diff options
Diffstat (limited to 'vendor/github.com/golang/geo/s2/cellid.go')
-rw-r--r-- | vendor/github.com/golang/geo/s2/cellid.go | 942 |
1 files changed, 942 insertions, 0 deletions
diff --git a/vendor/github.com/golang/geo/s2/cellid.go b/vendor/github.com/golang/geo/s2/cellid.go new file mode 100644 index 000000000..37d488685 --- /dev/null +++ b/vendor/github.com/golang/geo/s2/cellid.go @@ -0,0 +1,942 @@ +// Copyright 2014 Google Inc. All rights reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +package s2 + +import ( + "bytes" + "fmt" + "io" + "math" + "sort" + "strconv" + "strings" + + "github.com/golang/geo/r1" + "github.com/golang/geo/r2" + "github.com/golang/geo/r3" + "github.com/golang/geo/s1" +) + +// CellID uniquely identifies a cell in the S2 cell decomposition. +// The most significant 3 bits encode the face number (0-5). The +// remaining 61 bits encode the position of the center of this cell +// along the Hilbert curve on that face. The zero value and the value +// (1<<64)-1 are invalid cell IDs. The first compares less than any +// valid cell ID, the second as greater than any valid cell ID. +// +// Sequentially increasing cell IDs follow a continuous space-filling curve +// over the entire sphere. They have the following properties: +// +// - The ID of a cell at level k consists of a 3-bit face number followed +// by k bit pairs that recursively select one of the four children of +// each cell. The next bit is always 1, and all other bits are 0. +// Therefore, the level of a cell is determined by the position of its +// lowest-numbered bit that is turned on (for a cell at level k, this +// position is 2 * (maxLevel - k)). +// +// - The ID of a parent cell is at the midpoint of the range of IDs spanned +// by its children (or by its descendants at any level). +// +// Leaf cells are often used to represent points on the unit sphere, and +// this type provides methods for converting directly between these two +// representations. For cells that represent 2D regions rather than +// discrete point, it is better to use Cells. +type CellID uint64 + +// SentinelCellID is an invalid cell ID guaranteed to be larger than any +// valid cell ID. It is used primarily by ShapeIndex. The value is also used +// by some S2 types when encoding data. +// Note that the sentinel's RangeMin == RangeMax == itself. +const SentinelCellID = CellID(^uint64(0)) + +// sortCellIDs sorts the slice of CellIDs in place. +func sortCellIDs(ci []CellID) { + sort.Sort(cellIDs(ci)) +} + +// cellIDs implements the Sort interface for slices of CellIDs. +type cellIDs []CellID + +func (c cellIDs) Len() int { return len(c) } +func (c cellIDs) Swap(i, j int) { c[i], c[j] = c[j], c[i] } +func (c cellIDs) Less(i, j int) bool { return c[i] < c[j] } + +// TODO(dsymonds): Some of these constants should probably be exported. +const ( + faceBits = 3 + numFaces = 6 + + // This is the number of levels needed to specify a leaf cell. + maxLevel = 30 + + // The extra position bit (61 rather than 60) lets us encode each cell as its + // Hilbert curve position at the cell center (which is halfway along the + // portion of the Hilbert curve that fills that cell). + posBits = 2*maxLevel + 1 + + // The maximum index of a valid leaf cell plus one. The range of valid leaf + // cell indices is [0..maxSize-1]. + maxSize = 1 << maxLevel + + wrapOffset = uint64(numFaces) << posBits +) + +// CellIDFromFacePosLevel returns a cell given its face in the range +// [0,5], the 61-bit Hilbert curve position pos within that face, and +// the level in the range [0,maxLevel]. The position in the cell ID +// will be truncated to correspond to the Hilbert curve position at +// the center of the returned cell. +func CellIDFromFacePosLevel(face int, pos uint64, level int) CellID { + return CellID(uint64(face)<<posBits + pos | 1).Parent(level) +} + +// CellIDFromFace returns the cell corresponding to a given S2 cube face. +func CellIDFromFace(face int) CellID { + return CellID((uint64(face) << posBits) + lsbForLevel(0)) +} + +// CellIDFromLatLng returns the leaf cell containing ll. +func CellIDFromLatLng(ll LatLng) CellID { + return cellIDFromPoint(PointFromLatLng(ll)) +} + +// CellIDFromToken returns a cell given a hex-encoded string of its uint64 ID. +func CellIDFromToken(s string) CellID { + if len(s) > 16 { + return