summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/polygon.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/polygon.go')
-rw-r--r--vendor/github.com/golang/geo/s2/polygon.go1212
1 files changed, 1212 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/polygon.go b/vendor/github.com/golang/geo/s2/polygon.go
new file mode 100644
index 000000000..57c43fbcf
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/polygon.go
@@ -0,0 +1,1212 @@
+// Copyright 2015 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "fmt"
+ "io"
+ "math"
+)
+
+// Polygon represents a sequence of zero or more loops; recall that the
+// interior of a loop is defined to be its left-hand side (see Loop).
+//
+// When the polygon is initialized, the given loops are automatically converted
+// into a canonical form consisting of "shells" and "holes". Shells and holes
+// are both oriented CCW, and are nested hierarchically. The loops are
+// reordered to correspond to a pre-order traversal of the nesting hierarchy.
+//
+// Polygons may represent any region of the sphere with a polygonal boundary,
+// including the entire sphere (known as the "full" polygon). The full polygon
+// consists of a single full loop (see Loop), whereas the empty polygon has no
+// loops at all.
+//
+// Use FullPolygon() to construct a full polygon. The zero value of Polygon is
+// treated as the empty polygon.
+//
+// Polygons have the following restrictions:
+//
+// - Loops may not cross, i.e. the boundary of a loop may not intersect
+// both the interior and exterior of any other loop.
+//
+// - Loops may not share edges, i.e. if a loop contains an edge AB, then
+// no other loop may contain AB or BA.
+//
+// - Loops may share vertices, however no vertex may appear twice in a
+// single loop (see Loop).
+//
+// - No loop may be empty. The full loop may appear only in the full polygon.
+type Polygon struct {
+ loops []*Loop
+
+ // index is a spatial index of all the polygon loops.
+ index *ShapeIndex
+
+ // hasHoles tracks if this polygon has at least one hole.
+ hasHoles bool
+
+ // numVertices keeps the running total of all of the vertices of the contained loops.
+ numVertices int
+
+ // numEdges tracks the total number of edges in all the loops in this polygon.
+ numEdges int
+
+ // bound is a conservative bound on all points contained by this loop.
+ // If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
+ bound Rect
+
+ // Since bound is not exact, it is possible that a loop A contains
+ // another loop B whose bounds are slightly larger. subregionBound
+ // has been expanded sufficiently to account for this error, i.e.
+ // if A.Contains(B), then A.subregionBound.Contains(B.bound).
+ subregionBound Rect
+
+ // A slice where element i is the cumulative number of edges in the
+ // preceding loops in the polygon. This field is used for polygons that
+ // have a large number of loops, and may be empty for polygons with few loops.
+ cumulativeEdges []int
+}
+
+// PolygonFromLoops constructs a polygon from the given set of loops. The polygon
+// interior consists of the points contained by an odd number of loops. (Recall
+// that a loop contains the set of points on its left-hand side.)
+//
+// This method determines the loop nesting hierarchy and assigns every loop a
+// depth. Shells have even depths, and holes have odd depths.
+//
+// Note: The given set of loops are reordered by this method so that the hierarchy
+// can be traversed using Parent, LastDescendant and the loops depths.
+func PolygonFromLoops(loops []*Loop) *Polygon {
+ p := &Polygon{}
+ // Empty polygons do not contain any loops, even the Empty loop.
+ if len(loops) == 1 && loops[0].IsEmpty() {
+ p.initLoopProperties()
+ return p
+ }
+ p.loops = loops
+ p.initNested()
+ return p
+}
+
+// PolygonFromOrientedLoops returns a Polygon from the given set of loops,
+// like PolygonFromLoops. It expects loops to be oriented such that the polygon
+// interior is on the left-hand side of all loops. This implies that shells
+// and holes should have opposite orientations in the input to this method.
+// (During initialization, loops representing holes will automatically be
+// inverted.)
+func PolygonFromOrientedLoops(loops []*Loop) *Polygon {
+ // Here is the algorithm:
+ //
+ // 1. Remember which of the given loops contain OriginPoint.
+ //
+ // 2. Invert loops as necessary to ensure that they are nestable (i.e., no
+ // loop contains the complement of any other loop). This may result in a
+ // set of loops corresponding to the complement of the given polygon, but
+ // we will fix that problem later.
+ //
+ // We make the loops nestable by first normalizing all the loops (i.e.,
+ // inverting any loops whose turning angle is negative). This handles
+ // all loops except those whose turning angle is very close to zero
+ // (within the maximum error tolerance). Any such loops are inverted if
+ // and only if they contain OriginPoint(). (In theory this step is only
+ // necessary if there are at least two such loops.) The resulting set of
+ // loops is guaranteed to be nestable.
+ //
+ // 3. Build the polygon. This yields either the desired polygon or its
+ // complement.
+ //
+ // 4. If there is at least one loop, we find a loop L that is adjacent to
+ // OriginPoint() (where "adjacent" means that there exists a path
+ // connecting OriginPoint() to some vertex of L such that the path does
+ // not cross any loop). There may be a single such adjacent loop, or
+ // there may be several (in which case they should all have the same
+ // contains_origin() value). We choose L to be the loop containing the
+ // origin whose depth is greatest, or loop(0) (a top-level shell) if no
+ // such loop exists.
