return 0, 0, false
+ }
+ }
+
+ u, v = validFaceXYZToUV(face, p.Vector)
+ return u, v, true
+}
+
+// faceXYZtoUVW transforms the given point P to the (u,v,w) coordinate frame of the given
+// face where the w-axis represents the face normal.
+func faceXYZtoUVW(face int, p Point) Point {
+ // The result coordinates are simply the dot products of P with the (u,v,w)
+ // axes for the given face (see faceUVWAxes).
+ switch face {
+ case 0:
+ return Point{r3.Vector{p.Y, p.Z, p.X}}
+ case 1:
+ return Point{r3.Vector{-p.X, p.Z, p.Y}}
+ case 2:
+ return Point{r3.Vector{-p.X, -p.Y, p.Z}}
+ case 3:
+ return Point{r3.Vector{-p.Z, -p.Y, -p.X}}
+ case 4:
+ return Point{r3.Vector{-p.Z, p.X, -p.Y}}
+ default:
+ return Point{r3.Vector{p.Y, p.X, -p.Z}}
+ }
+}
+
+// faceSiTiToXYZ transforms the (si, ti) coordinates to a (not necessarily
+// unit length) Point on the given face.
+func faceSiTiToXYZ(face int, si, ti uint32) Point {
+ return Point{faceUVToXYZ(face, stToUV(siTiToST(si)), stToUV(siTiToST(ti)))}
+}
+
+// xyzToFaceSiTi transforms the (not necessarily unit length) Point to
+// (face, si, ti) coordinates and the level the Point is at.
+func xyzToFaceSiTi(p Point) (face int, si, ti uint32, level int) {
+ face, u, v := xyzToFaceUV(p.Vector)
+ si = stToSiTi(uvToST(u))
+ ti = stToSiTi(uvToST(v))
+
+ // If the levels corresponding to si,ti are not equal, then p is not a cell
+ // center. The si,ti values of 0 and maxSiTi need to be handled specially
+ // because they do not correspond to cell centers at any valid level; they
+ // are mapped to level -1 by the code at the end.
+ level = maxLevel - findLSBSetNonZero64(uint64(si|maxSiTi))
+ if level < 0 || level != maxLevel-findLSBSetNonZero64(uint64(ti|maxSiTi)) {
+ return face, si, ti, -1
+ }
+
+ // In infinite precision, this test could be changed to ST == SiTi. However,
+ // due to rounding errors, uvToST(xyzToFaceUV(faceUVToXYZ(stToUV(...)))) is
+ // not idempotent. On the other hand, the center is computed exactly the same
+ // way p was originally computed (if it is indeed the center of a Cell);
+ // the comparison can be exact.
+ if p.Vector == faceSiTiToXYZ(face, si, ti).Normalize() {
+ return face, si, ti, level
+ }
+
+ return face, si, ti, -1
+}
+
+// uNorm returns the right-handed normal (not necessarily unit length) for an
+// edge in the direction of the positive v-axis at the given u-value on
+// the given face. (This vector is perpendicular to the plane through
+// the sphere origin that contains the given edge.)
+func uNorm(face int, u float64) r3.Vector {
+ switch face {
+ case 0:
+ return r3.Vector{u, -1, 0}
+ case 1:
+ return r3.Vector{1, u, 0}
+ case 2:
+ return r3.Vector{1, 0, u}
+ case 3:
+ return r3.Vector{-u, 0, 1}
+ case 4:
+ return r3.Vector{0, -u, 1}
+ default:
+ return r3.Vector{0, -1, -u}
+ }
+}
+
+// vNorm returns the right-handed normal (not necessarily unit length) for an
+// edge in the direction of the positive u-axis at the given v-value on
+// the given face.
+func vNorm(face int, v float64) r3.Vector {
+ switch face {
+ case 0:
+ return r3.Vector{-v, 0, 1}
+ case 1:
+ return r3.Vector{0, -v, 1}
+ case 2:
+ return r3.Vector{0, -1, -v}
+ case 3:
+ return r3.Vector{v, -1, 0}
+ case 4:
+ return r3.Vector{1, v, 0}
+ default:
+ return r3.Vector{1, 0, v}
+ }
+}
+
+// faceUVWAxes are the U, V, and W axes for each face.
+var faceUVWAxes = [6][3]Point{
+ {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{1, 0, 0}}},
+ {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{0, 1, 0}}},
+ {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{0, 0, 1}}},
+ {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{-1, 0, 0}}},
+ {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, -1, 0}}},
+ {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, 0, -1}}},
+}
+
+// faceUVWFaces are the precomputed neighbors of each face.
+var faceUVWFaces = [6][3][2]int{
+ {{4, 1}, {5, 2}, {3, 0}},
+ {{0, 3}, {5, 2}, {4, 1}},
+ {{0, 3}, {1, 4}, {5, 2}},
+ {{2, 5}, {1, 4}, {0, 3}},
+ {{2, 5}, {3, 0}, {1, 4}},
+ {{4, 1}, {3, 0}, {2, 5}},
+}
+
+// uvwAxis returns the given axis of the given face.
+func uvwAxis(face, axis int) Point {
+ return faceUVWAxes[face][axis]
+}
+
+// uvwFaces returns the face in the (u,v,w) coordinate system on the given axis
+// in the given direction.
+func uvwFace(face, axis, direction int) int {
+ return faceUVWFaces[face][axis][direction]
+}
+
+// uAxis returns the u-axis for the given face.
+func uAxis(face int) Point {
+ return uvwAxis(face, 0)
+}
+
+// vAxis returns the v-axis for the given face.
+func vAxis(face int) Point {
+ return uvwAxis(face, 1)
+}
+
+// Return the unit-length normal for the given face.
+func unitNorm(face int) Point {
+ return uvwAxis(face, 2)
+}