diff options
Diffstat (limited to 'internal/media/imaging.go')
-rw-r--r-- | internal/media/imaging.go | 623 |
1 files changed, 623 insertions, 0 deletions
diff --git a/internal/media/imaging.go b/internal/media/imaging.go new file mode 100644 index 000000000..a9f73a066 --- /dev/null +++ b/internal/media/imaging.go @@ -0,0 +1,623 @@ +// GoToSocial +// Copyright (C) GoToSocial Authors admin@gotosocial.org +// SPDX-License-Identifier: AGPL-3.0-or-later +// +// This program is free software: you can redistribute it and/or modify +// it under the terms of the GNU Affero General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Affero General Public License for more details. +// +// You should have received a copy of the GNU Affero General Public License +// along with this program. If not, see <http://www.gnu.org/licenses/>. + +package media + +import ( + "image" + "image/color" + "math" +) + +// NOTE: +// the following code is borrowed from +// github.com/disintegration/imaging +// and collapses in some places for our +// particular usecases and with parallel() +// function (spans work across goroutines) +// removed, instead working synchronously. +// +// at gotosocial we take particular +// care about where we spawn goroutines +// to ensure we're in control of the +// amount of concurrency in relation +// to the amount configured by user. + +// resizeDownLinear resizes image to given width x height using linear resampling. +// This is specifically optimized for resizing down (i.e. smaller), else is noop. +func resizeDownLinear(img image.Image, width, height int) image.Image { + srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() + if srcW <= 0 || srcH <= 0 || + width < 0 || height < 0 { + return &image.NRGBA{} + } + + if width == 0 { + // If no width is given, use aspect preserving width. + tmp := float64(height) * float64(srcW) / float64(srcH) + width = int(math.Max(1.0, math.Floor(tmp+0.5))) + } + + if height == 0 { + // If no height is given, use aspect preserving height. + tmp := float64(width) * float64(srcH) / float64(srcW) + height = int(math.Max(1.0, math.Floor(tmp+0.5))) + } + + if width < srcW { + // Width is smaller, resize horizontally. + img = resizeHorizontalLinear(img, width) + } + + if height < srcH { + // Height is smaller, resize vertically. + img = resizeVerticalLinear(img, height) + } + + return img +} + +// flipH flips the image horizontally (left to right). +func flipH(img image.Image) image.Image { + src := newScanner(img) + dstW := src.w + dstH := src.h + rowSize := dstW * 4 + dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) + for y := 0; y < dstH; y++ { + i := y * dst.Stride + srcY := y + src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize]) + reverse(dst.Pix[i : i+rowSize]) + } + return dst +} + +// flipV flips the image vertically (from top to bottom). +func flipV(img image.Image) image.Image { + src := newScanner(img) + dstW := src.w + dstH := src.h + rowSize := dstW * 4 + dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) + for y := 0; y < dstH; y++ { + i := y * dst.Stride + srcY := dstH - y - 1 + src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize]) + } + return dst +} + +// rotate90 rotates the image 90 counter-clockwise. +func rotate90(img image.Image) image.Image { + src := newScanner(img) + dstW := src.h + dstH := src.w + rowSize := dstW * 4 + dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) + for y := 0; y < dstH; y++ { + i := y * dst.Stride + srcX := dstH - y - 1 + src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) + } + return dst +} + +// rotate180 rotates the image 180 counter-clockwise. +func rotate180(img image.Image) image.Image { + src := newScanner(img) + dstW := src.w + dstH := src.h + rowSize := dstW * 4 + dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) + for y := 0; y < dstH; y++ { + i := y * dst.Stride + srcY := dstH - y - 1 + src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize]) + reverse(dst.Pix[i : i+rowSize]) + } + return dst +} + +// rotate270 rotates the image 270 counter-clockwise. +func rotate270(img image.Image) image.Image { + src := newScanner(img) + dstW := src.h + dstH := src.w + rowSize := dstW * 4 + dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) + for y := 0; y < dstH; y++ { + i := y * dst.Stride + srcX := y + src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) + reverse(dst.Pix[i : i+rowSize]) + } + return dst +} + +// transpose flips the image horizontally and rotates 90 counter-clockwise. +func transpose(img image.Image) image.Image { + src := newScanner(img) + dstW := src.h + dstH := src.w + rowSize := dstW * 4 + dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) + for y := 0; y < dstH; y++ { + i := y * dst.Stride + srcX := y + src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) + } + return dst +} + +// transverse flips the image vertically and rotates 90 counter-clockwise. +func transverse(img image.Image) image.Image { + src := newScanner(img) + dstW := src.h + dstH := src.w + rowSize := dstW * 4 + dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) + for y := 0; y < dstH; y++ { + i := y * dst.Stride + srcX := dstH - y - 1 + src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) + reverse(dst.Pix[i : i+rowSize]) + } + return dst +} + +// resizeHorizontalLinear resizes image to given width using linear resampling. +func resizeHorizontalLinear(img image.Image, dstWidth int) image.Image { + src := newScanner(img) + dst := image.NewRGBA(image.Rect(0, 0, dstWidth, src.h)) + weights := precomputeWeightsLinear(dstWidth, src.w) + scanLine := make([]uint8, src.w*4) + for y := 0; y < src.h; y++ { + src.scan(0, y, src.w, y+1, scanLine) + j0 := y * dst.Stride + for x := range weights { + var r, g, b, a float64 + for _, w := range weights[x] { + i := w.index * 4 + s := scanLine[i : i+4 : i+4] + aw := float64(s[3]) * w.weight + r += float64(s[0]) * aw + g += float64(s[1]) * aw + b += float64(s[2]) * aw + a += aw + } + if a != 0 { + aInv := 1 / a + j := j0 + x*4 + d := dst.Pix[j : j+4 : j+4] + d[0] = clampFloat(r * aInv) + d[1] = clampFloat(g * aInv) + d[2] = clampFloat(b * aInv) + d[3] = clampFloat(a) + } + } + } + return dst +} + +// resizeVerticalLinear resizes image to given height using linear resampling. +func resizeVerticalLinear(img image.Image, height int) image.Image { + src := newScanner(img) + dst := image.NewNRGBA(image.Rect(0, 0, src.w, height)) + weights := precomputeWeightsLinear(height, src.h) + scanLine := make([]uint8, src.h*4) + for x := 0; x < src.w; x++ { + src.scan(x, 0, x+1, src.h, scanLine) + for y := range weights { + var r, g, b, a float64 + for _, w := range weights[y] { + i := w.index * 4 + s := scanLine[i : i+4 : i+4] + aw := float64(s[3]) * w.weight + r += float64(s[0]) * aw + g += float64(s[1]) * aw + b += float64(s[2]) * aw + a += aw + } + if a != 0 { + aInv := 1 / a + j := y*dst.Stride + x*4 + d := dst.Pix[j : j+4 : j+4] + d[0] = clampFloat(r * aInv) + d[1] = clampFloat(g * aInv) + d[2] = clampFloat(b * aInv) + d[3] = clampFloat(a) + } + } + } + return dst +} + +type indexWeight struct { + index int + weight float64 +} + +func precomputeWeightsLinear(dstSize, srcSize int) [][]indexWeight { + du := float64(srcSize) / float64(dstSize) + scale := du + if scale < 1.0 { + scale = 1.0 + } + + ru := math.Ceil(scale) + out := make([][]indexWeight, dstSize) + tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2) + + for v := 0; v < dstSize; v++ { + fu := (float64(v)+0.5)*du - 0.5 + + begin := int(math.Ceil(fu - ru)) + if begin < 0 { + begin = 0 + } + end := int(math.Floor(fu + ru)) + if end > srcSize-1 { + end = srcSize - 1 + } + + var sum float64 + for u := begin; u <= end; u++ { + w := resampleLinear((float64(u) - fu) / scale) + if w != 0 { + sum += w + tmp = append(tmp, indexWeight{index: u, weight: w}) + } + } + if sum != 0 { + for i := range tmp { + tmp[i].weight /= sum + } + } + + out[v] = tmp + tmp = tmp[len(tmp):] + } + + return out +} + +// resampleLinear is the resample kernel func for linear filtering. +func resampleLinear(x float64) float64 { + x = math.Abs(x) + if x < 1.0 { + return 1.0 - x + } + return 0 +} + +// scanner wraps an image.Image for +// easier size access and image type +// agnostic access to data at coords. +type scanner struct { + image image.Image + w, h int + palette []color.NRGBA +} + +// newScanner wraps an image.Image in scanner{} type. +func newScanner(img image.Image) *scanner { + b := img.Bounds() + s := &scanner{ + image: img, + + w: b.Dx(), + h: b.Dy(), + } + if img, ok := img.(*image.Paletted); ok { + s.palette = make([]color.NRGBA, len(img.Palette)) + for i := 0; i < len(img.Palette); i++ { + s.palette[i] = color.NRGBAModel.Convert(img.Palette[i]).(color.NRGBA) + } + } + return s +} + +// scan scans the given rectangular region of the image into dst. +func (s *scanner) scan(x1, y1, x2, y2 int, dst []uint8) { + switch img := s.image.(type) { + case *image.NRGBA: + size := (x2 - x1) * 4 + j := 0 + i := y1*img.Stride + x1*4 + if size == 4 { + for y := y1; y < y2; y++ { + d := dst[j : j+4 : j+4] + s := img.Pix[i : i+4 : i+4] + d[0] = s[0] + d[1] = s[1] + d[2] = s[2] + d[3] = s[3] + j += size + i += img.Stride + } + } else { + for y := y1; y < y2; y++ { + copy(dst[j:j+size], img.Pix[i:i+size]) + j += size + i += img.Stride + } + } + + case *image.NRGBA64: + j := 0 + for y := y1; y < y2; y++ { + i := y*img.Stride + x1*8 + for x := x1; x < x2; x++ { + s := img.Pix[i : i+8 : i+8] + d := dst[j : j+4 : j+4] + d[0] = s[0] + d[1] = s[2] + d[2] = s[4] + d[3] = s[6] + j += 4 + i += 8 + } + } + + case *image.RGBA: + j := 0 + for y := y1; y < y2; y++ { + i := y*img.Stride + x1*4 + for x := x1; x < x2; x++ { + d := dst[j : j+4 : j+4] + a := img.Pix[i+3] + switch a { + case 0: + d[0] = 0 + d[1] = 0 + d[2] = 0 + d[3] = a + case 0xff: + s := img.Pix[i : i+4 : i+4] + d[0] = s[0] + d[1] = s[1] + d[2] = s[2] + d[3] = a + default: + s := img.Pix[i : i+4 : i+4] + r16 := uint16(s[0]) + g16 := uint16(s[1]) + b16 := uint16(s[2]) + a16 := uint16(a) + d[0] = uint8(r16 * 0xff / a16) + d[1] = uint8(g16 * 0xff / a16) + d[2] = uint8(b16 * 0xff / a16) + d[3] = a + } + j += 4 + i += 4 + } + } + + case *image.RGBA64: + j := 0 + for y := y1; y < y2; y++ { + i := y*img.Stride + x1*8 + for x := x1; x < x2; x++ { + s := img.Pix[i : i+8 : i+8] + d := dst[j : j+4 : j+4] + a := s[6] + switch a { + case 0: + d[0] = 0 + d[1] = 0 + d[2] = 0 + case 0xff: + d[0] = s[0] + d[1] = s[2] + d[2] = s[4] + default: + r32 := uint32(s[0])<<8 | uint32(s[1]) + g32 := uint32(s[2])<<8 | uint32(s[3]) + b32 := uint32(s[4])<<8 | uint32(s[5]) + a32 := uint32(s[6])<<8 | uint32(s[7]) + d[0] = uint8((r32 * 0xffff / a32) >> 8) + d[1] = uint8((g32 * 0xffff / a32) >> 8) + d[2] = uint8((b32 * 0xffff / a32) >> 8) + } + d[3] = a + j += 4 + i += 8 + } + } + + case *image.Gray: + j := 0 + for y := y1; y < y2; y++ { + i := y*img.Stride + x1 + for x := x1; x < x2; x++ { + c := img.Pix[i] + d := dst[j : j+4 : j+4] + d[0] = c + d[1] = c + d[2] = c + d[3] = 0xff + j += 4 + i++ + } + } + + case *image.Gray16: + j := 0 + for y := y1; y < y2; y++ { + i := y*img.Stride + x1*2 + for x := x1; x < x2; x++ { + c := img.Pix[i] + d := dst[j : j+4 : j+4] + d[0] = c + d[1] = c + d[2] = c + d[3] = 0xff + j += 4 + i += 2 + } + } + + case *image.YCbCr: + j := 0 + x1 += img.Rect.Min.X + x2 += img.Rect.Min.X + y1 += img.Rect.Min.Y + y2 += img.Rect.Min.Y + + hy := img.Rect.Min.Y / 2 + hx := img.Rect.Min.X / 2 + for y := y1; y < y2; y++ { + iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X) + + var yBase int + switch img.SubsampleRatio { + case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio422: + yBase = (y - img.Rect.Min.Y) * img.CStride + case image.YCbCrSubsampleRatio420, image.YCbCrSubsampleRatio440: + yBase = (y/2 - hy) * img.CStride + } + + for x := x1; x < x2; x++ { + var ic int + switch img.SubsampleRatio { + case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio440: + ic = yBase + (x - img.Rect.Min.X) + case image.YCbCrSubsampleRatio422, image.YCbCrSubsampleRatio420: + ic = yBase + (x/2 - hx) + default: + ic = img.COffset(x, y) + } + + yy1 := int32(img.Y[iy]) * 0x10101 + cb1 := int32(img.Cb[ic]) - 128 + cr1 := int32(img.Cr[ic]) - 128 + + r := yy1 + 91881*cr1 + if uint32(r)&0xff000000 == 0 { + r >>= 16 + } else { + r = ^(r >> 31) + } + + g := yy1 - 22554*cb1 - 46802*cr1 + if uint32(g)&0xff000000 == 0 { + g >>= 16 + } else { + g = ^(g >> 31) + } + + b := yy1 + 116130*cb1 + if uint32(b)&0xff000000 == 0 { + b >>= 16 + } else { + b = ^(b >> 31) + } + + d := dst[j : j+4 : j+4] + d[0] = uint8(r) + d[1] = uint8(g) + d[2] = uint8(b) + d[3] = 0xff + + iy++ + j += 4 + } + } + + case *image.Paletted: + j := 0 + for y := y1; y < y2; y++ { + i := y*img.Stride + x1 + for x := x1; x < x2; x++ { + c := s.palette[img.Pix[i]] + d := dst[j : j+4 : j+4] + d[0] = c.R + d[1] = c.G + d[2] = c.B + d[3] = c.A + j += 4 + i++ + } + } + + default: + j := 0 + b := s.image.Bounds() + x1 += b.Min.X + x2 += b.Min.X + y1 += b.Min.Y + y2 += b.Min.Y + for y := y1; y < y2; y++ { + for x := x1; x < x2; x++ { + r16, g16, b16, a16 := s.image.At(x, y).RGBA() + d := dst[j : j+4 : j+4] + switch a16 { + case 0xffff: + d[0] = uint8(r16 >> 8) + d[1] = uint8(g16 >> 8) + d[2] = uint8(b16 >> 8) + d[3] = 0xff + case 0: + d[0] = 0 + d[1] = 0 + d[2] = 0 + d[3] = 0 + default: + d[0] = uint8(((r16 * 0xffff) / a16) >> 8) + d[1] = uint8(((g16 * 0xffff) / a16) >> 8) + d[2] = uint8(((b16 * 0xffff) / a16) >> 8) + d[3] = uint8(a16 >> 8) + } + j += 4 + } + } + } +} + +// reverse reverses the data +// in contained pixel slice. +func reverse(pix []uint8) { + if len(pix) <= 4 { + return + } + i := 0 + j := len(pix) - 4 + for i < j { + pi := pix[i : i+4 : i+4] + pj := pix[j : j+4 : j+4] + pi[0], pj[0] = pj[0], pi[0] + pi[1], pj[1] = pj[1], pi[1] + pi[2], pj[2] = pj[2], pi[2] + pi[3], pj[3] = pj[3], pi[3] + i += 4 + j -= 4 + } +} + +// clampFloat rounds and clamps float64 value to fit into uint8. +func clampFloat(x float64) uint8 { + v := int64(x + 0.5) + if v > 255 { + return 255 + } + if v > 0 { + return uint8(v) + } + return 0 +} |