+ //
+ // 5. If (L originally contained origin) != (polygon contains origin), we
+ // invert the polygon. This is done by inverting a top-level shell whose
+ // turning angle is minimal and then fixing the nesting hierarchy. Note
+ // that because we normalized all the loops initially, this step is only
+ // necessary if the polygon requires at least one non-normalized loop to
+ // represent it.
+
+ containedOrigin := make(map[*Loop]bool)
+ for _, l := range loops {
+ containedOrigin[l] = l.ContainsOrigin()
+ }
+
+ for _, l := range loops {
+ angle := l.TurningAngle()
+ if math.Abs(angle) > l.turningAngleMaxError() {
+ // Normalize the loop.
+ if angle < 0 {
+ l.Invert()
+ }
+ } else {
+ // Ensure that the loop does not contain the origin.
+ if l.ContainsOrigin() {
+ l.Invert()
+ }
+ }
+ }
+
+ p := PolygonFromLoops(loops)
+
+ if p.NumLoops() > 0 {
+ originLoop := p.Loop(0)
+ polygonContainsOrigin := false
+ for _, l := range p.Loops() {
+ if l.ContainsOrigin() {
+ polygonContainsOrigin = !polygonContainsOrigin
+
+ originLoop = l
+ }
+ }
+ if containedOrigin[originLoop] != polygonContainsOrigin {
+ p.Invert()
+ }
+ }
+
+ return p
+}
+
+// Invert inverts the polygon (replaces it by its complement).
+func (p *Polygon) Invert() {
+ // Inverting any one loop will invert the polygon. The best loop to invert
+ // is the one whose area is largest, since this yields the smallest area
+ // after inversion. The loop with the largest area is always at depth 0.
+ // The descendents of this loop all have their depth reduced by 1, while the
+ // former siblings of this loop all have their depth increased by 1.
+
+ // The empty and full polygons are handled specially.
+ if p.IsEmpty() {
+ *p = *FullPolygon()
+ return
+ }
+ if p.IsFull() {
+ *p = Polygon{}
+ return
+ }
+
+ // Find the loop whose area is largest (i.e., whose turning angle is
+ // smallest), minimizing calls to TurningAngle(). In particular, for
+ // polygons with a single shell at level 0 there is no need to call
+ // TurningAngle() at all. (This method is relatively expensive.)
+ best := 0
+ const none = 10.0 // Flag that means "not computed yet"
+ bestAngle := none
+ for i := 1; i < p.NumLoops(); i++ {
+ if p.Loop(i).depth != 0 {
+ continue
+ }
+ // We defer computing the turning angle of loop 0 until we discover
+ // that the polygon has another top-level shell.
+ if bestAngle == none {
+ bestAngle = p.Loop(best).TurningAngle()
+ }
+ angle := p.Loop(i).TurningAngle()
+ // We break ties deterministically in order to avoid having the output
+ // depend on the input order of the loops.
+ if angle < bestAngle || (angle == bestAngle && compareLoops(p.Loop(i), p.Loop(best)) < 0) {
+ best = i
+ bestAngle = angle
+ }
+ }
+ // Build the new loops vector, starting with the inverted loop.
+ p.Loop(best).Invert()
+ newLoops := make([]*Loop, 0, p.NumLoops())
+ // Add the former siblings of this loop as descendants.
+ lastBest := p.LastDescendant(best)
+ newLoops = append(newLoops, p.Loop(best))
+ for i, l := range p.Loops() {
+ if i < best || i > lastBest {
+ l.depth++
+ newLoops = append(newLoops, l)
+ }
+ }
+ // Add the former children of this loop as siblings.
+ for i, l := range p.Loops() {
+ if i > best && i <= lastBest {
+ l.depth--
+ newLoops = append(newLoops, l)
+ }
+ }
+ p.loops = newLoops
+ p.initLoopProperties()
+}
+
+// Defines a total ordering on Loops that does not depend on the cyclic
+// order of loop vertices. This function is used to choose which loop to
+// invert in the case where several loops have exactly the same area.
+func compareLoops(a, b *Loop) int {
+ if na, nb := a.NumVertices(), b.NumVertices(); na != nb {
+ return na - nb
+ }
+ ai, aDir := a.CanonicalFirstVertex()
+ bi, bDir := b.CanonicalFirstVertex()
+ if aDir != bDir {
+ return aDir - bDir
+ }
+ for n := a.NumVertices() - 1; n >= 0; n, ai, bi = n-1, ai+aDir, bi+bDir {
+ if cmp := a.Vertex(ai).Cmp(b.Vertex(bi).Vector); cmp != 0 {
+ return cmp
+ }
+ }
+ return 0
+}
+
+// PolygonFromCell returns a Polygon from a single loop created from the given Cell.
+func PolygonFromCell(cell Cell) *Polygon {
+ return PolygonFromLoops([]*Loop{LoopFromCell(cell)})
+}
+
+// initNested takes the set of loops in this polygon and performs the nesting
+// computations to set the proper nesting and parent/child relationships.
+func (p *Polygon) initNested() {
+ if len(p.loops) == 1 {
+ p.initOneLoop()
+ return
+ }
+
+ lm := make(loopMap)
+
+ for _, l := range p.loops {
+ lm.insertLoop(l, nil)
+ }
+ // The loops have all been added to the loopMap for ordering. Clear the
+ // loops slice because we add all the loops in-order in initLoops.
+ p.loops = nil
+
+ // Reorder the loops in depth-first traversal order.