CellID(0) + } + n, err := strconv.ParseUint(s, 16, 64) + if err != nil { + return CellID(0) + } + // Equivalent to right-padding string with zeros to 16 characters. + if len(s) < 16 { + n = n << (4 * uint(16-len(s))) + } + return CellID(n) +} + +// ToToken returns a hex-encoded string of the uint64 cell id, with leading +// zeros included but trailing zeros stripped. +func (ci CellID) ToToken() string { + s := strings.TrimRight(fmt.Sprintf("%016x", uint64(ci)), "0") + if len(s) == 0 { + return "X" + } + return s +} + +// IsValid reports whether ci represents a valid cell. +func (ci CellID) IsValid() bool { + return ci.Face() < numFaces && (ci.lsb()&0x1555555555555555 != 0) +} + +// Face returns the cube face for this cell ID, in the range [0,5]. +func (ci CellID) Face() int { return int(uint64(ci) >> posBits) } + +// Pos returns the position along the Hilbert curve of this cell ID, in the range [0,2^posBits-1]. +func (ci CellID) Pos() uint64 { return uint64(ci) & (^uint64(0) >> faceBits) } + +// Level returns the subdivision level of this cell ID, in the range [0, maxLevel]. +func (ci CellID) Level() int { + return maxLevel - findLSBSetNonZero64(uint64(ci))>>1 +} + +// IsLeaf returns whether this cell ID is at the deepest level; +// that is, the level at which the cells are smallest. +func (ci CellID) IsLeaf() bool { return uint64(ci)&1 != 0 } + +// ChildPosition returns the child position (0..3) of this cell's +// ancestor at the given level, relative to its parent. The argument +// should be in the range 1..kMaxLevel. For example, +// ChildPosition(1) returns the position of this cell's level-1 +// ancestor within its top-level face cell. +func (ci CellID) ChildPosition(level int) int { + return int(uint64(ci)>>uint64(2*(maxLevel-level)+1)) & 3 +} + +// lsbForLevel returns the lowest-numbered bit that is on for cells at the given level. +func lsbForLevel(level int) uint64 { return 1 << uint64(2*(maxLevel-level)) } + +// Parent returns the cell at the given level, which must be no greater than the current level. +func (ci CellID) Parent(level int) CellID { + lsb := lsbForLevel(level) + return CellID((uint64(ci) & -lsb) | lsb) +} + +// immediateParent is cheaper than Parent, but assumes !ci.isFace(). +func (ci CellID) immediateParent() CellID { + nlsb := CellID(ci.lsb() << 2) + return (ci & -nlsb) | nlsb +} + +// isFace returns whether this is a top-level (face) cell. +func (ci CellID) isFace() bool { return uint64(ci)&(lsbForLevel(0)-1) == 0 } + +// lsb returns the least significant bit that is set. +func (ci CellID) lsb() uint64 { return uint64(ci) & -uint64(ci) } + +// Children returns the four immediate children of this cell. +// If ci is a leaf cell, it returns four identical cells that are not the children. +func (ci CellID) Children() [4]CellID { + var ch [4]CellID + lsb := CellID(ci.lsb()) + ch[0] = ci - lsb + lsb>>2 + lsb >>= 1 + ch[1] = ch[0] + lsb + ch[2] = ch[1] + lsb + ch[3] = ch[2] + lsb + return ch +} + +func sizeIJ(level int) int { + return 1 << uint(maxLevel-level) +} + +// EdgeNeighbors returns the four cells that are adjacent across the cell's four edges. +// Edges 0, 1, 2, 3 are in the down, right, up, left directions in the face space. +// All neighbors are guaranteed to be distinct. +func (ci CellID) EdgeNeighbors() [4]CellID { + level := ci.Level() + size := sizeIJ(level) + f, i, j, _ := ci.faceIJOrientation() + return [4]CellID{ + cellIDFromFaceIJWrap(f, i, j-size).Parent(level), + cellIDFromFaceIJWrap(f, i+size, j).Parent(level), + cellIDFromFaceIJWrap(f, i, j+size).Parent(level), + cellIDFromFaceIJWrap(f, i-size, j).Parent(level), + } +} + +// VertexNeighbors returns the neighboring cellIDs with vertex closest to this cell at the given level. +// (Normally there are four neighbors, but the closest vertex may only have three neighbors if it is one of +// the 8 cube vertices.) +func (ci CellID) VertexNeighbors(level int) []CellID { + halfSize := sizeIJ(level + 1) + size := halfSize << 1 + f, i, j, _ := ci.faceIJOrientation() + + var isame, jsame bool + var ioffset, joffset int + if i&halfSize != 0 { + ioffset = size + isame = (i + size) < maxSize + } else { + ioffset = -size + isame = (i - size) >= 0 + } + if j&halfSize != 0 { + joffset = size + jsame = (j + size) < maxSize + } else { + joffset = -size + jsame = (j - size) >= 0 + } + + results := []CellID{ + ci.Parent(level), + cellIDFromFaceIJSame(f, i+ioffset, j, isame).Parent(level), + cellIDFromFaceIJSame(f, i, j+joffset, jsame).Parent(level), + } + + if isame || jsame { + results = append(results, cellIDFromFaceIJSame(f, i+ioffset, j+joffset, isame && jsame).Parent(level)) + } + + return results +} + +// AllNeighbors returns all neighbors of this cell at the given level. Two +// cells X and Y are neighbors if their boundaries intersect but their +// interiors do not. In particular, two cells that intersect at a single +// point are neighbors. Note that for cells adjacent to a face vertex, the +// same neighbor may be returned more than once. There could be up to eight +// neighbors including the diagonal ones that share the vertex. +// +// This requires level >= ci.Level(). +func (ci CellID) AllNeighbors(level int) []CellID { + var neighbors []CellID + + face, i, j, _ := ci.faceIJOrientation() + + // Find the coordinates of the lower left-hand leaf cell. We need to + // normalize (i,j) to a known position within the cell because level + // may be larger than this cell's level. + size := sizeIJ(ci.Level()) + i &= -size + j &= -size + + nbrSize := sizeIJ(level) + + // We compute the top-bottom, left-right, and diagonal neighbors in one + // pass. The loop test is at the end of the loop to avoid 32-bit overflow. + for k := -nbrSize; ; k += nbrSize { + var sameFace bool + if k < 0 { + sameFace = (j+k >= 0) + } else if k >= size { + sameFace = (j+k < maxSize) + } else { + sameFace = true + // Top and bottom neighbors. + neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j-nbrSize, + j-size >= 0).Parent(level)) + neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+k, j+size, + j+size < maxSize).Parent(level)) + } + + // Left, right, and diagonal neighbors. + neighbors = append(neighbors, cellIDFromFaceIJSame(face, i-nbrSize, j+k, + sameFace && i-size >= 0).Parent(level)) + neighbors = append(neighbors, cellIDFromFaceIJSame(face, i+size, j+k, + sameFace && i+size < maxSize).Parent(level)) + + if k >= size { + break + } + } + + return neighbors +} + +// RangeMin returns the minimum CellID that is contained within this cell. +func (ci CellID) RangeMin() CellID { return CellID(uint64(ci) - (ci.lsb() - 1)) } + +// RangeMax returns the maximum CellID that is contained within this cell. +func (ci CellID) RangeMax() CellID { return CellID(uint64(ci) + (ci.lsb() - 1)) } + +// Contains returns true iff the CellID contains oci. +func (ci CellID) Contains(oci CellID) bool { + return uint64(ci.RangeMin()) <= uint64(oci) && uint64(oci) <= uint64(ci.RangeMax()) +} + +// Intersects returns true iff the CellID intersects oci. +func (ci CellID) Intersects(oci CellID) bool { + return uint64(oci.RangeMin()) <= uint64(ci.RangeMax()) && uint64(oci.RangeMax()) >= uint64(ci.RangeMin()) +} + +// String returns the string representation of the cell ID in the form "1/3210". +func (ci CellID) String() string { + if !ci.IsValid() { + return "Invalid: " + strconv.FormatInt(int64(ci), 16) + } + var b bytes.Buffer + b.WriteByte("012345"[ci.Face()]) // values > 5 will have been picked off by !IsValid above + b.WriteByte('/') + for level := 1; level <= ci.Level(); level++ { + b.WriteByte("0123"[ci.ChildPosition(level)]) + } + return b.String() +} + +// cellIDFromString returns a CellID from a string in the form "1/3210". +func cellIDFromString(s string) CellID { + level := len(s) - 2 + if level < 0 || level > maxLevel { + return CellID(0) + } + face := int(s[0] - '0') + if face < 0 || face > 5 || s[1] != '/' { + return CellID(0) + } + id := CellIDFromFace(face) + for i := 2; i < len(s); i++ { + childPos := s[i] - '0' + if childPos < 0 || childPos > 3 { + return CellID(0) + } + id = id.Children()[childPos] + } + return id +} + +// Point returns the center of the s2 cell on the sphere as a Point. +// The maximum directional error in Point (compared to the exact +// mathematical result) is 1.5 * dblEpsilon radians, and the maximum length +// error is 2 * dblEpsilon (the same as Normalize). +func (ci CellID) Point() Point { return Point{ci.rawPoint().Normalize()} } + +// LatLng returns the center of the s2 cell on the sphere as a LatLng. +func (ci CellID) LatLng() LatLng { return LatLngFromPoint(Point{ci.rawPoint()}) } + +// ChildBegin returns the first child in a traversal of the children of this cell, in