summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/rect_bounder.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/rect_bounder.go')
-rw-r--r--vendor/github.com/golang/geo/s2/rect_bounder.go352
1 files changed, 352 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/rect_bounder.go b/vendor/github.com/golang/geo/s2/rect_bounder.go
new file mode 100644
index 000000000..419dea0c1
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/rect_bounder.go
@@ -0,0 +1,352 @@
+// Copyright 2017 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "math"
+
+ "github.com/golang/geo/r1"
+ "github.com/golang/geo/r3"
+ "github.com/golang/geo/s1"
+)
+
+// RectBounder is used to compute a bounding rectangle that contains all edges
+// defined by a vertex chain (v0, v1, v2, ...). All vertices must be unit length.
+// Note that the bounding rectangle of an edge can be larger than the bounding
+// rectangle of its endpoints, e.g. consider an edge that passes through the North Pole.
+//
+// The bounds are calculated conservatively to account for numerical errors
+// when points are converted to LatLngs. More precisely, this function
+// guarantees the following:
+// Let L be a closed edge chain (Loop) such that the interior of the loop does
+// not contain either pole. Now if P is any point such that L.ContainsPoint(P),
+// then RectBound(L).ContainsPoint(LatLngFromPoint(P)).
+type RectBounder struct {
+ // The previous vertex in the chain.
+ a Point
+ // The previous vertex latitude longitude.
+ aLL LatLng
+ bound Rect
+}
+
+// NewRectBounder returns a new instance of a RectBounder.
+func NewRectBounder() *RectBounder {
+ return &RectBounder{
+ bound: EmptyRect(),
+ }
+}
+
+// maxErrorForTests returns the maximum error in RectBound provided that the
+// result does not include either pole. It is only used for testing purposes
+func (r *RectBounder) maxErrorForTests() LatLng {
+ // The maximum error in the latitude calculation is
+ // 3.84 * dblEpsilon for the PointCross calculation
+ // 0.96 * dblEpsilon for the Latitude calculation
+ // 5 * dblEpsilon added by AddPoint/RectBound to compensate for error
+ // -----------------
+ // 9.80 * dblEpsilon maximum error in result
+ //
+ // The maximum error in the longitude calculation is dblEpsilon. RectBound
+ // does not do any expansion because this isn't necessary in order to
+ // bound the *rounded* longitudes of contained points.
+ return LatLng{10 * dblEpsilon * s1.Radian, 1 * dblEpsilon * s1.Radian}
+}
+
+// AddPoint adds the given point to the chain. The Point must be unit length.
+func (r *RectBounder) AddPoint(b Point) {
+ bLL := LatLngFromPoint(b)
+
+ if r.bound.IsEmpty() {
+ r.a = b
+ r.aLL = bLL
+ r.bound = r.bound.AddPoint(bLL)
+ return
+ }
+
+ // First compute the cross product N = A x B robustly. This is the normal
+ // to the great circle through A and B. We don't use RobustSign
+ // since that method returns an arbitrary vector orthogonal to A if the two
+ // vectors are proportional, and we want the zero vector in that case.
+ n := r.a.Sub(b.Vector).Cross(r.a.Add(b.Vector)) // N = 2 * (A x B)
+
+ // The relative error in N gets large as its norm gets very small (i.e.,
+ // when the two points are nearly identical or antipodal). We handle this
+ // by choosing a maximum allowable error, and if the error is greater than
+ // this we fall back to a different technique. Since it turns out that
+ // the other sources of error in converting the normal to a maximum
+ // latitude add up to at most 1.16 * dblEpsilon, and it is desirable to
+ // have the total error be a multiple of dblEpsilon, we have chosen to
+ // limit the maximum error in the normal to be 3.84 * dblEpsilon.
+ // It is possible to show that the error is less than this when
+ //
+ // n.Norm() >= 8 * sqrt(3) / (3.84 - 0.5 - sqrt(3)) * dblEpsilon
+ // = 1.91346e-15 (about 8.618 * dblEpsilon)
+ nNorm := n.Norm()
+ if nNorm < 1.91346e-15 {
+ // A and B are either nearly identical or nearly antipodal (to within
+ // 4.309 * dblEpsilon, or about 6 nanometers on the earth's surface).
+ if r.a.Dot(b.Vector) < 0 {
+ // The two points are nearly antipodal. The easiest solution is to
+ // assume that the edge between A and B could go in any direction
+ // around the sphere.