+ p.initLoops(lm)
+ p.initLoopProperties()
+}
+
+// loopMap is a map of a loop to its immediate children with respect to nesting.
+// It is used to determine which loops are shells and which are holes.
+type loopMap map[*Loop][]*Loop
+
+// insertLoop adds the given loop to the loop map under the specified parent.
+// All children of the new entry are checked to see if the need to move up to
+// a different level.
+func (lm loopMap) insertLoop(newLoop, parent *Loop) {
+ var children []*Loop
+ for done := false; !done; {
+ children = lm[parent]
+ done = true
+ for _, child := range children {
+ if child.ContainsNested(newLoop) {
+ parent = child
+ done = false
+ break
+ }
+ }
+ }
+
+ // Now, we have found a parent for this loop, it may be that some of the
+ // children of the parent of this loop may now be children of the new loop.
+ newChildren := lm[newLoop]
+ for i := 0; i < len(children); {
+ child := children[i]
+ if newLoop.ContainsNested(child) {
+ newChildren = append(newChildren, child)
+ children = append(children[0:i], children[i+1:]...)
+ } else {
+ i++
+ }
+ }
+
+ lm[newLoop] = newChildren
+ lm[parent] = append(children, newLoop)
+}
+
+// loopStack simplifies access to the loops while being initialized.
+type loopStack []*Loop
+
+func (s *loopStack) push(v *Loop) {
+ *s = append(*s, v)
+}
+func (s *loopStack) pop() *Loop {
+ l := len(*s)
+ r := (*s)[l-1]
+ *s = (*s)[:l-1]
+ return r
+}
+
+// initLoops walks the mapping of loops to all of their children, and adds them in
+// order into to the polygons set of loops.
+func (p *Polygon) initLoops(lm loopMap) {
+ var stack loopStack
+ stack.push(nil)
+ depth := -1
+
+ for len(stack) > 0 {
+ loop := stack.pop()
+ if loop != nil {
+ depth = loop.depth
+ p.loops = append(p.loops, loop)
+ }
+ children := lm[loop]
+ for i := len(children) - 1; i >= 0; i-- {
+ child := children[i]
+ child.depth = depth + 1
+ stack.push(child)
+ }
+ }
+}
+
+// initOneLoop set the properties for a polygon made of a single loop.
+// TODO(roberts): Can this be merged with initLoopProperties
+func (p *Polygon) initOneLoop() {
+ p.hasHoles = false
+ p.numVertices = len(p.loops[0].vertices)
+ p.bound = p.loops[0].RectBound()
+ p.subregionBound = ExpandForSubregions(p.bound)
+ // Ensure the loops depth is set correctly.
+ p.loops[0].depth = 0
+
+ p.initEdgesAndIndex()
+}
+
+// initLoopProperties sets the properties for polygons with multiple loops.
+func (p *Polygon) initLoopProperties() {
+ // the loops depths are set by initNested/initOriented prior to this.
+ p.bound = EmptyRect()
+ p.hasHoles = false
+ for _, l := range p.loops {
+ if l.IsHole() {
+ p.hasHoles = true
+ } else {
+ p.bound = p.bound.Union(l.RectBound())
+ }
+ p.numVertices += l.NumVertices()
+ }
+ p.subregionBound = ExpandForSubregions(p.bound)
+
+ p.initEdgesAndIndex()
+}
+
+// initEdgesAndIndex performs the shape related initializations and adds the final
+// polygon to the index.
+func (p *Polygon) initEdgesAndIndex() {
+ if p.IsFull() {
+ return
+ }
+ const maxLinearSearchLoops = 12 // Based on benchmarks.
+ if len(p.loops) > maxLinearSearchLoops {
+ p.cumulativeEdges = make([]int, 0, len(p.loops))
+ }
+
+ for _, l := range p.loops {
+ if p.cumulativeEdges != nil {
+ p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges)
+ }
+ p.numEdges += len(l.vertices)
+ }
+
+ p.index = NewShapeIndex()
+ p.index.Add(p)
+}
+
+// FullPolygon returns a special "full" polygon.
+func FullPolygon() *Polygon {
+ ret := &Polygon{
+ loops: []*Loop{
+ FullLoop(),
+ },
+ numVertices: len(FullLoop().Vertices()),
+ bound: FullRect(),
+ subregionBound: FullRect(),
+ }
+ ret.initEdgesAndIndex()
+ return ret
+}
+
+// Validate checks whether this is a valid polygon,
+// including checking whether all the loops are themselves valid.
+func (p *Polygon) Validate() error {
+ for i, l := range p.loops {
+ // Check for loop errors that don't require building a ShapeIndex.
+ if err := l.findValidationErrorNoIndex(); err != nil {
+ return fmt.Errorf("loop %d: %v", i, err)
+ }
+ // Check that no loop is empty, and that the full loop only appears in the
+ // full polygon.
+ if l.IsEmpty() {
+ return fmt.Errorf("loop %d: empty loops are not allowed", i)
+ }
+ if l.IsFull() && len(p.loops) > 1 {
+ return fmt.Errorf("loop %d: full loop appears in non-full polygon", i)
+ }
+ }
+
+ // TODO(roberts): Uncomment the remaining checks when they are completed.
+
+ // Check for loop self-intersections and loop pairs that cross
+ // (including duplicate edges and vertices).
+ // if findSelfIntersection(p.index) {
+ // return fmt.Errorf("polygon has loop pairs that cross")
+ // }
+
+ // Check whether initOriented detected inconsistent loop orientations.
