diff options
Diffstat (limited to 'vendor/github.com/cespare/xxhash/xxhash.go')
-rw-r--r-- | vendor/github.com/cespare/xxhash/xxhash.go | 168 |
1 files changed, 168 insertions, 0 deletions
diff --git a/vendor/github.com/cespare/xxhash/xxhash.go b/vendor/github.com/cespare/xxhash/xxhash.go new file mode 100644 index 000000000..f896bd28f --- /dev/null +++ b/vendor/github.com/cespare/xxhash/xxhash.go @@ -0,0 +1,168 @@ +// Package xxhash implements the 64-bit variant of xxHash (XXH64) as described +// at http://cyan4973.github.io/xxHash/. +package xxhash + +import ( + "encoding/binary" + "hash" +) + +const ( + prime1 uint64 = 11400714785074694791 + prime2 uint64 = 14029467366897019727 + prime3 uint64 = 1609587929392839161 + prime4 uint64 = 9650029242287828579 + prime5 uint64 = 2870177450012600261 +) + +// NOTE(caleb): I'm using both consts and vars of the primes. Using consts where +// possible in the Go code is worth a small (but measurable) performance boost +// by avoiding some MOVQs. Vars are needed for the asm and also are useful for +// convenience in the Go code in a few places where we need to intentionally +// avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the +// result overflows a uint64). +var ( + prime1v = prime1 + prime2v = prime2 + prime3v = prime3 + prime4v = prime4 + prime5v = prime5 +) + +type xxh struct { + v1 uint64 + v2 uint64 + v3 uint64 + v4 uint64 + total int + mem [32]byte + n int // how much of mem is used +} + +// New creates a new hash.Hash64 that implements the 64-bit xxHash algorithm. +func New() hash.Hash64 { + var x xxh + x.Reset() + return &x +} + +func (x *xxh) Reset() { + x.n = 0 + x.total = 0 + x.v1 = prime1v + prime2 + x.v2 = prime2 + x.v3 = 0 + x.v4 = -prime1v +} + +func (x *xxh) Size() int { return 8 } +func (x *xxh) BlockSize() int { return 32 } + +// Write adds more data to x. It always returns len(b), nil. +func (x *xxh) Write(b []byte) (n int, err error) { + n = len(b) + x.total += len(b) + + if x.n+len(b) < 32 { + // This new data doesn't even fill the current block. + copy(x.mem[x.n:], b) + x.n += len(b) + return + } + + if x.n > 0 { + // Finish off the partial block. + copy(x.mem[x.n:], b) + x.v1 = round(x.v1, u64(x.mem[0:8])) + x.v2 = round(x.v2, u64(x.mem[8:16])) + x.v3 = round(x.v3, u64(x.mem[16:24])) + x.v4 = round(x.v4, u64(x.mem[24:32])) + b = b[32-x.n:] + x.n = 0 + } + + if len(b) >= 32 { + // One or more full blocks left. + b = writeBlocks(x, b) + } + + // Store any remaining partial block. + copy(x.mem[:], b) + x.n = len(b) + + return +} + +func (x *xxh) Sum(b []byte) []byte { + s := x.Sum64() + return append( + b, + byte(s>>56), + byte(s>>48), + byte(s>>40), + byte(s>>32), + byte(s>>24), + byte(s>>16), + byte(s>>8), + byte(s), + ) +} + +func (x *xxh) Sum64() uint64 { + var h uint64 + + if x.total >= 32 { + v1, v2, v3, v4 := x.v1, x.v2, x.v3, x.v4 + h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4) + h = mergeRound(h, v1) + h = mergeRound(h, v2) + h = mergeRound(h, v3) + h = mergeRound(h, v4) + } else { + h = x.v3 + prime5 + } + + h += uint64(x.total) + + i, end := 0, x.n + for ; i+8 <= end; i += 8 { + k1 := round(0, u64(x.mem[i:i+8])) + h ^= k1 + h = rol27(h)*prime1 + prime4 + } + if i+4 <= end { + h ^= uint64(u32(x.mem[i:i+4])) * prime1 + h = rol23(h)*prime2 + prime3 + i += 4 + } + for i < end { + h ^= uint64(x.mem[i]) * prime5 + h = rol11(h) * prime1 + i++ + } + + h ^= h >> 33 + h *= prime2 + h ^= h >> 29 + h *= prime3 + h ^= h >> 32 + + return h +} + +func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) } +func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) } + +func round(acc, input uint64) uint64 { + acc += input * prime2 + acc = rol31(acc) + acc *= prime1 + return acc +} + +func mergeRound(acc, val uint64) uint64 { + val = round(0, val) + acc ^= val + acc = acc*prime1 + prime4 + return acc +} |