summaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/geo/s2/matrix3x3.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/golang/geo/s2/matrix3x3.go')
-rw-r--r--vendor/github.com/golang/geo/s2/matrix3x3.go127
1 files changed, 127 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/matrix3x3.go b/vendor/github.com/golang/geo/s2/matrix3x3.go
new file mode 100644
index 000000000..01696fe83
--- /dev/null
+++ b/vendor/github.com/golang/geo/s2/matrix3x3.go
@@ -0,0 +1,127 @@
+// Copyright 2015 Google Inc. All rights reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package s2
+
+import (
+ "fmt"
+
+ "github.com/golang/geo/r3"
+)
+
+// matrix3x3 represents a traditional 3x3 matrix of floating point values.
+// This is not a full fledged matrix. It only contains the pieces needed
+// to satisfy the computations done within the s2 package.
+type matrix3x3 [3][3]float64
+
+// col returns the given column as a Point.
+func (m *matrix3x3) col(col int) Point {
+ return Point{r3.Vector{m[0][col], m[1][col], m[2][col]}}
+}
+
+// row returns the given row as a Point.
+func (m *matrix3x3) row(row int) Point {
+ return Point{r3.Vector{m[row][0], m[row][1], m[row][2]}}
+}
+
+// setCol sets the specified column to the value in the given Point.
+func (m *matrix3x3) setCol(col int, p Point) *matrix3x3 {
+ m[0][col] = p.X
+ m[1][col] = p.Y
+ m[2][col] = p.Z
+
+ return m
+}
+
+// setRow sets the specified row to the value in the given Point.
+func (m *matrix3x3) setRow(row int, p Point) *matrix3x3 {
+ m[row][0] = p.X
+ m[row][1] = p.Y
+ m[row][2] = p.Z
+
+ return m
+}
+
+// scale multiplies the matrix by the given value.
+func (m *matrix3x3) scale(f float64) *matrix3x3 {
+ return &matrix3x3{
+ [3]float64{f * m[0][0], f * m[0][1], f * m[0][2]},
+ [3]float64{f * m[1][0], f * m[1][1], f * m[1][2]},
+ [3]float64{f * m[2][0], f * m[2][1], f * m[2][2]},
+ }
+}
+
+// mul returns the multiplication of m by the Point p and converts the
+// resulting 1x3 matrix into a Point.
+func (m *matrix3x3) mul(p Point) Point {
+ return Point{r3.Vector{
+ m[0][0]*p.X + m[0][1]*p.Y + m[0][2]*p.Z,
+ m[1][0]*p.X + m[1][1]*p.Y + m[1][2]*p.Z,
+ m[2][0]*p.X + m[2][1]*p.Y + m[2][2]*p.Z,
+ }}
+}
+
+// det returns the determinant of this matrix.
+func (m *matrix3x3) det() float64 {
+ // | a b c |
+ // det | d e f | = aei + bfg + cdh - ceg - bdi - afh
+ // | g h i |
+ return m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1] -
+ m[0][2]*m[1][1]*m[2][0] - m[0][1]*m[1][0]*m[2][2] - m[0][0]*m[1][2]*m[2][1]
+}
+
+// transpose reflects the matrix along its diagonal and returns the result.
+func (m *matrix3x3) transpose() *matrix3x3 {
+ m[0][1], m[1][0] = m[1][0], m[0][1]
+ m[0][2], m[2][0] = m[2][0], m[0][2]
+ m[1][2], m[2][1] = m[2][1], m[1][2]
+
+ return m
+}
+
+// String formats the matrix into an easier to read layout.
+func (m *matrix3x3) String() string {
+ return fmt.Sprintf("[ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ]",
+ m[0][0], m[0][1], m[0][2],
+ m[1][0], m[1][1], m[1][2],
+ m[2][0], m[2][1], m[2][2],
+ )
+}
+
+// getFrame returns the orthonormal frame for the given point on the unit sphere.
+func getFrame(p Point) matrix3x3 {
+ // Given the point p on the unit sphere, extend this into a right-handed
+ // coordinate frame of unit-length column vectors m = (x,y,z). Note that
+ // the vectors (x,y) are an orthonormal frame for the tangent space at point p,
+ // while p itself is an orthonormal frame for the normal space at p.
+ m := matrix3x3{}
+ m.setCol(2, p)
+ m.setCol(1, Point{p.Ortho()})
+ m.setCol(0, Point{m.col(1).Cross(p.Vector)})
+ return m
+}
+
+// toFrame returns the coordinates of the given point with respect to its orthonormal basis m.
+// The resulting point q satisfies the identity (m * q == p).
+func toFrame(m matrix3x3, p Point) Point {
+ // The inverse of an orthonormal matrix is its transpose.
+ return m.transpose().mul(p)
+}
+
+// fromFrame returns the coordinates of the given point in standard axis-aligned basis
+// from its orthonormal basis m.
+// The resulting point p satisfies the identity (p == m * q).
+func fromFrame(m matrix3x3, q Point) Point {
+ return m.mul(q)
+}