+ // if p.hasInconsistentLoopOrientations {
+ // return fmt.Errorf("inconsistent loop orientations detected")
+ // }
+
+ // Finally, verify the loop nesting hierarchy.
+ return p.findLoopNestingError()
+}
+
+// findLoopNestingError reports if there is an error in the loop nesting hierarchy.
+func (p *Polygon) findLoopNestingError() error {
+ // First check that the loop depths make sense.
+ lastDepth := -1
+ for i, l := range p.loops {
+ depth := l.depth
+ if depth < 0 || depth > lastDepth+1 {
+ return fmt.Errorf("loop %d: invalid loop depth (%d)", i, depth)
+ }
+ lastDepth = depth
+ }
+ // Then check that they correspond to the actual loop nesting. This test
+ // is quadratic in the number of loops but the cost per iteration is small.
+ for i, l := range p.loops {
+ last := p.LastDescendant(i)
+ for j, l2 := range p.loops {
+ if i == j {
+ continue
+ }
+ nested := (j >= i+1) && (j <= last)
+ const reverseB = false
+
+ if l.containsNonCrossingBoundary(l2, reverseB) != nested {
+ nestedStr := ""
+ if !nested {
+ nestedStr = "not "
+ }
+ return fmt.Errorf("invalid nesting: loop %d should %scontain loop %d", i, nestedStr, j)
+ }
+ }
+ }
+ return nil
+}
+
+// IsEmpty reports whether this is the special "empty" polygon (consisting of no loops).
+func (p *Polygon) IsEmpty() bool {
+ return len(p.loops) == 0
+}
+
+// IsFull reports whether this is the special "full" polygon (consisting of a
+// single loop that encompasses the entire sphere).
+func (p *Polygon) IsFull() bool {
+ return len(p.loops) == 1 && p.loops[0].IsFull()
+}
+
+// NumLoops returns the number of loops in this polygon.
+func (p *Polygon) NumLoops() int {
+ return len(p.loops)
+}
+
+// Loops returns the loops in this polygon.
+func (p *Polygon) Loops() []*Loop {
+ return p.loops
+}
+
+// Loop returns the loop at the given index. Note that during initialization,
+// the given loops are reordered according to a pre-order traversal of the loop
+// nesting hierarchy. This implies that every loop is immediately followed by
+// its descendants. This hierarchy can be traversed using the methods Parent,
+// LastDescendant, and Loop.depth.
+func (p *Polygon) Loop(k int) *Loop {
+ return p.loops[k]
+}
+
+// Parent returns the index of the parent of loop k.
+// If the loop does not have a parent, ok=false is returned.
+func (p *Polygon) Parent(k int) (index int, ok bool) {
+ // See where we are on the depth hierarchy.
+ depth := p.loops[k].depth
+ if depth == 0 {
+ return -1, false
+ }
+
+ // There may be several loops at the same nesting level as us that share a
+ // parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop.
+ // we don't know how many may be next to us before we get back to our parent loop.)
+ // Move up one position from us, and then begin traversing back through the set of loops
+ // until we find the one that is our parent or we get to the top of the polygon.
+ for k--; k >= 0 && p.loops[k].depth <= depth; k-- {
+ }
+ return k, true
+}
+
+// LastDescendant returns the index of the last loop that is contained within loop k.
+// If k is negative, it returns the last loop in the polygon.
+// Note that loops are indexed according to a pre-order traversal of the nesting
+// hierarchy, so the immediate children of loop k can be found by iterating over
+// the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal
+// to Loop(k).depth+1.
+func (p *Polygon) LastDescendant(k int) int {
+ if k < 0 {
+ return len(p.loops) - 1
+ }
+
+ depth := p.loops[k].depth
+
+ // Find the next loop immediately past us in the set of loops, and then start
+ // moving down the list until we either get to the end or find the next loop
+ // that is higher up the hierarchy than we are.
+ for k++; k < len(p.loops) && p.loops[k].depth > depth; k++ {
+ }
+ return k - 1
+}
+
+// CapBound returns a bounding spherical cap.
+func (p *Polygon) CapBound() Cap { return p.bound.CapBound() }
+
+// RectBound returns a bounding latitude-longitude rectangle.
+func (p *Polygon) RectBound() Rect { return p.bound }
+
+// ContainsPoint reports whether the polygon contains the point.
+func (p *Polygon) ContainsPoint(point Point) bool {
+ // NOTE: A bounds check slows down this function by about 50%. It is
+ // worthwhile only when it might allow us to delay building the index.
+ if !p.index.IsFresh() && !p.bound.ContainsPoint(point) {
+ return false
+ }
+
+ // For small polygons, and during initial construction, it is faster to just
+ // check all the crossing.
+ const maxBruteForceVertices = 32
+ if p.numVertices < maxBruteForceVertices || p.index == nil {
+ inside := false
+ for _, l := range p.loops {
+ // use loops bruteforce to avoid building the index on each loop.
+ inside = inside != l.bruteForceContainsPoint(point)
+ }
+ return inside
+ }
+
+ // Otherwise, look up the ShapeIndex cell containing this point.
+ it := p.index.Iterator()
+ if !it.LocatePoint(point) {
+ return false
+ }
+
+ return p.iteratorContainsPoint(it, point)
+}
+
+// ContainsCell reports whether the polygon contains the given cell.