Hilbert curve order. +// +// for ci := c.ChildBegin(); ci != c.ChildEnd(); ci = ci.Next() { +// ... +// } +func (ci CellID) ChildBegin() CellID { + ol := ci.lsb() + return CellID(uint64(ci) - ol + ol>>2) +} + +// ChildBeginAtLevel returns the first cell in a traversal of children a given level deeper than this cell, in +// Hilbert curve order. The given level must be no smaller than the cell's level. +// See ChildBegin for example use. +func (ci CellID) ChildBeginAtLevel(level int) CellID { + return CellID(uint64(ci) - ci.lsb() + lsbForLevel(level)) +} + +// ChildEnd returns the first cell after a traversal of the children of this cell in Hilbert curve order. +// The returned cell may be invalid. +func (ci CellID) ChildEnd() CellID { + ol := ci.lsb() + return CellID(uint64(ci) + ol + ol>>2) +} + +// ChildEndAtLevel returns the first cell after the last child in a traversal of children a given level deeper +// than this cell, in Hilbert curve order. +// The given level must be no smaller than the cell's level. +// The returned cell may be invalid. +func (ci CellID) ChildEndAtLevel(level int) CellID { + return CellID(uint64(ci) + ci.lsb() + lsbForLevel(level)) +} + +// Next returns the next cell along the Hilbert curve. +// This is expected to be used with ChildBegin and ChildEnd, +// or ChildBeginAtLevel and ChildEndAtLevel. +func (ci CellID) Next() CellID { + return CellID(uint64(ci) + ci.lsb()<<1) +} + +// Prev returns the previous cell along the Hilbert curve. +func (ci CellID) Prev() CellID { + return CellID(uint64(ci) - ci.lsb()<<1) +} + +// NextWrap returns the next cell along the Hilbert curve, wrapping from last to +// first as necessary. This should not be used with ChildBegin and ChildEnd. +func (ci CellID) NextWrap() CellID { + n := ci.Next() + if uint64(n) < wrapOffset { + return n + } + return CellID(uint64(n) - wrapOffset) +} + +// PrevWrap returns the previous cell along the Hilbert curve, wrapping around from +// first to last as necessary. This should not be used with ChildBegin and ChildEnd. +func (ci CellID) PrevWrap() CellID { + p := ci.Prev() + if uint64(p) < wrapOffset { + return p + } + return CellID(uint64(p) + wrapOffset) +} + +// AdvanceWrap advances or retreats the indicated number of steps along the +// Hilbert curve at the current level and returns the new position. The +// position wraps between the first and last faces as necessary. +func (ci CellID) AdvanceWrap(steps int64) CellID { + if steps == 0 { + return ci + } + + // We clamp the number of steps if necessary to ensure that we do not + // advance past the End() or before the Begin() of this level. + shift := uint(2*(maxLevel-ci.Level()) + 1) + if steps < 0 { + if min := -int64(uint64(ci) >> shift); steps < min { + wrap := int64(wrapOffset >> shift) + steps %= wrap + if steps < min { + steps += wrap + } + } + } else { + // Unlike Advance(), we don't want to return End(level). + if max := int64((wrapOffset - uint64(ci)) >> shift); steps > max { + wrap := int64(wrapOffset >> shift) + steps %= wrap + if steps > max { + steps -= wrap + } + } + } + + // If steps is negative, then shifting it left has undefined behavior. + // Cast to uint64 for a 2's complement answer. + return CellID(uint64(ci) + (uint64(steps) << shift)) +} + +// Encode encodes the CellID. +func (ci CellID) Encode(w io.Writer) error { + e := &encoder{w: w} + ci.encode(e) + return e.err +} + +func (ci CellID) encode(e *encoder) { + e.writeUint64(uint64(ci)) +} + +// Decode decodes the CellID. +func (ci *CellID) Decode(r io.Reader) error { + d := &decoder{r: asByteReader(r)} + ci.decode(d) + return d.err +} + +func (ci *CellID) decode(d *decoder) { + *ci = CellID(d.readUint64()) +} + +// TODO: the methods below are not exported yet. Settle on the entire API design +// before doing this. Do we want to mirror the C++ one as closely as possible? + +// distanceFromBegin returns the number of steps that this cell is from the first +// node in the S2 hierarchy at our level. (i.e., FromFace(0).ChildBeginAtLevel(ci.Level())). +// The return value is always non-negative. +func (ci CellID) distanceFromBegin() int64 { + return int64(ci >> uint64(2*(maxLevel-ci.Level())+1)) +} + +// rawPoint returns an unnormalized r3 vector from the origin through the center +// of the s2 cell on the sphere. +func (ci CellID) rawPoint() r3.Vector { + face, si, ti := ci.faceSiTi() + return faceUVToXYZ(face, stToUV((0.5/maxSize)*float64(si)), stToUV((0.5/maxSize)*float64(ti))) +} + +// faceSiTi returns the Face/Si/Ti coordinates of the center of the cell. +func (ci CellID) faceSiTi() (face int, si, ti uint32) { + face, i, j, _ := ci.faceIJOrientation() + delta := 0 + if ci.IsLeaf() { + delta = 1 + } else { + if (i^(int(ci)>>2))&1 != 0 { + delta = 2 + } + } + return face, uint32(2*i + delta), uint32(2*j + delta) +} + +// faceIJOrientation uses the global lookupIJ table to unfiddle the bits of ci. +func (ci CellID) faceIJOrientation() (f, i, j, orientation int) { + f = ci.Face() + orientation = f & swapMask + nbits := maxLevel - 7*lookupBits // first iteration + + // Each iteration maps 8 bits of the Hilbert curve position into + // 4 bits of "i" and "j". The lookup table transforms a key of the + // form "ppppppppoo" to a value of the form "iiiijjjjoo", where the + // letters [ijpo] represents bits of "i", "j", the Hilbert curve + // position, and the Hilbert curve orientation respectively. + // + // On the first iteration we need to be careful to clear out the bits + // representing the cube face. + for k := 7; k >= 0; k-- { + orientation += (int(uint64(ci)>>uint64(k*2*lookupBits+1)) & ((1 << uint(2*nbits)) - 1)) << 2 + orientation = lookupIJ[orientation] + i += (orientation >> (lookupBits + 2)) << uint(k*lookupBits) + j += ((orientation >> 2) & ((1 << lookupBits) - 1)) << uint(k*lookupBits) + orientation &= (swapMask | invertMask) + nbits = lookupBits // following iterations + } + + // The position of a non-leaf cell at level "n" consists of a prefix of + // 2*n bits that identifies the cell, followed by a suffix of + // 2*(maxLevel-n)+1 bits of the form 10*. If n==maxLevel, the suffix is + // just "1" and has no effect. Otherwise, it consists of "10", followed + // by (maxLevel-n-1) repetitions of "00", followed by "0". The "10" has + // no effect, while each occurrence of "00" has the effect of reversing + // the swapMask bit. + if ci.lsb()&0x1111111111111110 != 0 { + orientation ^= swapMask + } + + return +} + +// cellIDFromFaceIJ returns a leaf cell given its cube face (range 0..5) and IJ coordinates. +func cellIDFromFaceIJ(f, i, j int) CellID { + // Note that this value gets shifted one bit to the left at the end + // of the function. + n := uint64(f) << (posBits - 1) + // Alternating faces have opposite Hilbert curve orientations; this + // is necessary in order for all faces to have a right-handed + // coordinate system. + bits := f & swapMask + // Each iteration maps 4 bits of "i" and "j" into 8 bits of the Hilbert + // curve position. The lookup table transforms a 10-bit key of the form + // "iiiijjjjoo" to a 10-bit value of the form "ppppppppoo", where the + // letters [ijpo] denote bits of "i", "j", Hilbert curve position, and + // Hilbert curve orientation respectively. + for k := 7; k >= 0; k-- { + mask := (1 << lookupBits) - 1 + bits += ((i >> uint(k*lookupBits)) & mask) << (lookupBits + 2) + bits += ((j >> uint(k*lookupBits)) & mask) << 2 + bits = lookupPos[bits] + n |= uint64(bits>>2) << (uint(k) * 2 * lookupBits) + bits &= (swapMask | invertMask) + } + return CellID(n*2 + 1) +} + +func cellIDFromFaceIJWrap(f, i, j int) CellID { + // Convert i and j to the coordinates of a leaf cell just beyond the + // boundary of this face. This prevents 32-bit overflow in the case + // of finding the neighbors of a face cell. + i = clampInt(i, -1, maxSize) + j = clampInt(j, -1, maxSize) + + // We want to wrap these coordinates onto the appropriate adjacent face. + // The easiest way to do this is to convert the (i,j) coordinates to (x,y,z) + // (which yields a point outside the normal face boundary), and then call + // xyzToFaceUV to project back onto the correct face. + // + // The code below converts (i,j) to (si,ti), and then (si,ti) to (u,v) using + // the linear projection (u=2*s-1 and v=2*t-1). (The code further below + // converts back using the inverse projection, s=0.5*(u+1) and t=0.5*(v+1). + // Any projection would work here, so we use the simplest.) We also clamp + // the (u,v) coordinates so that the point is barely outside the + // [-1,1]x[-1,1] face rectangle, since otherwise the reprojection step + // (which divides by the new z coordinate) might change the other + // coordinates enough so that we end