+ r.bound = FullRect()
+ } else {
+ // The two points are nearly identical (to within 4.309 * dblEpsilon).
+ // In this case we can just use the bounding rectangle of the points,
+ // since after the expansion done by GetBound this Rect is
+ // guaranteed to include the (lat,lng) values of all points along AB.
+ r.bound = r.bound.Union(RectFromLatLng(r.aLL).AddPoint(bLL))
+ }
+ r.a = b
+ r.aLL = bLL
+ return
+ }
+
+ // Compute the longitude range spanned by AB.
+ lngAB := s1.EmptyInterval().AddPoint(r.aLL.Lng.Radians()).AddPoint(bLL.Lng.Radians())
+ if lngAB.Length() >= math.Pi-2*dblEpsilon {
+ // The points lie on nearly opposite lines of longitude to within the
+ // maximum error of the calculation. The easiest solution is to assume
+ // that AB could go on either side of the pole.
+ lngAB = s1.FullInterval()
+ }
+
+ // Next we compute the latitude range spanned by the edge AB. We start
+ // with the range spanning the two endpoints of the edge:
+ latAB := r1.IntervalFromPoint(r.aLL.Lat.Radians()).AddPoint(bLL.Lat.Radians())
+
+ // This is the desired range unless the edge AB crosses the plane
+ // through N and the Z-axis (which is where the great circle through A
+ // and B attains its minimum and maximum latitudes). To test whether AB
+ // crosses this plane, we compute a vector M perpendicular to this
+ // plane and then project A and B onto it.
+ m := n.Cross(r3.Vector{0, 0, 1})
+ mA := m.Dot(r.a.Vector)
+ mB := m.Dot(b.Vector)
+
+ // We want to test the signs of "mA" and "mB", so we need to bound
+ // the error in these calculations. It is possible to show that the
+ // total error is bounded by
+ //
+ // (1 + sqrt(3)) * dblEpsilon * nNorm + 8 * sqrt(3) * (dblEpsilon**2)
+ // = 6.06638e-16 * nNorm + 6.83174e-31
+
+ mError := 6.06638e-16*nNorm + 6.83174e-31
+ if mA*mB < 0 || math.Abs(mA) <= mError || math.Abs(mB) <= mError {
+ // Minimum/maximum latitude *may* occur in the edge interior.
+ //
+ // The maximum latitude is 90 degrees minus the latitude of N. We
+ // compute this directly using atan2 in order to get maximum accuracy
+ // near the poles.
+ //
+ // Our goal is compute a bound that contains the computed latitudes of
+ // all S2Points P that pass the point-in-polygon containment test.
+ // There are three sources of error we need to consider:
+ // - the directional error in N (at most 3.84 * dblEpsilon)
+ // - converting N to a maximum latitude
+ // - computing the latitude of the test point P
+ // The latter two sources of error are at most 0.955 * dblEpsilon
+ // individually, but it is possible to show by a more complex analysis
+ // that together they can add up to at most 1.16 * dblEpsilon, for a
+ // total error of 5 * dblEpsilon.
+ //
+ // We add 3 * dblEpsilon to the bound here, and GetBound() will pad
+ // the bound by another 2 * dblEpsilon.
+ maxLat := math.Min(
+ math.Atan2(math.Sqrt(n.X*n.X+n.Y*n.Y), math.Abs(n.Z))+3*dblEpsilon,
+ math.Pi/2)
+
+ // In order to get tight bounds when the two points are close together,
+ // we also bound the min/max latitude relative to the latitudes of the
+ // endpoints A and B. First we compute the distance between A and B,
+ // and then we compute the maximum change in latitude between any two
+ // points along the great circle that are separated by this distance.
+ // This gives us a latitude change "budget". Some of this budget must
+ // be spent getting from A to B; the remainder bounds the round-trip
+ // distance (in latitude) from A or B to the min or max latitude
+ // attained along the edge AB.
+ latBudget := 2 * math.Asin(0.5*(r.a.Sub(b.Vector)).Norm()*math.Sin(maxLat))
+ maxDelta := 0.5*(latBudget-latAB.Length()) + dblEpsilon
+
+ // Test whether AB passes through the point of maximum latitude or
+ // minimum latitude. If the dot product(s) are small enough then the
+ // result may be ambiguous.