+func (p *Polygon) ContainsCell(cell Cell) bool {
+ it := p.index.Iterator()
+ relation := it.LocateCellID(cell.ID())
+
+ // If "cell" is disjoint from all index cells, it is not contained.
+ // Similarly, if "cell" is subdivided into one or more index cells then it
+ // is not contained, since index cells are subdivided only if they (nearly)
+ // intersect a sufficient number of edges. (But note that if "cell" itself
+ // is an index cell then it may be contained, since it could be a cell with
+ // no edges in the loop interior.)
+ if relation != Indexed {
+ return false
+ }
+
+ // Otherwise check if any edges intersect "cell".
+ if p.boundaryApproxIntersects(it, cell) {
+ return false
+ }
+
+ // Otherwise check if the loop contains the center of "cell".
+ return p.iteratorContainsPoint(it, cell.Center())
+}
+
+// IntersectsCell reports whether the polygon intersects the given cell.
+func (p *Polygon) IntersectsCell(cell Cell) bool {
+ it := p.index.Iterator()
+ relation := it.LocateCellID(cell.ID())
+
+ // If cell does not overlap any index cell, there is no intersection.
+ if relation == Disjoint {
+ return false
+ }
+ // If cell is subdivided into one or more index cells, there is an
+ // intersection to within the S2ShapeIndex error bound (see Contains).
+ if relation == Subdivided {
+ return true
+ }
+ // If cell is an index cell, there is an intersection because index cells
+ // are created only if they have at least one edge or they are entirely
+ // contained by the loop.
+ if it.CellID() == cell.id {
+ return true
+ }
+ // Otherwise check if any edges intersect cell.
+ if p.boundaryApproxIntersects(it, cell) {
+ return true
+ }
+ // Otherwise check if the loop contains the center of cell.
+ return p.iteratorContainsPoint(it, cell.Center())
+}
+
+// CellUnionBound computes a covering of the Polygon.
+func (p *Polygon) CellUnionBound() []CellID {
+ // TODO(roberts): Use ShapeIndexRegion when it's available.
+ return p.CapBound().CellUnionBound()
+}
+
+// boundaryApproxIntersects reports whether the loop's boundary intersects cell.
+// It may also return true when the loop boundary does not intersect cell but
+// some edge comes within the worst-case error tolerance.
+//
+// This requires that it.Locate(cell) returned Indexed.
+func (p *Polygon) boundaryApproxIntersects(it *ShapeIndexIterator, cell Cell) bool {
+ aClipped := it.IndexCell().findByShapeID(0)
+
+ // If there are no edges, there is no intersection.
+ if len(aClipped.edges) == 0 {
+ return false
+ }
+
+ // We can save some work if cell is the index cell itself.
+ if it.CellID() == cell.ID() {
+ return true
+ }
+
+ // Otherwise check whether any of the edges intersect cell.
+ maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist)
+ bound := cell.BoundUV().ExpandedByMargin(maxError)
+ for _, e := range aClipped.edges {
+ edge := p.index.Shape(0).Edge(e)
+ v0, v1, ok := ClipToPaddedFace(edge.V0, edge.V1, cell.Face(), maxError)
+ if ok && edgeIntersectsRect(v0, v1, bound) {
+ return true
+ }
+ }
+
+ return false
+}
+
+// iteratorContainsPoint reports whether the iterator that is positioned at the
+// ShapeIndexCell that may contain p, contains the point p.
+func (p *Polygon) iteratorContainsPoint(it *ShapeIndexIterator, point Point) bool {
+ // Test containment by drawing a line segment from the cell center to the
+ // given point and counting edge crossings.
+ aClipped := it.IndexCell().findByShapeID(0)
+ inside := aClipped.containsCenter
+
+ if len(aClipped.edges) == 0 {
+ return inside
+ }
+
+ // This block requires ShapeIndex.
+ crosser := NewEdgeCrosser(it.Center(), point)
+ shape := p.index.Shape(0)
+ for _, e := range aClipped.edges {
+ edge := shape.Edge(e)
+ inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1)
+ }
+
+ return inside
+}
+
+// Shape Interface
+
+// NumEdges returns the number of edges in this shape.
+func (p *Polygon) NumEdges() int {
+ return p.numEdges
+}
+
+// Edge returns endpoints for the given edge index.
+func (p *Polygon) Edge(e int) Edge {
+ var i int
+
+ if len(p.cumulativeEdges) > 0 {
+ for i = range p.cumulativeEdges {
+ if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] {
+ e -= p.cumulativeEdges[i]
+ break
+ }
+ }
+ } else {
+ // When the number of loops is small, use linear search. Most often
+ // there is exactly one loop and the code below executes zero times.
+ for i = 0; e >= len(p.Loop(i).vertices); i++ {
+ e -= len(p.Loop(i).vertices)
+ }
+ }
+
+ return Edge{p.Loop(i).OrientedVertex(e), p.Loop(i).OrientedVertex(e + 1)}
+}
+
+// ReferencePoint returns the reference point for this polygon.
+func (p *Polygon) ReferencePoint() ReferencePoint {
+ containsOrigin := false
+ for _, l := range p.loops {
+ containsOrigin = containsOrigin != l.ContainsOrigin()
+ }
+ return OriginReferencePoint(containsOrigin)
+}
+
+// NumChains reports the number of contiguous edge chains in the Polygon.