up in the wrong leaf cell. + const scale = 1.0 / maxSize + limit := math.Nextafter(1, 2) + u := math.Max(-limit, math.Min(limit, scale*float64((i<<1)+1-maxSize))) + v := math.Max(-limit, math.Min(limit, scale*float64((j<<1)+1-maxSize))) + + // Find the leaf cell coordinates on the adjacent face, and convert + // them to a cell id at the appropriate level. + f, u, v = xyzToFaceUV(faceUVToXYZ(f, u, v)) + return cellIDFromFaceIJ(f, stToIJ(0.5*(u+1)), stToIJ(0.5*(v+1))) +} + +func cellIDFromFaceIJSame(f, i, j int, sameFace bool) CellID { + if sameFace { + return cellIDFromFaceIJ(f, i, j) + } + return cellIDFromFaceIJWrap(f, i, j) +} + +// ijToSTMin converts the i- or j-index of a leaf cell to the minimum corresponding +// s- or t-value contained by that cell. The argument must be in the range +// [0..2**30], i.e. up to one position beyond the normal range of valid leaf +// cell indices. +func ijToSTMin(i int) float64 { + return float64(i) / float64(maxSize) +} + +// stToIJ converts value in ST coordinates to a value in IJ coordinates. +func stToIJ(s float64) int { + return clampInt(int(math.Floor(maxSize*s)), 0, maxSize-1) +} + +// cellIDFromPoint returns a leaf cell containing point p. Usually there is +// exactly one such cell, but for points along the edge of a cell, any +// adjacent cell may be (deterministically) chosen. This is because +// s2.CellIDs are considered to be closed sets. The returned cell will +// always contain the given point, i.e. +// +// CellFromPoint(p).ContainsPoint(p) +// +// is always true. +func cellIDFromPoint(p Point) CellID { + f, u, v := xyzToFaceUV(r3.Vector{p.X, p.Y, p.Z}) + i := stToIJ(uvToST(u)) + j := stToIJ(uvToST(v)) + return cellIDFromFaceIJ(f, i, j) +} + +// ijLevelToBoundUV returns the bounds in (u,v)-space for the cell at the given +// level containing the leaf cell with the given (i,j)-coordinates. +func ijLevelToBoundUV(i, j, level int) r2.Rect { + cellSize := sizeIJ(level) + xLo := i & -cellSize + yLo := j & -cellSize + + return r2.Rect{ + X: r1.Interval{ + Lo: stToUV(ijToSTMin(xLo)), + Hi: stToUV(ijToSTMin(xLo + cellSize)), + }, + Y: r1.Interval{ + Lo: stToUV(ijToSTMin(yLo)), + Hi: stToUV(ijToSTMin(yLo + cellSize)), + }, + } +} + +// Constants related to the bit mangling in the Cell ID. +const ( + lookupBits = 4 + swapMask = 0x01 + invertMask = 0x02 +) + +// The following lookup tables are used to convert efficiently between an +// (i,j) cell index and the corresponding position along the Hilbert curve. +// +// lookupPos maps 4 bits of "i", 4 bits of "j", and 2 bits representing the +// orientation of the current cell into 8 bits representing the order in which +// that subcell is visited by the Hilbert curve, plus 2 bits indicating the +// new orientation of the Hilbert curve within that subcell. (Cell +// orientations are represented as combination of swapMask and invertMask.) +// +// lookupIJ is an inverted table used for mapping in the opposite +// direction. +// +// We also experimented with looking up 16 bits at a time (14 bits of position +// plus 2 of orientation) but found that smaller lookup tables gave better +// performance. (2KB fits easily in the primary cache.) +var ( + ijToPos = [4][4]int{ + {0, 1, 3, 2}, // canonical order + {0, 3, 1, 2}, // axes swapped + {2, 3, 1, 0}, // bits inverted + {2, 1, 3, 0}, // swapped & inverted + } + posToIJ = [4][4]int{ + {0, 1, 3, 2}, // canonical order: (0,0), (0,1), (1,1), (1,0) + {0, 2, 3, 1}, // axes swapped: (0,0), (1,0), (1,1), (0,1) + {3, 2, 0, 1}, // bits inverted: (1,1), (1,0), (0,0), (0,1) + {3, 1, 0, 2}, // swapped & inverted: (1,1), (0,1), (0,0), (1,0) + } + posToOrientation = [4]int{swapMask, 0, 0, invertMask | swapMask} + lookupIJ [1 << (2*lookupBits + 2)]int + lookupPos [1 << (2*lookupBits + 2)]int +) + +func init() { + initLookupCell(0, 0, 0, 0, 0, 0) + initLookupCell(0, 0, 0, swapMask, 0, swapMask) + initLookupCell(0, 0, 0, invertMask, 0, invertMask) + initLookupCell(0, 0, 0, swapMask|invertMask, 0, swapMask|invertMask) +} + +// initLookupCell initializes the lookupIJ table at init time. +func initLookupCell(level, i, j, origOrientation, pos, orientation int) { + if level == lookupBits { + ij := (i << lookupBits) + j + lookupPos[(ij<<2)+origOrientation] = (pos << 2) + orientation + lookupIJ[(pos<<2)+origOrientation] = (ij << 2) + orientation + return + } + + level++ + i <<= 1 + j <<= 1 + pos <<= 2 + r := posToIJ[orientation] + initLookupCell(level, i+(r[0]>>1), j+(r[0]&1), origOrientation, pos, orientation^posToOrientation[0]) + initLookupCell(level, i+(r[1]>>1), j+(r[1]&1), origOrientation, pos+1, orientation^posToOrientation[1]) + initLookupCell(level, i+(r[2]>>1), j+(r[2]&1), origOrientation, pos+2, orientation^posToOrientation[2]) + initLookupCell(level, i+(r[3]>>1), j+(r[3]&1), origOrientation, pos+3, orientation^posToOrientation[3]) +} + +// CommonAncestorLevel returns the level of the common ancestor of the two S2 CellIDs. +func (ci CellID) CommonAncestorLevel(other CellID) (level int, ok bool) { + bits := uint64(ci ^ other) + if bits < ci.lsb() { + bits = ci.lsb() + } + if bits < other.lsb() { + bits = other.lsb() + } + + msbPos := findMSBSetNonZero64(bits) + if msbPos > 60 { + return 0, false + } + return (60 - msbPos) >> 1, true +} + +// Advance advances or retreats the indicated number of steps along the +// Hilbert curve at the current level, and returns the new position. The +// position is never advanced past End() or before Begin(). +func (ci CellID) Advance(steps int64) CellID { + if steps == 0 { + return ci + } + + // We clamp the number of steps if necessary to ensure that we do not + // advance past the End() or before the Begin() of this level. Note that + // minSteps and maxSteps always fit in a signed 64-bit integer. + stepShift := uint(2*(maxLevel-ci.Level()) + 1) + if steps < 0 { + minSteps := -int64(uint64(ci) >> stepShift) + if steps < minSteps { + steps = minSteps + } + } else { + maxSteps := int64((wrapOffset + ci.lsb() - uint64(ci)) >> stepShift) + if steps > maxSteps { + steps = maxSteps + } + } + return ci + CellID(steps)<<stepShift +} + +// centerST return the center of the CellID in (s,t)-space. +func (ci CellID) centerST() r2.Point { + _, si, ti := ci.faceSiTi() + return r2.Point{siTiToST(si), siTiToST(ti)} +} + +// sizeST returns the edge length of this CellID in (s,t)-space at the given level. +func (ci CellID) sizeST(level int) float64 { + return ijToSTMin(sizeIJ(level)) +} + +// boundST returns the bound of this CellID in (s,t)-space. +func (ci CellID) boundST() r2.Rect { + s := ci.sizeST(ci.Level()) + return r2.RectFromCenterSize(ci.centerST(), r2.Point{s, s}) +} + +// centerUV returns the center of this CellID in (u,v)-space. Note that +// the center of the cell is defined as the point at which it is recursively +// subdivided into four children; in general, it is not at the midpoint of +// the (u,v) rectangle covered by the cell. +func (ci CellID) centerUV() r2.Point { + _, si, ti := ci.faceSiTi() + return r2.Point{stToUV(siTiToST(si)), stToUV(siTiToST(ti))} +} + +// boundUV returns the bound of this CellID in (u,v)-space. +func (ci CellID) boundUV() r2.Rect { + _, i, j, _ := ci.faceIJOrientation() + return ijLevelToBoundUV(i, j, ci.Level()) +} + +// expandEndpoint returns a new u-coordinate u' such that the distance from the +// line u=u' to the given edge (u,v0)-(u,v1) is exactly the given distance +// (which is specified as the sine of the angle corresponding to the distance). +func expandEndpoint(u, maxV, sinDist float64) float64 { + // This is based on solving a spherical right triangle, similar to the + // calculation in Cap.RectBound. + // Given an edge of the form (u,v0)-(u,v1), let maxV = max(abs(v0), abs(v1)). + sinUShift := sinDist * math.Sqrt((1+u*u+maxV*maxV)/(1+u*u)) + cosUShift := math.Sqrt(1 - sinUShift*sinUShift) + // The following is an expansion of tan(atan(u) + asin(sinUShift)). + return (cosUShift*u + sinUShift) / (cosUShift - sinUShift*u) +} + +// expandedByDistanceUV returns a rectangle expanded in (u,v)-space so that it +// contains all points within the given distance of the boundary, and return the +// smallest such rectangle. If the distance is negative, then instead shrink this +// rectangle so that it excludes all points within the given absolute distance +// of the boundary. +// +// Distances are measured *on the sphere*, not in (u,v)-space. For example, +// you can use this method to expand the (u,v)-bound of an CellID so that +// it contains all points within 5km of the original cell. You can then +// test whether a point lies within the expanded bounds like this: +// +// if u, v, ok := faceXYZtoUV(face, point); ok && bound.ContainsPoint(r2.Point{u,v}) { ... } +// +// Limitations: +// +// - Because the rectangle is drawn on one of the six cube-face planes +// (i.e., {x,y,z} = +/-1), it can cover at most one hemisphere. This +// limits the maximum amount that a rectangle can be expanded. For +// example, CellID bounds can be expanded safely by at most 45 degrees +// (about 5000 km on the Earth's surface). +// +// - The implementation is not exact for negative distances. The resulting +// rectangle will exclude all points within the given distance of the +// boundary but may be slightly smaller than necessary. +func expandedByDistanceUV(uv r2.Rect, distance s1.Angle) r2.Rect { + // Expand each of the four sides of the rectangle just enough to include all + // points within the given distance of that side. (The rectangle may be + // expanded by a different amount in (u,v)-space on each side.) + maxU := math.Max(math.Abs(uv.X.Lo), math.Abs(uv.X.Hi)) + maxV := math.Max(math.Abs(uv.Y.Lo), math.Abs(uv.Y.Hi)) + sinDist := math.Sin(float64(distance)) + return r2.Rect{ + X: r1.Interval{expandEndpoint(uv.X.Lo, maxV, -sinDist), + expandEndpoint(uv.X.Hi, maxV, sinDist)}, + Y: r1.Interval{expandEndpoint(uv.Y.Lo, maxU, -sinDist), + expandEndpoint(uv.Y.Hi, maxU, sinDist)}} +} + +// MaxTile returns the largest cell with the same RangeMin such that +// RangeMax < limit.RangeMin. It returns limit if no such cell exists. +// This method can be used to generate a small set of CellIDs that covers +// a given range (a tiling). This example shows how to generate a tiling +// for a semi-open range of leaf cells [start, limit): +// +// for id := start.MaxTile(limit); id != limit; id = id.Next().MaxTile(limit)) { ... } +// +// Note that in general the cells in the tiling will be of different sizes; +// they gradually get larger (near the middle of the range) and then +// gradually get smaller as limit is approached. +func (ci CellID) MaxTile(limit CellID) CellID { + start := ci.RangeMin() + if start >= limit.RangeMin() { + return limit + } + + if ci.RangeMax() >= limit { + // The cell is too large, shrink it. Note that when generating coverings + // of CellID ranges, this loop usually executes only once. Also because + // ci.RangeMin() < limit.RangeMin(), we will always exit the loop by the + // time we reach a leaf cell. + for { + ci = ci.Children()[0] + if ci.RangeMax() < limit { + break + } + } + return ci + } + + // The cell may be too small. Grow it if necessary. Note that generally + // this loop only iterates once. + for !ci.isFace() { + parent := ci.immediateParent() + if parent.RangeMin() != start || parent.RangeMax() >= limit { + break + } + ci = parent + } + return ci +} + +// centerFaceSiTi returns the (face, si, ti) coordinates of the center of the cell. +// Note that although (si,ti) coordinates span the range [0,2**31] in general, +// the cell center coordinates are always in the range [1,2**31-1] and +// therefore can be represented using a signed 32-bit integer. +func (ci CellID) centerFaceSiTi() (face, si, ti int) { + // First we compute the discrete (i,j) coordinates of a leaf cell contained + // within the given cell. Given that cells are represented by the Hilbert + // curve position corresponding at their center, it turns out that the cell + // returned by faceIJOrientation is always one of two leaf cells closest + // to the center of the cell (unless the given cell is a leaf cell itself, + // in which case there is only one possibility). + // + // Given a cell of size s >= 2 (i.e. not a leaf cell), and letting (imin, + // jmin) be the coordinates of its lower left-hand corner, the leaf cell + // returned by faceIJOrientation is either (imin + s/2, jmin + s/2) + // (imin + s/2 - 1, jmin + s/2 - 1). The first case is the one we want. + // We can distinguish these two cases by looking at the low bit of i or + // j. In the second case the low bit is one, unless s == 2 (i.e. the + // level just above leaf cells) in which case the low bit is zero. + // + // In the code below, the expression ((i ^ (int(id) >> 2)) & 1) is true + // if we are in the second case described above. + face, i, j, _ := ci.faceIJOrientation() + delta := 0 + if ci.IsLeaf() { + delta = 1 + } else if (int64(i)^(int64(ci)>>2))&1 == 1 { + delta = 2 + } + + // Note that (2 * {i,j} + delta) will never overflow a 32-bit integer. + return face, 2*i + delta, 2*j + delta +} |