+ if mA <= mError && mB >= -mError {
+ latAB.Hi = math.Min(maxLat, latAB.Hi+maxDelta)
+ }
+ if mB <= mError && mA >= -mError {
+ latAB.Lo = math.Max(-maxLat, latAB.Lo-maxDelta)
+ }
+ }
+ r.a = b
+ r.aLL = bLL
+ r.bound = r.bound.Union(Rect{latAB, lngAB})
+}
+
+// RectBound returns the bounding rectangle of the edge chain that connects the
+// vertices defined so far. This bound satisfies the guarantee made
+// above, i.e. if the edge chain defines a Loop, then the bound contains
+// the LatLng coordinates of all Points contained by the loop.
+func (r *RectBounder) RectBound() Rect {
+ return r.bound.expanded(LatLng{s1.Angle(2 * dblEpsilon), 0}).PolarClosure()
+}
+
+// ExpandForSubregions expands a bounding Rect so that it is guaranteed to
+// contain the bounds of any subregion whose bounds are computed using
+// ComputeRectBound. For example, consider a loop L that defines a square.
+// GetBound ensures that if a point P is contained by this square, then
+// LatLngFromPoint(P) is contained by the bound. But now consider a diamond
+// shaped loop S contained by L. It is possible that GetBound returns a
+// *larger* bound for S than it does for L, due to rounding errors. This
+// method expands the bound for L so that it is guaranteed to contain the
+// bounds of any subregion S.
+//
+// More precisely, if L is a loop that does not contain either pole, and S
+// is a loop such that L.Contains(S), then
+//
+// ExpandForSubregions(L.RectBound).Contains(S.RectBound).
+//
+func ExpandForSubregions(bound Rect) Rect {
+ // Empty bounds don't need expansion.
+ if bound.IsEmpty() {
+ return bound
+ }
+
+ // First we need to check whether the bound B contains any nearly-antipodal
+ // points (to within 4.309 * dblEpsilon). If so then we need to return
+ // FullRect, since the subregion might have an edge between two
+ // such points, and AddPoint returns Full for such edges. Note that
+ // this can happen even if B is not Full for example, consider a loop
+ // that defines a 10km strip straddling the equator extending from
+ // longitudes -100 to +100 degrees.
+ //
+ // It is easy to check whether B contains any antipodal points, but checking
+ // for nearly-antipodal points is trickier. Essentially we consider the
+ // original bound B and its reflection through the origin B', and then test
+ // whether the minimum distance between B and B' is less than 4.309 * dblEpsilon.
+
+ // lngGap is a lower bound on the longitudinal distance between B and its
+ // reflection B'. (2.5 * dblEpsilon is the maximum combined error of the
+ // endpoint longitude calculations and the Length call.)
+ lngGap := math.Max(0, math.Pi-bound.Lng.Length()-2.5*dblEpsilon)
+
+ // minAbsLat is the minimum distance from B to the equator (if zero or
+ // negative, then B straddles the equator).
+ minAbsLat := math.Max(bound.Lat.Lo, -bound.Lat.Hi)
+
+ // latGapSouth and latGapNorth measure the minimum distance from B to the
+ // south and north poles respectively.
+ latGapSouth := math.Pi/2 + bound.Lat.Lo
+ latGapNorth := math.Pi/2 - bound.Lat.Hi
+
+ if minAbsLat >= 0 {
+ // The bound B does not straddle the equator. In this case the minimum
+ // distance is between one endpoint of the latitude edge in B closest to
+ // the equator and the other endpoint of that edge in B'. The latitude
+ // distance between these two points is 2*minAbsLat, and the longitude
+ // distance is lngGap. We could compute the distance exactly using the
+ // Haversine formula, but then we would need to bound the errors in that
+ // calculation. Since we only need accuracy when the distance is very
+ // small (close to 4.309 * dblEpsilon), we substitute the Euclidean
+ // distance instead. This gives us a right triangle XYZ with two edges of
+ // length x = 2*minAbsLat and y ~= lngGap. The desired distance is the
+ // length of the third edge z, and we have
+ //
+ // z ~= sqrt(x^2 + y^2) >= (x + y) / sqrt(2)
+ //
+ // Therefore the region may contain nearly antipodal points only if
+ //
+ // 2*minAbsLat + lngGap < sqrt(2) * 4.309 * dblEpsilon
+ // ~= 1.354e-15
+ //
+ // Note that because the given bound B is conservative, minAbsLat and
+ // lngGap are both lower bounds on their true values so we do not need
+ // to make any adjustments for their errors.