+func (p *Polygon) NumChains() int {
+ return p.NumLoops()
+}
+
+// Chain returns the i-th edge Chain (loop) in the Shape.
+func (p *Polygon) Chain(chainID int) Chain {
+ if p.cumulativeEdges != nil {
+ return Chain{p.cumulativeEdges[chainID], len(p.Loop(chainID).vertices)}
+ }
+ e := 0
+ for j := 0; j < chainID; j++ {
+ e += len(p.Loop(j).vertices)
+ }
+
+ // Polygon represents a full loop as a loop with one vertex, while
+ // Shape represents a full loop as a chain with no vertices.
+ if numVertices := p.Loop(chainID).NumVertices(); numVertices != 1 {
+ return Chain{e, numVertices}
+ }
+ return Chain{e, 0}
+}
+
+// ChainEdge returns the j-th edge of the i-th edge Chain (loop).
+func (p *Polygon) ChainEdge(i, j int) Edge {
+ return Edge{p.Loop(i).OrientedVertex(j), p.Loop(i).OrientedVertex(j + 1)}
+}
+
+// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
+// of the i-th edge Chain.
+func (p *Polygon) ChainPosition(edgeID int) ChainPosition {
+ var i int
+
+ if len(p.cumulativeEdges) > 0 {
+ for i = range p.cumulativeEdges {
+ if i+1 >= len(p.cumulativeEdges) || edgeID < p.cumulativeEdges[i+1] {
+ edgeID -= p.cumulativeEdges[i]
+ break
+ }
+ }
+ } else {
+ // When the number of loops is small, use linear search. Most often
+ // there is exactly one loop and the code below executes zero times.
+ for i = 0; edgeID >= len(p.Loop(i).vertices); i++ {
+ edgeID -= len(p.Loop(i).vertices)
+ }
+ }
+ // TODO(roberts): unify this and Edge since they are mostly identical.
+ return ChainPosition{i, edgeID}
+}
+
+// Dimension returns the dimension of the geometry represented by this Polygon.
+func (p *Polygon) Dimension() int { return 2 }
+
+func (p *Polygon) typeTag() typeTag { return typeTagPolygon }
+
+func (p *Polygon) privateInterface() {}
+
+// Contains reports whether this polygon contains the other polygon.
+// Specifically, it reports whether all the points in the other polygon
+// are also in this polygon.
+func (p *Polygon) Contains(o *Polygon) bool {
+ // If both polygons have one loop, use the more efficient Loop method.
+ // Note that Loop's Contains does its own bounding rectangle check.
+ if len(p.loops) == 1 && len(o.loops) == 1 {
+ return p.loops[0].Contains(o.loops[0])
+ }
+
+ // Otherwise if neither polygon has holes, we can still use the more
+ // efficient Loop's Contains method (rather than compareBoundary),
+ // but it's worthwhile to do our own bounds check first.
+ if !p.subregionBound.Contains(o.bound) {
+ // Even though Bound(A) does not contain Bound(B), it is still possible
+ // that A contains B. This can only happen when union of the two bounds
+ // spans all longitudes. For example, suppose that B consists of two
+ // shells with a longitude gap between them, while A consists of one shell
+ // that surrounds both shells of B but goes the other way around the
+ // sphere (so that it does not intersect the longitude gap).
+ if !p.bound.Lng.Union(o.bound.Lng).IsFull() {
+ return false
+ }
+ }
+
+ if !p.hasHoles && !o.hasHoles {
+ for _, l := range o.loops {
+ if !p.anyLoopContains(l) {
+ return false
+ }
+ }
+ return true
+ }
+
+ // Polygon A contains B iff B does not intersect the complement of A. From
+ // the intersection algorithm below, this means that the complement of A
+ // must exclude the entire boundary of B, and B must exclude all shell
+ // boundaries of the complement of A. (It can be shown that B must then
+ // exclude the entire boundary of the complement of A.) The first call
+ // below returns false if the boundaries cross, therefore the second call
+ // does not need to check for any crossing edges (which makes it cheaper).
+ return p.containsBoundary(o) && o.excludesNonCrossingComplementShells(p)
+}
+
+// Intersects reports whether this polygon intersects the other polygon, i.e.
+// if there is a point that is contained by both polygons.
+func (p *Polygon) Intersects(o *Polygon) bool {
+ // If both polygons have one loop, use the more efficient Loop method.
+ // Note that Loop Intersects does its own bounding rectangle check.
+ if len(p.loops) == 1 && len(o.loops) == 1 {
+ return p.loops[0].Intersects(o.loops[0])
+ }
+
+ // Otherwise if neither polygon has holes, we can still use the more
+ // efficient Loop.Intersects method. The polygons intersect if and
+ // only if some pair of loop regions intersect.
+ if !p.bound.Intersects(o.bound) {
+ return false
+ }
+
+ if !p.hasHoles && !o.hasHoles {
+ for _, l := range o.loops {
+ if p.anyLoopIntersects(l) {
+ return true
+ }
+ }
+ return false
+ }
+
+ // Polygon A is disjoint from B if A excludes the entire boundary of B and B
+ // excludes all shell boundaries of A. (It can be shown that B must then
+ // exclude the entire boundary of A.) The first call below returns false if
+ // the boundaries cross, therefore the second call does not need to check
+ // for crossing edges.
+ return !p.excludesBoundary(o) || !o.excludesNonCrossingShells(p)
+}
+
+// compareBoundary returns +1 if this polygon contains the boundary of B, -1 if A
+// excludes the boundary of B, and 0 if the boundaries of A and B cross.