+ if 2*minAbsLat+lngGap < 1.354e-15 {
+ return FullRect()
+ }
+ } else if lngGap >= math.Pi/2 {
+ // B spans at most Pi/2 in longitude. The minimum distance is always
+ // between one corner of B and the diagonally opposite corner of B'. We
+ // use the same distance approximation that we used above; in this case
+ // we have an obtuse triangle XYZ with two edges of length x = latGapSouth
+ // and y = latGapNorth, and angle Z >= Pi/2 between them. We then have
+ //
+ // z >= sqrt(x^2 + y^2) >= (x + y) / sqrt(2)
+ //
+ // Unlike the case above, latGapSouth and latGapNorth are not lower bounds
+ // (because of the extra addition operation, and because math.Pi/2 is not
+ // exactly equal to Pi/2); they can exceed their true values by up to
+ // 0.75 * dblEpsilon. Putting this all together, the region may contain
+ // nearly antipodal points only if
+ //
+ // latGapSouth + latGapNorth < (sqrt(2) * 4.309 + 1.5) * dblEpsilon
+ // ~= 1.687e-15
+ if latGapSouth+latGapNorth < 1.687e-15 {
+ return FullRect()
+ }
+ } else {
+ // Otherwise we know that (1) the bound straddles the equator and (2) its
+ // width in longitude is at least Pi/2. In this case the minimum
+ // distance can occur either between a corner of B and the diagonally
+ // opposite corner of B' (as in the case above), or between a corner of B
+ // and the opposite longitudinal edge reflected in B'. It is sufficient
+ // to only consider the corner-edge case, since this distance is also a
+ // lower bound on the corner-corner distance when that case applies.
+
+ // Consider the spherical triangle XYZ where X is a corner of B with
+ // minimum absolute latitude, Y is the closest pole to X, and Z is the
+ // point closest to X on the opposite longitudinal edge of B'. This is a
+ // right triangle (Z = Pi/2), and from the spherical law of sines we have
+ //
+ // sin(z) / sin(Z) = sin(y) / sin(Y)
+ // sin(maxLatGap) / 1 = sin(dMin) / sin(lngGap)
+ // sin(dMin) = sin(maxLatGap) * sin(lngGap)
+ //
+ // where "maxLatGap" = max(latGapSouth, latGapNorth) and "dMin" is the
+ // desired minimum distance. Now using the facts that sin(t) >= (2/Pi)*t
+ // for 0 <= t <= Pi/2, that we only need an accurate approximation when
+ // at least one of "maxLatGap" or lngGap is extremely small (in which
+ // case sin(t) ~= t), and recalling that "maxLatGap" has an error of up
+ // to 0.75 * dblEpsilon, we want to test whether
+ //
+ // maxLatGap * lngGap < (4.309 + 0.75) * (Pi/2) * dblEpsilon
+ // ~= 1.765e-15
+ if math.Max(latGapSouth, latGapNorth)*lngGap < 1.765e-15 {
+ return FullRect()
+ }
+ }
+ // Next we need to check whether the subregion might contain any edges that
+ // span (math.Pi - 2 * dblEpsilon) radians or more in longitude, since AddPoint
+ // sets the longitude bound to Full in that case. This corresponds to
+ // testing whether (lngGap <= 0) in lngExpansion below.
+
+ // Otherwise, the maximum latitude error in AddPoint is 4.8 * dblEpsilon.
+ // In the worst case, the errors when computing the latitude bound for a
+ // subregion could go in the opposite direction as the errors when computing
+ // the bound for the original region, so we need to double this value.
+ // (More analysis shows that it's okay to round down to a multiple of
+ // dblEpsilon.)
+ //
+ // For longitude, we rely on the fact that atan2 is correctly rounded and
+ // therefore no additional bounds expansion is necessary.
+
+ latExpansion := 9 * dblEpsilon
+ lngExpansion := 0.0
+ if lngGap <= 0 {
+ lngExpansion = math.Pi
+ }
+ return bound.expanded(LatLng{s1.Angle(latExpansion), s1.Angle(lngExpansion)}).PolarClosure()
+}