+func (p *Polygon) compareBoundary(o *Loop) int {
+ result := -1
+ for i := 0; i < len(p.loops) && result != 0; i++ {
+ // If B crosses any loop of A, the result is 0. Otherwise the result
+ // changes sign each time B is contained by a loop of A.
+ result *= -p.loops[i].compareBoundary(o)
+ }
+ return result
+}
+
+// containsBoundary reports whether this polygon contains the entire boundary of B.
+func (p *Polygon) containsBoundary(o *Polygon) bool {
+ for _, l := range o.loops {
+ if p.compareBoundary(l) <= 0 {
+ return false
+ }
+ }
+ return true
+}
+
+// excludesBoundary reports whether this polygon excludes the entire boundary of B.
+func (p *Polygon) excludesBoundary(o *Polygon) bool {
+ for _, l := range o.loops {
+ if p.compareBoundary(l) >= 0 {
+ return false
+ }
+ }
+ return true
+}
+
+// containsNonCrossingBoundary reports whether polygon A contains the boundary of
+// loop B. Shared edges are handled according to the rule described in loops
+// containsNonCrossingBoundary.
+func (p *Polygon) containsNonCrossingBoundary(o *Loop, reverse bool) bool {
+ var inside bool
+ for _, l := range p.loops {
+ x := l.containsNonCrossingBoundary(o, reverse)
+ inside = (inside != x)
+ }
+ return inside
+}
+
+// excludesNonCrossingShells reports wheterh given two polygons A and B such that the
+// boundary of A does not cross any loop of B, if A excludes all shell boundaries of B.
+func (p *Polygon) excludesNonCrossingShells(o *Polygon) bool {
+ for _, l := range o.loops {
+ if l.IsHole() {
+ continue
+ }
+ if p.containsNonCrossingBoundary(l, false) {
+ return false
+ }
+ }
+ return true
+}
+
+// excludesNonCrossingComplementShells reports whether given two polygons A and B
+// such that the boundary of A does not cross any loop of B, if A excludes all
+// shell boundaries of the complement of B.
+func (p *Polygon) excludesNonCrossingComplementShells(o *Polygon) bool {
+ // Special case to handle the complement of the empty or full polygons.
+ if o.IsEmpty() {
+ return !p.IsFull()
+ }
+ if o.IsFull() {
+ return true
+ }
+
+ // Otherwise the complement of B may be obtained by inverting loop(0) and
+ // then swapping the shell/hole status of all other loops. This implies
+ // that the shells of the complement consist of loop 0 plus all the holes of
+ // the original polygon.
+ for j, l := range o.loops {
+ if j > 0 && !l.IsHole() {
+ continue
+ }
+
+ // The interior of the complement is to the right of loop 0, and to the
+ // left of the loops that were originally holes.
+ if p.containsNonCrossingBoundary(l, j == 0) {
+ return false
+ }
+ }
+ return true
+}
+
+// anyLoopContains reports whether any loop in this polygon contains the given loop.
+func (p *Polygon) anyLoopContains(o *Loop) bool {
+ for _, l := range p.loops {
+ if l.Contains(o) {
+ return true
+ }
+ }
+ return false
+}
+
+// anyLoopIntersects reports whether any loop in this polygon intersects the given loop.
+func (p *Polygon) anyLoopIntersects(o *Loop) bool {
+ for _, l := range p.loops {
+ if l.Intersects(o) {
+ return true
+ }
+ }
+ return false
+}
+
+// Area returns the area of the polygon interior, i.e. the region on the left side
+// of an odd number of loops. The return value is between 0 and 4*Pi.
+func (p *Polygon) Area() float64 {
+ var area float64
+ for _, loop := range p.loops {
+ area += float64(loop.Sign()) * loop.Area()
+ }
+ return area
+}
+
+// Encode encodes the Polygon
+func (p *Polygon) Encode(w io.Writer) error {
+ e := &encoder{w: w}
+ p.encode(e)
+ return e.err
+}
+
+// encode only supports lossless encoding and not compressed format.
+func (p *Polygon) encode(e *encoder) {
+ if p.numVertices == 0 {
+ p.encodeCompressed(e, maxLevel, nil)
+ return
+ }
+
+ // Convert all the polygon vertices to XYZFaceSiTi format.
+ vs := make([]xyzFaceSiTi, 0, p.numVertices)
+ for _, l := range p.loops {
+ vs = append(vs, l.xyzFaceSiTiVertices()...)
+ }
+
+ // Computes a histogram of the cell levels at which the vertices are snapped.
+ // (histogram[0] is the number of unsnapped vertices, histogram[i] the number
+ // of vertices snapped at level i-1).
+ histogram := make([]int, maxLevel+2)
+ for _, v := range vs {
+ histogram[v.level+1]++
+ }
+
+ // Compute the level at which most of the vertices are snapped.
+ // If multiple levels have the same maximum number of vertices
+ // snapped to it, the first one (lowest level number / largest
+ // area / smallest encoding length) will be chosen, so this
+ // is desired.
+ var snapLevel, numSnapped int
+ for level, h := range histogram[1:] {
+ if h > numSnapped {
+ snapLevel, numSnapped = level, h
+ }
+ }
+
+ // Choose an encoding format based on the number of unsnapped vertices and a
+ // rough estimate of the encoded sizes.
+ numUnsnapped := p.numVertices - numSnapped // Number of vertices that won't be snapped at snapLevel.
+ const pointSize = 3 * 8 // s2.Point is an r3.Vector, which is 3 float64s. That's 3*8 = 24 bytes.
+ compressedSize := 4*p.numVertices + (pointSize+2)*numUnsnapped
+ losslessSize := pointSize * p.numVertices
+ if compressedSize < losslessSize {
+ p.encodeCompressed(e, snapLevel, vs)
+ } else {
+ p.encodeLossless(e)
+ }
+}
+
+// encodeLossless encodes the polygon's Points as float64s.
+func (p *Polygon) encodeLossless(e *encoder) {
+ e.writeInt8(encodingVersion)
+ e.writeBool(true) // a legacy c++ value. must be true.
+ e.writeBool(p.hasHoles)
+ e.writeUint32(uint32(len(p.loops)))
+
+ if e.err != nil {
+ return
+ }
+ if len(p.loops) > maxEncodedLoops {
+ e.err = fmt.Errorf("too many loops (%d; max is %d)", len(p.loops), maxEncodedLoops)
+ return
+ }
+ for _, l := range p.loops {
+ l.encode(e)
+ }
+
+ // Encode the bound.
+ p.bound.encode(e)
+}
+
+func (p *Polygon) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) {
+ e.writeUint8(uint8(encodingCompressedVersion))
+ e.writeUint8(uint8(snapLevel))
+ e.writeUvarint(uint64(len(p.loops)))
+
+ if e.err != nil {
+ return
+ }
+ if l := len(p.loops); l > maxEncodedLoops {
+ e.err = fmt.Errorf("too many loops to encode: %d; max is %d", l, maxEncodedLoops)
+ return
+ }
+
+ for _, l := range p.loops {
+ l.encodeCompressed(e, snapLevel, vertices[:len(l.vertices)])
+ vertices = vertices[len(l.vertices):]
+ }
+ // Do not write the bound, num_vertices, or has_holes_ as they can be
+ // cheaply recomputed by decodeCompressed. Microbenchmarks show the
+ // speed difference is inconsequential.
+}
+
+// Decode decodes the Polygon.
+func (p *Polygon) Decode(r io.Reader) error {
+ d := &decoder{r: asByteReader(r)}
+ version := int8(d.readUint8())
+ var dec func(*decoder)
+ switch version {
+ case encodingVersion:
+ dec = p.decode
+ case encodingCompressedVersion:
+ dec = p.decodeCompressed
+ default:
+ return fmt.Errorf("unsupported version %d", version)
+ }
+ dec(d)
+ return d.err
+}
+
+// maxEncodedLoops is the biggest supported number of loops in a polygon during encoding.
+// Setting a maximum guards an allocation: it prevents an attacker from easily pushing us OOM.
+const maxEncodedLoops = 10000000
+
+func (p *Polygon) decode(d *decoder) {
+ *p = Polygon{}
+ d.readUint8() // Ignore irrelevant serialized owns_loops_ value.
+
+ p.hasHoles = d.readBool()
+
+ // Polygons with no loops are explicitly allowed here: a newly created
+ // polygon has zero loops and such polygons encode and decode properly.
+ nloops := d.readUint32()
+ if d.err != nil {
+ return
+ }
+ if nloops > maxEncodedLoops {
+ d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
+ return
+ }
+ p.loops = make([]*Loop, nloops)
+ for i := range p.loops {
+ p.loops[i] = new(Loop)
+ p.loops[i].decode(d)
+ p.numVertices += len(p.loops[i].vertices)
+ }
+
+ p.bound.decode(d)
+ if d.err != nil {
+ return
+ }
+ p.subregionBound = ExpandForSubregions(p.bound)
+ p.initEdgesAndIndex()
+}
+
+func (p *Polygon) decodeCompressed(d *decoder) {
+ snapLevel := int(d.readUint8())
+
+ if snapLevel > maxLevel {
+ d.err = fmt.Errorf("snaplevel too big: %d", snapLevel)
+ return
+ }
+ // Polygons with no loops are explicitly allowed here: a newly created
+ // polygon has zero loops and such polygons encode and decode properly.
+ nloops := int(d.readUvarint())
+ if nloops > maxEncodedLoops {
+ d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
+ }
+ p.loops = make([]*Loop, nloops)
+ for i := range p.loops {
+ p.loops[i] = new(Loop)
+ p.loops[i].decodeCompressed(d, snapLevel)
+ }
+ p.initLoopProperties()
+}
+
+// TODO(roberts): Differences from C++
+// Centroid
+// SnapLevel
+// DistanceToPoint
+// DistanceToBoundary
+// Project
+// ProjectToBoundary
+// ApproxContains/ApproxDisjoint for Polygons
+// InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff}
+// InitToSimplified
+// InitToSnapped
+// IntersectWithPolyline
+// ApproxIntersectWithPolyline
+// SubtractFromPolyline
+// ApproxSubtractFromPolyline
+// DestructiveUnion
+// DestructiveApproxUnion
+// InitToCellUnionBorder
+// IsNormalized
+// Equal/BoundaryEqual/BoundaryApproxEqual/BoundaryNear Polygons
+// BreakEdgesAndAddToBuilder
+//
+// clearLoops
+// findLoopNestingError
+// initToSimplifiedInternal
+// internalClipPolyline
+// clipBoundary